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Abstract: Polycrystalline lead selenide material that is processed after a sensitization technology
offers the additional physical effects of carrier recombination suppression and carrier transport
manipulation, making it sufficiently sensitive to mid-infrared radiation at room temperature.
Low-cost and large-scale integration with existing electronic platforms such as complementary
metal–oxide–semiconductor (CMOS) technology and multi-pixel readout electronics enable a
photodetector based on polycrystalline lead selenide coating to work in high-speed, low-cost, and
low-power consumption applications. It also shows huge potential to compound with other materials
or structures, such as the metasurface for novel optoelectronic devices and more marvelous properties.
Here, we provide an overview and evaluation of the preparations, physical effects, properties, and
potential applications, as well as the optoelectronic enhancement mechanism, of lead selenide
polycrystalline coatings.
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1. Introduction

The photoelectric conversion is one of the important interaction effects between semiconductors
and light, and has promoted the development of society and affected our daily life for decades.
Numerous applications such as the optical communication, photography, biomedical imaging,
security/defense, industry monitoring, gas sensing, and solar cells have been explored due to the
developments of photosensitive semiconductor materials and relevant device integration technologies
such as the complementary metal–oxide–semiconductor (CMOS). However, higher requirements on
the optical and optoelectronic sensitivity, response speed, portability, sensitive wavelength range,
as well as the ability to integrate with CMOS for the photoelectric devices, have been put forward due
to the developments of industry and our society.

Lead selenide (PbSe) is an IV–VI narrow bandgap semiconductor material (Eg = 0.27 eV, 300 K)
with outstanding physical properties [1–8]. A large dielectric constant makes it possibly compatible
with gold or silver metasurfaces for an enhanced optical absorber or photodetector via surface plasmon
resonance (SPR) [9,10]. An easily tunable bandgap has been reported in the PbSe nanocrystalline
and polycrystalline coatings by changing the preparation method and conditions to control the
crystallite size and film thickness for potential applications such as solar cells [11–14]. It also exhibits
high optical nonlinearity effects, including second-order and third-order nonlinearity, which have
potential applications in all-optical data processing, quantum information, ultrafast lasers, etc. [15–17].
Likewise, a large exciton Bohr radius of 46 nm in PbSe quantum dots enables strong electrons–holes
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quantum confinement, leading to the enhanced photo-conversion efficiency of solar cells by multiple
exciton generation [18–20]. A good thermoelectric effect has also been achieved from the doped
polycrystalline PbSe material [21–23]. Moreover, large classes of materials such as graphene, carbon
nanotubes, and polymers can compound with PbSe to fabricate composites for optical, optoelectronic,
and thermoelectric applications, since the composite materials are chemically stable, easily processed,
and have promising physical properties [24–28].

The PbSe nanocrystalline and polycrystalline coatings are becoming more and more attractive in many
potential applicable fields such as infrared optoelectronics [29,30], optical nonlinearity [15,16], mode-locked
lasers [17], thermoelectric material [21–23], solar cells [18–20], and biomedical labeling [31,32]. Various
fabrication methods, including chemical bath deposition (CBD) [33], electrochemical deposition [34,35],
thermal evaporation [13,36], electron beam evaporation (EBE) [37], molecular beam epitaxy (MBE) [38,39]
and RF magnetron sputtering [40,41], as well as other preparation methods [42,43], have been adopted to
prepare PbSe nanocrystalline and polycrystalline coatings. Likewise, great efforts have been devoted to the
structural, compositional, optical, electrical, and optoelectronic properties of this material, as well as the
relevant physical mechanisms such as crystal growth and carrier transport [44–47]. Among these, high
performance infrared-sensitive photodetectors based on the quantum dot [29,30], polycrystalline [48,49],
and composite material [50], as well as the relevant heterojunctions [51], have attracted wider attention.
However, absorbing and detecting mid-infrared photons should usually performed at low temperatures
because of the thermally excited carriers and density fluctuations of carriers due to the narrow bandgap of
the material. Chalcogens and halogens were discovered to be able to reduce the noise signal and enhance
the photosensitivity of PbSe coatings by doping and incorporating them into a PbSe crystal lattice [52].
This technology, which is known as sensitization, consequently leads to the material being structurally
polycrystalline and completely uncooled for mid-infrared photodetection. Compared with the thermal
detector, the uncooled photodetector with sensitized PbSe polycrystalline coatings exhibits a variety of
advantages, such as a high speed response, large dynamic range, the ability of miniaturization, and high
spatial resolution, and can be a promising candidate in numerous mid-infrared applicable fields, as shown
in Figure 1.
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In this review, we present various material fabrication technologies using diffusion and ion
beam techniques toward photosensitive PbSe polycrystalline coatings, and the resulting uncooled
photodetectors in the mid-infrared range (1.5–5.5 µm). First, we introduce the initial motivation of
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optoelectronic sensitization and the relationship between the photosensitivity enhancement and it in
detail. Then, the recent progress on the optical, electrical, and optoelectronic properties, as well as the
structural and compositional dependences of PbSe polycrystalline coatings fabricated by currently
different diffusion and ion beam technologies, is presented and discussed. Finally, the future
development direction, as well as the possible interesting areas, challenges, and perspectives, are
also discussed.

How Can the Optoelectronic Sensitization Enable Photosensitivity Enhancement Without Cooling?

Generally, the physical properties—including optical, electrical, and optoelectronic—of a
photodetector are highly dominated by the structural and compositional properties of the
material, which are determined by the preparation conditions and parameters. The optoelectronic
performance of a photodetector is usually defined using the responsivity and the specific detectivity.
The responsivity of a photoconductor can be expressed as

R(λ) =
ηλτVb
Adhcn0

where η is the internal quantum efficiency (IQE), λ is the wavelength, τ is the minority carrier lifetime,
Vb is the bias voltage, A is the detector area, d is the thickness of the material, h is the Planck constant,
c is light speed in vacuum, and n0 is the free carrier concentration [53]. Thus, the specific detectivity
can be calculated by

D∗ =
R(λ)(A∆ f )1/2

Vn

where ∆f is the frequency bandwidth, and Vn is the rms noise voltage [51]. To improve the
optoelectronic performance, the signal-to-noise ratio should be improved, but is hard to achieve
at room temperature, since thermally excited carrier concentration and the carrier fluctuations are
significant and comparable with the photogenerated carrier concentration at room temperature due
to the narrow bandgap. An easy approach is cooling the photodetector platform to reduce the
thermally induced noise signal and free carrier concentration, which are usually positively correlated.
This cooling method uses thermoelectric cooler (TEC) or another cooling platform, which requires
ultra-power, and makes the detector non-portable and complicated.

Another method is to improve the minority carrier lifetime that can be determined by another
parameter: the photoconductive gain factor

G =

(
τnµn + τpµp

)
Vb

l2

where τn and τp are the lifetime of the electrons and holes, respecitvely; µn and µp are the mobility of
electrons and holes, respectively; and l denotes the electrode distance. It is seen that the G factor is
affected by the carrier transport properties and the design of detector electrodes. An easy approach
to improve the carrier lifetime is doping the near deep energy-level elements into the material to
construct the minority carrier traps, which capture minority carriers and then release them. Oxygen
has been found to be the proper one, and it can be diffused into the PbSe crystal lattice and activated by
annealing at about 400 ◦C. Another effect of annealing in oxygen atmosphere is the material passivation
by which the structural defects are passivated, and the free carrier concentration (n0) and the dark
current are reduced. Therefore, the responsivity is highly enhanced to enable the photodetector to be
much more sensitive to the infrared radiation without cooling. This is the initial motivation of the
optoelectronic sensitization of the lead chalcogenides. The PbSe material after sensitization exhibits a
polycrystalline structure with an average crystallite size of hundreds of nanometers.

Another sensitization technology is halogen treatment, which can further passivate the material
to reduce the dark current, and is proven to be prone to highly improve the potential barrier height
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between crystallites, as well as be superior to oxygen [54]. A high potential barrier height between
crystallites can reduce the dark current and the noise signal to further improve the specific detectivity
of the photodetector, since the thermally excited carriers don’t have enough energy to move across the
crystallite boundary barrier. These effects make the PbSe polycrystalline coatings able to work at room
temperature (300 K) without cooling.

2. Optoelectronic Sensitization Models toward Physical Mechanisms

To exploit the physical mechanism of optoelectronic sensitization, many models have been
presented. These models can be generally divided into four classes: the minority carrier trap model,
the barrier model, the generalized model, and charge separation junction models. Each model describes
a potential mechanism of carrier transport, although there may be multiple mechanisms in the PbSe
polycrystalline coatings. Furthermore, the model referred to physical issues that are hard to be verified
by experimental observations or theoretical calculations. Nevertheless, the specific parameters of
the physical properties calculated by the models can be almost consistent with the experimental
characterizations. Therefore, more experimental observations and verifications on a micro level such as
structural defects, carrier transport, and crystal growth, and theoretical calculations on band structure
using density functional theory (DFT) and the Monte Carlo method, should be performed to exploit or
verify the physical mechanisms in the PbSe polycrystalline coatings.

2.1. The Minority Carrier Trap Model

By doping near deep-level oxygen atoms into the crystal lattice of PbSe, a minority carrier
trap level could be introduced into the band gap. Humphrey and Petritz suggested that a (PbO)+

generated by a (PbO)++ acceptor level after sensitization with oxygen may serve as an electron
trap [55]. When the photons are absorbed, the electron–hole pairs are excited. Some electron–hole pairs
recombine immediately, while some other electrons are trapped by the trap level, as shown in Figure 2a.
The untrapped electrons will recombine with holes at the recombination center in a very short time of
about tens of nanoseconds (process I), which is known as Shockley–Read–Hall (SRH) recombination.
The trapped electrons should be released to the conduction band before recombination (process II).
However, the release process is much slower than recombination within about serval microseconds.
So, the minority carrier (electron) lifetime will be improved and enhance the responsivity of the
photodetector, since the surface layer of the PbSe polycrystalline coating will be converted from n-type
to p-type after sensitization with oxygen. This model can coherently explain the carrier lifetime
improvements, but the minority carrier trap energy level and the composition have not been verified
by experimental observations. Recently, a preliminary theoretical band diagram calculation by DFT
was performed for the oxygen/iodine-doped crystal cell, showing that an acceptor level exists and may
act as a hole trap by accepting an electron [54]. However, this calculation result exhibits a difference in
carrier trap type. Any refined theoretical or experimental attempts should be made to verify or refute
the carrier trapping mechanism.
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2.2. The Barrier Model

Slater found that the temperature dependence of the electrical conductivity follows a linear
relationship between lnσ and 1/T (Arrhenius behavior) [56]. Hence, he claimed that the grain boundary
barrier exists between neighboring grains, and is caused by an n–p–n type region around the grain
boundary, as shown in Figure 2b. Horn also pointed out that the grain boundary is surrounded by PbO
to form a p–n heterojunction between grains in the PbSe polycrystalline coatings after sensitization [57].
This model suggests that the high resistance after sensitization is attributed to the grain boundary
barrier, since free electrons are hard to move from a grain to another under a bias voltage, as shown in
Figure 2b. However, the increase in photoconductivity is attributed to the decline of the barrier height
due to the photogenerated carriers. The study on carrier transport from the recent literature found
that the carrier transport indeed obeys the Arrhenius thermally-driven behavior at high temperature
of >210 K, while an obvious deviation from the Arrhenius behavior occurs at low temperature of
<210 K [54]. Therefore, there should be another transport mechanism that dominates the carrier
transport and electrical conductivity at low temperatures.

2.3. The Generalized Model

Considering the density of photogenerated carriers and the grain boundary barrier, Petrtiz
presented a model that is similar to that of bulk material [58]. It suggests the electrical conductivity
of the PbSe polycrystalline coating is the sum of that of every crystallite, and the photoconductivity
enhancement is attributed to the variation of carrier mobility that depends on the grain boundary
barrier. Likewise, the noise and sensitivity limit were also deduced. This model is mathematically
coherent, and similar with that for polycrystalline silicon [59–61]. Unfortunately, no one has claimed
that the experimental data is always in good agreement with this model until now. Some oriented
experiments including measuring the minority carrier concentration and lifetime, quantum efficiency,
majority carrier concentration, and mobility by the Van der Pauw method, responsivity, and noise
voltage can perhaps be carried out to verify this model.

2.4. The Charge Separation Junction Model

This model was presented by Zhao et al. and has been accepted by many researchers, including
us [62]. This model also supports the p–n junction region around the surface of the crystallites, which
contains the oxides and iodides of PbSe, exhibiting an n-type conductive nature. On the contrary,
it claims that the photogenerated carriers are just separated by the p–n junction into the corresponding
channels (n-channel for electrons, p-channel for holes), and few carriers choose to move across the
grain boundary barrier when biased [63], which is different from the previous p–n junction and
barrier models [56,57]. Electrons move along the surface of crystallites, and holes move along the
core of crystallites, since the neighboring crystallites will fuse and connect together, as shown in
Figure 3. The separation of the photogenerated carrier leads to an improvement of the minority
carrier lifetime. According to this model, the carrier concentration distribution in the crystallites,
minority carrier lifetime, and resistance after sensitization were calculated. The shell microlayer of
the crystallites was designated to be n-type, because iodine was assumed to be an n-type dopant for
PbSe, which is completely different from the oxygen/halogen-induced p-type conductivity reported in
the literature [52]. Furthermore, the previous works on the conductive types of PbSe polycrystalline
coatings also revealed that only the as-grown PbSe thin film in n-type can trigger optoelectronic
enhancement after sensitization, which implicitly supports the existence of the charge separation p–n
junction, combining with the p-type shell of crystallites [64]. Unfortunately, the core/shell p–n junction
structure and the carrier transport channels seem to be hard to verify experimentally. Perhaps the
high-resolution scanning photocurrent imaging may be promising to observe the carrier transport
channels [65,66].
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3. Fabrications and Properties of the PbSe Polycrystalline Coatings

We now discuss the physical properties of PbSe polycrystalline coatings prepared by different
fabrication technologies, and their possible connections with the physical mechanisms of structural
evolution, carrier transport, optical absorbance, and optoelectronic enhancement.

3.1. The Functional Effects Induced by Oxygen Treatment

The oxygen treatments on the monocrystalline PbSe coating fabricated by molecular beam epitaxy
(MBE) at different temperatures were performed by Zhao et al. [67]. They discovered that the oxygen
treatment has a passivation effect on the carrier recombination in the PbSe polycrystalline coating,
revealed by using the photoluminescence (PL) spectra operated at room temperature and 77 K, and the
X-ray photoelectron spectroscopy (XPS) spectra, as shown in Figure 4. A high PL intensity revealed
that the surface recombination and non-radiative recombination mechanisms, including Auger and
SRH, were significantly inhibited after oxygen treatment, indicating that the surface states and the
deep energy level recombination centers were passivated to improve the minority carrier lifetime
and optoelectronic performance eventually. These results may be very useful for understanding
the structural modification of the surface functional layer of the polycrystalline lead chalcogenides,
and manufacturing ultrasensitive mid-infrared uncooled photodetectors [68,69]. Likewise, another
study on the effect of oxygen treatment on the evaporated n-type PbSe coatings was also carried out,
and focused on the impact of electrical conductive type on the structural, compositional, electrical,
and optoelectronic properties [64]. Another effect of electrical conductive-type dependence of
optoelectronic performance was discovered, and could be a direct experimental support for the
charge separation model [62], as shown in Figure 5.
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3.2. The Iodination Impact on the Photosensitivity

Iodine was verified to be another sensitizer for lead chalcogenides. Torquemada et al. reported
that halogen only serves as a transport improver during the PbSe recrystallization in their work of
thermally deposited PbSe treated with iodine years ago, which promotes the in situ incorporation
of oxygen into the PbSe crystal lattice in an electrically active position [70–74]. However, Qiu et al.
pointed out that it is iodine that triggers the photosensitivity of PbSe [75], compared with oxygen,
by performing a variety of annealing experiments using nitrogen/oxygen/iodine single or hybrid
atmosphere, as shown in Figure 6. A more blunted and coalescent boundary structure was observed
after the iodination process, as shown in Figure 6a. The presence of PbSeO3 (301), as a result of
the oxygen passivation, was revealed to be responsible for the optoelectronic enhancement of PbSe
polycrystalline coatings, as shown in Figure 6b. It was stated that iodine is prone to decrease the PL
intensity and increase the resistance of the p-type PbSe polycrystalline coatings, indicating that iodine
will incorporate into the PbSe lattice, but the incorporated concentration could be very low [75].
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intensity as a function of crystallite size. Reprinted with permission from [75]. Copyright AIP 2013.

The optoelectronic measurements indicated that the highest specific detectivity of 2.8 × 1010 Jones
was obtained from their sample treated by 25 min of oxygen followed by five minutes of iodine, and was
attributed to the combination of oxygen passivation and iodine incorporation [76]. Oxygen otherwise
was revealed to serve as an improver to aid iodine incorporating into the PbSe lattice and a passivation
agent to passivate structural defects such as Pb vacancies, as shown in Figure 6b,c. Low PL intensities
in the iodized PbSe polycrystalline coatings may be attributed to the high surface recombination rate of
minority carriers; this may be caused by the coalescent boundary in morphology, which introduces a lot
of surface states again after iodination. These results promote a new understanding of the relationship
between oxidation and iodination in the PbSe polycrystalline coatings.

3.3. Stoichiometric Optimization via Iodine Concentration Regulation

Another work on iodination effect was carried out to fabricate the material by changing the
iodine concentration, as shown in Figure 7, indicating that it is possible to manipulate the inherent
stoichiometry of PbSe polycrystalline coatings via controlling the iodine concentration during the
sensitization process [77]. It was revealed that the Pb/Se atomic ratio can be modulated by the I/O
atomic ratio to change the stoichiometry of the material, as shown in Figure 7e. As is seen, the high
responsivity of 3.97 A/W was achieved at the iodine concentration of 9.1 × 1011 mm−3, and a low
iodine concentration of <1.5 × 1012 mm−3 was necessary to obtain the high photoelectric performance,
as shown in Figure 7d. It was indicated that the significant deviation of the Pb/Se atomic ratio from
1:1 due to over-iodination was responsible for the significant decline of responsivity [73,74]. These
results present a new role for halogens in the sensitization mechanism, and provide a direct approach
to optimize the photosensitivity of the PbSe polycrystalline coatings at room temperature.
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Figure 7. (a) Schematic of I–V tests under mid-IR illumination, (b) I–V test results for iodine
concentration of 9.1 × 1011 mm−3, (c) scanning electron microscopy (SEM) morphologies for as-grown
and iodized samples using different iodine concentrations, (d) the responsivity, (e) Pb/Se and I/O
atomic ratios, and (f) the atomic proportions versus iodine concentration. Reprinted with permission
from [77]. Copyright Elsevier 2016.

3.4. The Properties of Surface Functional Layer

The surface structure of PbSe polycrystalline coatings prepared by oxygen/iodine diffusion is an
inexplicable issue due to the complexity of phases and crystalline structures. In the following sections,
we introduce the characterization results and discoveries from the work reported by Kumar et al.,
since they made a comprehensive study on the phase and structural properties.

3.4.1. Phase Analysis

A further investigation on the surface phase analysis of PbSe polycrystalline coatings was made
using selected area electron diffraction patterns (SAED), electron energy-loss spectroscopy (EELS),
and energy-dispersive X-ray spectroscopy (EDX) by Kumar et al. [78]. They showed in detail that
the PbSe polycrystalline coating after oxygen/iodine sensitization should consist of a bottom layer of
PbSe and a top layer of Pb–Se–O–I, which can be divided into a polycrystalline and a nanocrystalline
phase, as shown in Figure 8. The high iodine mole fraction of ~20 at % in the polycrystalline phase
and that of <10 at % in the nanocrystalline phase were revealed by EDX characterizations via the
Cliff–Lorimer method [79,80]. The nanocrystalline and polycrystalline phases in the top layer were
confirmed by SAED, and exhibited large unit cells and d spacings of 0.892 and 1.069 nm, respectively,
as shown in Figure 9. By EELS spectroscopes, the nanocrystalline Pb–Se–O–I phase with a broad
plasmon peak centered at about 23.2 eV and the polycrystalline phase with two sharp plasmon peaks
at 17.2 and 23.8 eV were distinguished from PbSe with plasmon energy of 15 eV, as shown in Figure 9.
They suggested that the Pb–Se–O–I phase is responsible for the high photosensitivity of iodized PbSe
polycrystalline coatings.
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Figure 9. Selected area electron diffraction patterns (SAED) patterns, energy-dispersive X-ray
spectroscopy (EDX) spectra, and electron energy-loss spectroscopy (EELS) spectra of (a) PbSe bottom
layer, (b) a nanocrystalline phase of the top layer with the largest d spacing of 0.892 nm, and (c) a
polycrystalline phase of the top layer with the largest d spacing of 1.069 nm. Reprinted with permission
from [78]. Copyright Elsevier 2017.
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3.4.2. Structural Analysis

Another investigation of the surface structural properties was carried out by SAED, high-resolution
transmission electron microscopy (HRTEM), EDX, and low loss EELS [81]. A pseudo-orthorhombic Bravais
lattice of the PbSexIyOz phase of the top layer with lattice parameters of a = 0.833 nm, b = 0.662 nm, and
c = 1.8 nm was eventually identified via energy-filtered SAED patterns in the [100], [010], and [111]
poles, as shown in Figure 10a. The lattice parameter of c = 1.8 nm was confirmed by the high-resolution
transmission electron microscopy (HRTEM) images, as shown in Figure 10b. The chemical composition of
the quaternary phase PbSexIyOz was determined by EDX spectroscopy as 0.17 ≤ x ≤ 0.5 and 0.2 ≤ y ≤ 0.5
in atomic ratio. EELS spectra also proved the presence of the new phase with a double plasmon peak at
15.7–16.3 eV (peak 1) and 23.1–23.2 eV (peak 2), respectively [82], as shown in Figure 10c. These results
promote the understanding of surface structure and stoichiometry. However, the role of this new phase in
the photosensitivity enhancement needs further verifications experimentally.
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an antireflective surface layer [83]. One reason to use it is the epitaxial compatibility with PbSe due 
to the similar crystal structure and lattice parameters, which can reduce the structural defects caused 
by lattice mismatch. Another reason is alkaline earth metal fluorides are transparent (~95% 
transmittance) in a wide range of 0.2–12 μm [84]. Figure 11a–c shows the PbSe polycrystalline film 
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Figure 10. (a) Energy-filtered selected area diffraction patterns in the [100], [010], and [111] poles,
and the corresponding schematics of the pseudo-orthorhombic crystal structure of the iodized PbSe
polycrystalline coatings; (b) the high-resolution transmission electron microscopy (HRTEM) images
along the c-axis; (c) low-loss electron energy-loss spectroscopy (EELS) spectra for distinguishing the
PbSexIyOz phase from PbSe. Reprinted with permission from [81]. Copyright Elsevier 2017.

3.5. Growth with the Nanostructured Antireflective Coatings

Another approach to further enhance the photoresponsivity of PbSe polycrystalline coatings,
as presented by Weng et al., is to use an alkaline earth metal fluoride coating such as CaF2 and
BaF2 as an antireflective surface layer [83]. One reason to use it is the epitaxial compatibility with
PbSe due to the similar crystal structure and lattice parameters, which can reduce the structural
defects caused by lattice mismatch. Another reason is alkaline earth metal fluorides are transparent
(~95% transmittance) in a wide range of 0.2–12 µm [84]. Figure 11a–c shows the PbSe polycrystalline
film coated by a 200 nm thick CaF2 flower-like nanostructured coating with a tapered shape, which
may be attributed to the predominant growth at the (111) plane according to the lowest surface
energy mechanism [45,46]. It was revealed that light propagation will be bent by the sub-wavelength
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dimensional tapered structure to improve the light collection efficiency due to the induced gradient
refractive index profile and a convergence effect as convex optical lens [85–89], as shown in Figure 11d.

The optical and the optoelectronic characterizations, including PL, optical reflectance, and
responsivity spectra, were carried out by the Fourier transform infrared spectroscopy (FTIR),
demonstrating that the photoresponsivity was enhanced by the CaF2 antireflective nanostructured
coating to about 200% due to the broadband antireflective effect caused by light bending, as shown
in Figure 12a,b. Another effect induced by the CaF2 nanostructured coating is surface passivation,
which could decrease the surface recombination of minority carriers [90,91], as indicated by the PL
spectra shown in Figure 12c. These effects and mechanisms were predicted to be responsible for the
optoelectronic enhancement of this composite structure. These results show a good structural coupling
between polycrystalline PbSe and alkaline earth metal fluorides, and provide an effective approach
to further improve the optical and optoelectronic performances of photodetectors and light-emitting
devices (LEDs) [92,93].
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nanostructure arrays; (b) cross-sectional FESEM image; and (c) magnified view of PbSe polycrystalline
film with CaF2 nanostructured coating; (d) schematics of light bending effect and gradient refractive
index profile of CaF2 nanostructured coating. Reprinted with permission from [83]. Copyright AIP 2014.
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3.6. Preparation via Ion Beam Implantation

The diffusion technologies mentioned above actually provide an easy approach to dope and
activate the oxygen/iodine atoms into lead chalcogenides. However, the profile of oxygen/iodine is
exponentially decayed along the depth direction, which is constant and mainly prone to modify the
surface properties [94,95]. Turning to modify the stoichiometric depth profile of the inner layer is a
promising method to modulate/optimize the optical, electrical, and optoelectronic performances of
materials [96–99].

A sensitization technology via O+ beam implantation at 50 keV followed by an annealing process
in Ar atmosphere at 600 ◦C was demonstrated by us recently [100], as shown in Figure 13. Compared
with the conventional oxygen diffused counterpart, the preliminary characterizations revealed that
the ion beam-prepared PbSe material exhibited a polycrystalline structure with crystallite sizes of
300–700 nm, as shown in Figure 13a. The optical bandgap of 0.22 eV is more suitable for detecting
mid-infrared photons, and the low Urbach energy of 34.6 meV indicates a well-ordered crystalline
structure with low defect density, leading to higher optical absorption in the mid-infrared range and
carrier mobility, which were responsible for the high responsivity of 1.23 A/W at 4 µm, as shown in
Figure 13b–d.

Other ion beam preparations were performed with a higher following annealing temperature
of 990 ◦C to further repair the damaged crystal structure [101], as shown in Figure 14a,b. It was
revealed that the resulting material is nanocrystalline with high mid-infrared absorption and ultrahigh
carrier mobility up to the magnitude of 103 cm2 V−1 s−1 due to the low defect density represented
from the low Urbach energy of 29.5 meV [102,103], as shown in Figure 14c–f. It was indicated that
the PbSe polycrystalline coatings prepared by ion beam implantation exhibited a high optoelectronic
performance that can be modulated by the implantation dose. However, a high dark current was
also observed, which limits the improvement of the specific detectivity, as shown in Figure 14g–i.
The low size-dependent crystallite boundary barrier height may be responsible for the high dark
current, since the free carrier concentration is relatively low due to the deep energy level doping
of oxygen [104,105], as shown in Figure 14f. These results show a new approach to synthesize and
sensitize PbSe polycrystalline coatings for high optical, electrical, and optoelectronic performances.
More fundamental researches on how the dark current could be affected by carrier transport and how
the electrical performance can be optimized by tuning the ion beam parameters, e.g., ion energy, should
be considered to further explore the potential of these ion beam-prepared PbSe polycrystalline coatings.
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the electrical properties such as the carrier transport mechanism, impurities, defects, and their impact 
on the carrier transport, and the fine electronic structure has rarely been reported in recent years. 
Especially, the carrier transport mechanism at low temperature is unclear [54]. Furthermore, deep-
level impurities and defects (including vacancies, dislocations, stacking faults, etc.) can form non-
equilibrium carrier traps or recombination centers. The characterizations on the concentration 
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Elsevier 2017.
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4. Interesting Areas, Challenges, and Perspectives

4.1. Electrical Properties

The electrical properties have a close relation with the optical and optoelectronic properties.
Although there are many comprehensive studies on PbSe polycrystalline coatings, a deep focus
on the electrical properties such as the carrier transport mechanism, impurities, defects, and their
impact on the carrier transport, and the fine electronic structure has rarely been reported in recent
years. Especially, the carrier transport mechanism at low temperature is unclear [54]. Furthermore,
deep-level impurities and defects (including vacancies, dislocations, stacking faults, etc.) can form
non-equilibrium carrier traps or recombination centers. The characterizations on the concentration
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distribution, compositional identification, and the capture cross-section of the trap centers are
important to understand the carrier transport and recombination mechanisms [47,106,107]. However,
these characterizations seem to be difficult to perform, because they need more complex analysis to
extract the physical mechanisms from limited experimental characterizations. The thermally stimulated
current (TSC) spectroscopy and low temperature Hall effect measurement may be promising to exploit
the mysterious electrical properties of PbSe polycrystalline coatings.

4.2. Growth Mechanism-Related Calculations

Growth mechanism on the morphological evolution, preferred growth orientation, the surface
energy minimization, and defect formation, as well as the relation with the influencing factors such
as preparation conditions, is another interesting area, which can be important to understand the
crystal growth mechanism and effectively control the repeatability and reliability of the preparation
technology. Recently, the growth mechanism of evaporated PbSe based on the Gibbs free energy
variation minimization was calculated via DFT by Sun et al., which explained the preferred growth
orientation of (200) for evaporated PbSe film on the Si substrate [45,46]. This is a good beginning for
understanding the growth mechanism of PbSe polycrystalline material.

4.3. New Preparation Technologies

Another interesting area is developing new preparation methods for exploring new physical
properties and mechanisms. As mentioned above, ion beam technology exhibits a variety of advantages,
but also has drawbacks such as a high dark current and low performance/price ratio. A novel ion
beam-assisted preparation method may be promising. Unlike the ion implantation, ion beam assistance
doesn’t damage the crystal lattice. Therefore, a high temperature (>600 ◦C) annealing is unnecessary.
The preliminary characterizations demonstrate that this technology exhibits the advantages that
ion beam implantation has, as well as a high performance/price ratio. Figure 15 has summarized
the properties of this technology with comparisons with currently developed technologies. As is
seen, this ion beam-assisted method almost combines the advantages of ion beam implantation and
diffusion technologies. Moreover, the improvements of other preparation methods such as CBD and
RF magnetron sputtering are also attractive for the preparation of PbSe polycrystalline coatings for
high optical, electrical, and optoelectronic performances.
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4.4. Compounding with Other Materials and Structures

Constructing composite materials and nanostructures with metasurfaces, two-dimensional (2D)
materials, and carbon nanotubes is another predictable development area, which enables taking
advantage of the specific properties of these materials and structures. Coating with a metasurface
can improve the optical absorbance intensively at a specified wavelength according to the induced
SPR effect, which is very useful to enhance the internal quantum efficiency and the optoelectronic
performance. Compounding with 2D materials such as graphene is another attractive technology
for high-speed applications due to the high carrier mobility in graphene. These composite materials
can highly expand the applications of PbSe polycrystalline coatings for novel properties and devices
in optoelectronics.

5. Summary

In summary, we have discussed the initial motivation to make PbSe bulk material sensitive to
mid-infrared radiation without cooling. Then, several physical models are introduced to explain
and understand why the optoelectronic enhancement is possible. The structural, compositional,
optical, electrical, and optoelectronic properties, as well as the corresponding physical effects of PbSe
polycrystalline coating prepared by different diffusion and ion beam technologies, are discussed in
detail, which show huge optical and optoelectronic potentials in this material. Finally, the interesting
areas, challenges, and perspectives for novel hybrid optoelectronic devices, physical effects, and
applications are also discussed. These devices and properties make PbSe polycrystalline material
more attractive in the applications of high-speed, low-cost, and high-performance optical and
optoelectronic devices.
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