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Abstract: High-density ruthenium (Ru) thin films were deposited using Ru(EtCp)2

(bis(ethylcyclopentadienyl)ruthenium) and oxygen by thermal atomic layer deposition (ALD) and
compared to magnetron sputtered (MS) Ru coatings. The ALD Ru film growth and surface roughness
show a significant temperature dependence. At temperatures below 200 ◦C, no deposition was
observed on silicon and fused silica substrates. With increasing deposition temperature, the nucleation
of Ru starts and leads eventually to fully closed, polycrystalline coatings. The formation of blisters
starts at temperatures above 275 ◦C because of poor adhesion properties, which results in a high
surface roughness. The optimum deposition temperature is 250 ◦C in our tool and leads to rather
smooth film surfaces, with roughness values of approximately 3 nm. The ALD Ru thin films have
similar morphology compared with MS coatings, e.g., hexagonal polycrystalline structure and
high density. Discrepancies of the optical properties can be explained by the higher roughness of
ALD films compared to MS coatings. To use ALD Ru for optical applications at short wavelengths
(λ = 2–50 nm), further improvement of their film quality is required.

Keywords: atomic layer deposition; sputtering; ruthenium; thin film; optical properties; structural
properties; soft X-ray; XUV

1. Introduction

Ultrathin metal films are essential for numerous applications, especially in microelectronics [1],
heterogeneous catalysis [2], soft X-ray optics, and sensing. Ruthenium, as a relatively low-cost
noble metal, is an attractive material when high oxidation resistance is needed [3]. Smooth and
high-density Ru thin films are a preferred solution, for example, as electrodes for dynamic random
access memories (DRAM) [4–7], metal-oxide-semiconductor field-effect transistors (MOSFET) [8],
metal-insulator-metal capacitors [9,10], and grazing-incidence soft X-ray mirrors [11]. The atomic
layer deposition (ALD) technology enables pinhole-free and conformal films with sub-nanometer
thickness control. Since conventional physical vapor deposition (PVD) technologies cannot realize
conformal coatings on complex shaped substrates, ALD is being considered as a promising technology
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for optical coatings. High-efficiency metal wire polarizers for UV spectral range have already been
realized based on frequency doubling technique with iridium (Ir) coatings by ALD [12,13]. Iridium
ALD coating has been also applied for Fresnel zone plates for X-ray microscopes at 1 keV synchrotron
radiation [14]. Although ALD of Ru processes has been widely investigated for their electronic
properties [2,6–9,15–19], their optical properties have not been analyzed yet. The large interest for Ru
ALD arises since it is considered as a favorable capacitor electrode in DRAM [3,4,6,18], as gates in metal
oxide semiconductor transistors [5,8], or is applied as nucleation seed layers for copper interconnect
formation [19]. As an optical coating, Ru is currently realized for capping layers [3,20,21] and grazing
incidence mirrors [22–25] by magnetron sputtering (MS).

This article presents the optical and structural properties of Ru ALD in the soft X-ray and XUV
(extreme UV) spectral range. Furthermore, the coating properties are compared with conventional
sputtered Ru films and the potential of the ALD technology for optical applications is discussed.

2. Experimental

Ru thin film deposition was performed with an Oxford Instruments OpAL open load reactor
tool. In this study, Ru(EtCp)2 (bis(ethylcyclopentadienyl)ruthenium, Strem Chemicals, Kehl, Germany)
and O2 were used as metalorganic precursor and co-reactant, respectively. Ru(EtCp)2 as a liquid
precursor has a relatively high vapor pressure of 0.24 mbar at 80 ◦C [26]. This temperature was applied
to bubble the precursor with 150 sccm argon (Ar) gas flow into the ALD reactor. Under a working
pressure of approximately 0.1 mbar, the coatings were fabricated in a thermal ALD process at substrate
temperatures between 200 ◦C and 300 ◦C. Major reaction products during this ALD process are carbon
dioxide (CO2) and water (H2O). The overall chemical reaction can be suggested as:

Ru(EtCp)2 (g) + 37/2 O2 (g)→ Ru (s) + 9 H2O (g) + 14 CO2 (g) (1)

Growth rate experiments of the Ru films were performed at a deposition temperature of 250 ◦C.
The ALD cycle consists of four repeated steps: Ru(EtCp)2 precursor pulse, precursor purge with Ar
(150 sccm), co-reactant pulse with 50 sccm O2, and a final purge with 150 sccm Ar flow. The optimized
time for each step was constant at 2 s, 4 s, 3 s, and 4 s, respectively. Furthermore, a plasma enhanced
ALD (PEALD) process was tested. Therefore, O2 plasma was ignited with 100 W RF power at 100 sccm
flow rate. The substrate was exposed for three seconds to the O2 plasma instead of the thermally
activated O2 gas flow. Super-polished silicon (Si) wafers with a crystal orientation of (100) and
amorphous fused silica (SiO2) were used as conventional substrates for optical coatings.

For comparison, Ru coatings were fabricated on the DC-magnetron sputtering system
NESSY 3 [27]. In this industrial system, coatings were deposited in an Ar atmosphere on Si substrates
with a working pressure of 10−3 mbar and a source power of 500 W.

All samples produced were measured by grazing incidence X-ray reflectometry (XRR) with Cu-Kα

radiation (λ = 0.154 nm) to characterize the coating properties. The XRR data were fitted with a simple
single layer model (Ru on substrate, whereby the roughness of the coating is also considered) using
the Leptos 7 software package (Bruker Corporation) [28]. The extracted simulation results provide
information on the coating thickness, coating density, and surface roughness. The same measurement
setup was used for X-ray diffraction experiments (XRD). The crystal sizes were estimated according to
the Scherrer equation [29].

Furthermore, the surface was investigated with a Carl Zeiss Σigma scanning electron microscope
(SEM, Carl Zeiss, Oberkochen, Germany) with a constant acceleration voltage of 10 kV and energy
dispersive X-ray analysis (EDX) for chemical characterization. Surface roughness analysis was
additionally carried out through atomic force microscopy (AFM, Dimension 3100 with Nanoscope IV
controller, Digital Instruments, Santa Barbara, CA, USA) measurements.

The XUV reflectometry (XUVR) was carried out by the Physikalisch Technische Bundesanstalt
(PTB, Bessy II, Beamline PTB-EUV, Berlin, Germany) [30] at a fixed grazing incidence angle of 10◦

varying the wavelength between 2 nm and 25 nm. The reflectivity curves were simulated with the
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IMD-software [31] using the optical constants of Henke et al. [32]. Similar to the XRR simulations,
a single-layer model has initially been applied, but had to be extended by a thin RuO2 and C layer.

The surface composition was studied with X-ray photoelectron spectroscopy (XPS, XR 50 M X-ray
source with FOCUS 500 monochromator, SPECS Surface Nano Analysis GmbH, Berlin, Germany)
using an ultrahigh vacuum (UHV) surface analysis system. The photoelectrons were excited by
monochromatic Al-Kα radiation (E = 1486.71 eV) under 55◦ angle of incidence and detected with
a PHOIBOS 150 hemispherical electron analyzer (SPECS Surface Nano Analysis GmbH, Berlin,
Germany).

Additionally, an Auger electron spectroscopy (AES, Varian Vacuum Division, Palo Alto, CA,
USA) depth profile was performed with an Auger cylindrical mirror spectrometer. A focused 5 keV
electron beam under an angle of incidence of 30◦ and a cylindrical mirror analyzer (CMA) were used.
Sputtering was carried out with krypton (Kr) at an energy of 2 keV and a current of 10 µA.

3. Results

Atomic layer deposition of Ru has been reported using several metalorganic precursors.
Hämäläinen et al. presented a review of the reported Ru ALD processes with various precursors [33].
They summarized growth rates, deposition temperatures and the evaporation temperature of different
precursors relating to the corresponding co-reactants. Besides Ru(Cp)2 [6,34] and Ru(Thd)3 [33,35],
Ru(EtCp)2 [5,10,34,36] is the most commonly used precursor. Its flexible deposition properties have led
to the choice of Ru(EtCp)2 to start here the optical coating development. Besides thermal and plasma
enhanced ALD, the precursor enables the deposition with a wide selection of co-reactants, e.g., air [6],
O2 [26,34], ozone (O3) [10], ammonia (NH3) [19,34], and hydrogen (H2) [5]. The main by-products
of the chosen process (Ru(EtCp)2 and O2) are water and carbon dioxide [37] (see Equation (1)) and
thus it fulfills safety requirements. Furthermore, the liquid precursor Ru(EtCp)2 is readily available in
adequate ALD bubblers for precursor delivery.

3.1. Structural Properties

Immediately after deposition, all coatings were characterized by XRR to determine the density (ρ),
roughness (σ), and film thickness (z) without major influence of contaminations.

The experimental data and the corresponding simulation are presented in Figure 1. As shown,
a simple simulation model (single Ru layer on Si-substrate) describes the experimental data very well.
After 1500 cycles at 250 ◦C, the Ru grows to a z = 57.5 nm thick film with a surface roughness of σ = 2.6
nm. At comparable temperatures of 275 ◦C to 300 ◦C, other authors reported an even higher surface
roughness from 3.7 nm [34] up to 13.9 nm [10] of thermally deposited Ru. Furthermore, the Ru ALD
layer exhibits a high density of ρ = 12.3 g·cm−3 comparable to the bulk Ru value of 12.45 g·cm−3 [38].
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To determine the growth rate per cycle (GPC), processes were carried out with 500 cycles up to
3000 cycles and the films were thoroughly characterized. Figure 2 points out a linear thickness evolution
with increasing number of ALD cycles. The GPC was determined by a linear fit to (0.047 ± 0.002)
nm/cycle on a Si substrate and (0.049 ± 0.002) nm/cycle on fused silica, respectively. Compared with
other ALD processes using Ru(EtCp)2 as a precursor, the determined GPCs are of the same magnitude.
Wojcik et al. reported a growth rate of 0.037 nm/cycle with a Ru(EtCp)2 PEALD process [39] and
Park et al. 0.075 nm/cycle with a thermal process [34]. A higher growth rate of 0.12 nm/cycle was
achieved with O3 as co-reactant [10].
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Figure 2 indicates a nucleation delay since the linear fit does not cross the origin until the growth
rate becomes constant. This delay lasts longer for amorphous fused silica substrates compared with
Si substrates. Following the linear fit in Figure 2, the linear growth regime starts after approximately
250 cycles on Si and after 1350 cycles on SiO2, respectively. An ALD review by George indicates that
ALD metals prefer to form clusters on oxide surfaces [40]. Depending on the substrate material, it takes
a certain amount of ALD cycles until the first metal layer is fully closed and the growth becomes linear
per cycle. Hämäläinen et al. reported that this nucleation delay for Ru can last up to hundreds of
cycles [33], as our observation also indicates. The initial density of nucleation sites plays a critical role
in the formation of Ru thin films and is higher on Si than on SiO2. On noble metal substrates, such as
platinum (Pt) and palladium (Pd), no nucleation delay was found by Lu et al. [5].

Nevertheless, all ALD coatings show a high density of (12.3 ± 0.1) g·cm−3 by XRR independent
of their thickness. Repeated XRR measurements show identical curves three months past deposition.
Thus, high coating stability is assumed due to identical XRR results. High-density coatings are
important for the optical properties in the soft X-ray and XUV spectral range [41]. Kim et al. report
a density of ρ = 11.9 g·cm−3 by XRR investigations [10] although they used O3 as a more reactive
co-reactant. The highest Ru coating density of 12.7 g·cm−3, achieved with an O2 based ALD process,
was reported by Manke et al. [42] at temperatures of Tdep = 450 ◦C. In addition to the density, a low
surface roughness is also essential for high reflective properties in optical applications. We have
determined a strong influence of the deposition temperature Tdep on the film growth and thus the
surface roughness.

Figure 3 presents film surface morphologies after 500 cycles deposited at different temperatures.
No deposition was observed at temperatures below Tdep < 200 ◦C. The deposition started at
Tdep = 230 ◦C. However, the nucleation delay was so high that even after 500 cycles the layer was
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not fully covering the substrate and Ru nanoparticles were clearly visible. The black background
corresponds to the Si substrate surface. The small white areas on top are Ru nuclei with a diameter of
approximately 6–20 nm. The growth rate rises with an increasing temperature of Tdep = 250 ◦C. At this
point, the complete surface is covered with Ru crystals and results in a film thickness of z = 17 nm.
Furthermore, the estimated crystal size is of a similar magnitude (20–30 nm). At a higher deposition
temperature of Tdep = 300 ◦C, the lateral crystal size grows further to 25–40 nm. Besides a larger film
thickness (z = 35 nm by XRR) caused by a higher growth rate, a possible reason for larger grains is
the higher substrate temperature itself. This increases the mobility of the Ru atoms and thus they can
reach places at a favorable energetic state, e.g., the crystal lattice.
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Furthermore, the formation of blisters at deposition temperature of 300 ◦C can be seen in Figure 3.
These large blisters consist of air pockets. This phenomenon was also reported by Kim et al. for a
Ru(EtCp)2–O2 process [10]. For Ru deposition at Tdep = 275 ◦C, they reported a formation of blisters
that led to a significant surface roughness of approximately 14 nm [10]. Other O2 based metal ALD, e.g.,
Ir [43], show also the effect of blistering, whereby improving the process parameters (e.g., long purge
time) significantly minimized the appearance of defects. Gadkari et al. described that the blistering
can be caused by the combination of stress and a weak film-substrate adhesion [44]. Nevertheless,
we also detected that the film adhesion became worse and the coating could easily be scratched. Thus,
these coatings deposited at high temperatures are not suitable for optical applications.
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As shown in Figure 3, all coatings demonstrate a crystalline growth. Therefore, additional
XRD-investigations have been carried out to study the crystallinity of the Ru ALD coatings in
detail. Figure 4 shows the diffraction pattern of a 57 nm thick coating on a Si substrate deposited at
the optimized temperature of 250 ◦C. For comparison, an MS coating with equivalent thickness is
additionally presented.
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Both coatings consist of hexagonal polycrystals [45]. Three peaks can be clearly identified at
the angles of 38◦, 42◦, and 44◦. The fourth peak at 58◦ is only indicated because of its low intensity.
The blue solid lines show the intensity distribution of each peak for a randomly oriented powder
sample. This indicates that both coatings are randomly oriented with the Ru polycrystalline structure
oriented in the [100], [002] and [101] orientations in the growth direction. Further, the peaks of the
sputtered coating are slightly shifted to smaller angles. These findings suggest that the coating is under
compressive stress. Alagoz et al. report on high compressive stresses of several GPa in Ru films by
MS [46]. The ALD sample matches the diffraction database values perfectly. Therefore, low film stress
is expected. The film stress, reported by Kim et al. based on a Ru(EtCp)2 and O2 process, was also low
with a value of 88 MPa [10].

Figure 5 summarizes the evolution of grain size and roughness with increasing film thickness.
The grain size was estimated by the Scherrer equation based on the (101) peak with maximum intensity.
When the film thickness increases, the grain size rises as well. Nevertheless, for thin films, the grain
growth evolves further into a saturation of approximately Λ = 30 nm. The MS Ru coatings have a
comparable grain size (Λ = 21 nm, z = 50 nm).

The estimated grain sizes by the Scherrer equation from XRD are commonly smaller than from
SEM images because only coherently scattering areas contribute to the signal. Other effects, e.g.,
mechanical stress, can also lead to a broadening of Bragg peaks and thus apparently smaller grains.
Hence, the Scherrer values are considered as a lower limit value.

In relation, the surface roughness σ of all ALD coatings with thicknesses between 10 and 130 nm
show similar results between 2 and 4 nm (AFM measurement). Interestingly, the thinnest layers
demonstrate high roughness values that are as high as for thick layers. Due to the nucleation process,
we assume the appearance of a Ru film which is not a fully closed layer with protruding crystals.
This effect could cause the high roughness at the early observation stage. As the film thickness increases,
the layer closes and smooths out the surface to a roughness of only 2.6 nm for a 57 nm thick coating.
When the film thickness further increases, the surface roughness rises as well, but no blisters have
been observed. This can be explained by larger Ru crystals. Due to the fact that the crystal size growth
saturates, we also expect a saturated roughness of coatings with thicknesses larger than z > 150 nm.
The MS Ru coating is much smoother, although the crystal size has comparable dimensions (σ = 0.5 nm,
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Λ = 21 nm) compared to the ALD sample (σ = 2.6 nm, Λ = 26 nm). All investigated coating properties
for a 50 nm thick film are summarized and compared with an MS coating in Table 1.Coatings 2018, 8, x FOR PEER REVIEW  7 of 13 
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Table 1. Comparison of coating properties of a 57.5 nm thick ALD and a 50 nm thick MS Ru coating.

Property Atomic Layer Deposition (ALD) Magnetron Sputtering (MS)

Roughness, σXRR (nm) 2.6 ± 0.5 0.4 ± 0.1
Density, ρXRR (g·cm−3) 12.3 ± 0.1 12.4 ± 0.1

Structure polycrystal hexagonal polycrystal hexagonal
Grainsize, Λ (nm) 26 21

3.2. Optical Properties

The measurement of the reflectance in the XUV spectral range requires specialized beamline
equipment, which is only available in a few research centers. Hence, the XUV reflectance measurement
could be carried out only 5 months after deposition of the ALD samples. Degradation of the Ru ALD
samples with time cannot be fully excluded. The thickness of the Ru thin films for XUV applications
at a grazing angle of incidence should exceed tens of nanometers to obtain high reflectance values.
Further, for numerous reasons, even film thicknesses >200 nm are required to ensure the stability of
the mirror optics at the beamline to minimize damage due to the radiation. In Figure 6, the reflection
data determined for an ALD sample with a layer thickness of z = 35 nm is compared to a sputtered Ru
film (z = 50 nm). A lower reflection appears for the fixed angle of incidence Θ = 10◦ in the spectral
range between λ = 2 nm and 25 nm (Figure 6) for the ALD coating as compared to the MS sample.
In addition to the normalized integral reflection, the critical angle for the ALD film is significantly
smaller (see Table 2).

Although a simple single-layer model leads to a good agreement with the experiment for the XRR
simulations, the model had to be improved by two additional layers besides surface roughness to fit
the XUV reflectance data. First, a ruthenium(IV) oxide layer (RuO2: ρ = 7.0 g·cm−3) on the Ru surface
was assumed, and second carbon residuals (C: ρ = 2.0 g·cm−3). These thin surface layers could not be
detected by XRR due to the high surface roughness. The characteristic oscillation is suppressed in XRR
even at small angles of incidence. Hence, the features of the thin surface layer, which typically occur at
large angles, are not visible.

With the extended model, the XUVR measurement data could be fitted very well. The fit shows
that the surface of the ALD coating is significantly rougher (σALD = (4.5 ± 0.6) nm) than that of
the sputtered film (σMS = (0.7 ± 0.3) nm). These results are in qualitative agreement with the XRR
study of the roughness. The surface roughness is a critical factor affecting the reflectivity at XUV
wavelength range because the microstructural relevant size of the surface is close to the wavelength of
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light. In terms of reflectivity, the higher roughness of the ALD coating leads to a reduction of nearly
20% compared to the MS coating. In the XUVR simulations, the thickness of the surface oxide on
the ALD film is larger (doxide = 2.5 nm) compared to the sputtered layer (doxide = 1.0 nm). Due to the
increased surface roughness and grainy topography of the ALD sample, it is assumed as the cause
of the increased oxide thickness. Furthermore, a 1.6 nm thick C layer was fitted on the RuO2 layer.
This third layer was not presumed for the simulation of the sputtered sample. The C residuals on the
surface of the ALD layer could be attributed to reaction products during the ALD process because C is
a component of the precursor Ru(EtCp)2. Additionally, the C surface contamination due to increased
roughness and long storage time is probable.
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Table 2. Comparison of the optical properties and simulation results for a 35 nm thick ALD and a
50 nm thick sputtered Ru layer from XUV reflectometry (XUVR) measurements.

Property ALD MS

Int. reflection [2.5◦–20.0◦], Rexp (◦) 12.1 14.9
Normalized int. reflection, Rexp/Rideal 0.79 0.97
Critical angle, Θcrit (◦) 18.4 25.3
Surface roughness, σ (nm) 4.6 ± 0.6 0.7 ± 0.6
Thickness of oxide layer, doxide (nm) 2.5 ± 0.5 1.0 ± 0.5
Carbon residuals, dC (nm) 1.5 ± 0.5 –

If the influences of the surface roughness σ and the layer thicknesses (RuO2, C) for the ALD
coating are considered separately, σ describes three-quarters of the reflection losses with respect to the
normalized integral reflection Rexp. If the reflection curve is simulated with a RuO2 and C layer, it leads
to a quarter of the reflection losses, neglecting the surface roughness (σ = 0 nm). This observation
shows that the roughness of the Ru ALD film is the critical reflection-reducing effect. The simulation
results with the optical properties are summarized in Table 2.

3.3. Chemical Analysis

To verify the XUVR simulation model, XPS and an AES depth profile were performed on a
z = 57 nm thick ALD sample. With both methods, only Ru and O were detected. The XPS survey
spectra with indicated features are shown in Figure 7. Oxygen is mainly present on the surface because
the Ru features decrease stronger than the O features with increasing angle of photoelectron emission
(increased surface sensitivity). The Ru 3d3/2 state overlaps the C 1s state at EB ≈ 285 eV (see Figure 7
inset). Unfortunately, a determination of the amount of adventitious C on the surface is not possible
because the C 1s peak is obstructed by the Ru 3d3/2 feature.
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Figure 7. X-ray photoelectron spectroscopy (XPS) survey spectra of ALD Ru (z = 57 nm) coating on a Si
substrate at normal emission (0◦) and a polar angle of 70◦ with indicated features. Only Ru and O were
detected, with O mainly being present on the layer surface. The inset shows a zoom-in into the Ru 3d
state region.

The Ru 3d5/2 peak appears asymmetric at normal emission (0◦) and has clearly two components
at 70◦. This originates from metallic Ru and oxidized Ru. Based on the binding energies of different
Ru oxides, the surface oxide can be confirmed as RuO2 corresponding to the shoulder around 280.8 eV
(see Table 3). The thickness of the surface RuO2 layer can be estimated between 1 nm and 2 nm, which
is in agreement with the XUVR simulation.

Table 3. Binding energies of Ru 3d5/2 state for metallic Ru and different Ru oxides [46].

Compound Ru 3d5/2 Binding Energy [eV]

Ru ≈280.0
RuO2 ≈280.8
RuO3 ≈282.5
RuO4 ≈283.2

Figure 8 presents an atomic ratios depth profile for Ru and O using AES. On the surface, that means
without sputtering, more than 60 at % O is situated which fits to a thin RuO2 on the surface. The O
content decreases exponentially with increasing sputter depth and remains at 0.8% in the bulk material.
Probably due to the high surface roughness, no ideal layered structure of RuO2 and Ru occurs. Carbon
was not measurable, because the Ru signal overlaps spectrally the C signal again.
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Figure 8. Atomic ratios depth profile for Ru and O of ALD Ru (z = 57 nm) coating on a Si substrate using
Auger electron spectroscopy (AES). The composition on the surface fits RuO2, whereby the O content
decreases fast with increasing sputter depth and remains at 0.8% in the bulk material. The sputter
depth is a rough approximation, whereby the sputter rate is roughly 8 nm/min.
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4. Discussion

Ruthenium thin films deposited by ALD have been thoroughly characterized. The typical
ALD temperature window to obtain a constant growth rate for the specific process is in the
range of 230 to 300 ◦C. However, the nucleation and film properties significantly depend on the
deposition temperature.

The results obtained in this study indicate that further optimization of ALD Ru coatings for optical
applications is essential to leverage on the ALD capability of conformal coatings on nanostructured
substrates or on complex shaped optics. The comparison between the ALD and MS technologies has
pointed out several advantages of the MS technology. As shown, a sputtered Ru coating resulted in a
highly dense and smooth film. The reflection measurements and simulations (Figure 6) indicate that
the smooth interfaces are essential for high reflection properties at short wavelengths. The reflectance
of the sputtered coatings is approximately 20% higher than the ALD coatings at the peak wavelength
of 12 nm. However, there are also disadvantages for MS compared to ALD. The XRD pattern suggests
higher film stress in MS films. Stress can lead to deviations of manufacturing tolerances or delamination.
Alagoz et al. reported that highly dense Ru films could not be grown to a thickness of higher than
85 nm by magnetron sputtering because they started to peel off beyond this thickness [47]. In this study,
Ru coating with a film thickness of 120 nm has been achieved by ALD although it is a relatively slow
deposition process. In general, the crystal size and roughness continuously grow with increasing film
thickness in MS coatings [48], whereas in ALD the crystal size and surface roughness do not alter with
increasing coating thickness. The roughness evolution of MS films, caused by grain growth, increases
significantly in thicker coatings in contrast to ALD. The technology of ALD has further advantages
compared with conventional MS. A conformal deposition is possible over large areas and even on
complex-shaped substrates [49]. Furthermore, there is the possibility to switch easily between Ru and
RuO2 coatings while increasing the O2 pressure and pulse lengths [18].

Concerning the optical properties, the higher surface roughness of ALD coatings mainly reduces
the reflection at short wavelengths. We tried to reduce the crystal growth to smaller grains and thus
the roughness evolution. While Park et al. reported smoother surfaces of σ = 0.9 nm with an NH3

based PEALD process [34], there was no improvement observed using O2 plasma. No film growth was
observed by PEALD with O2 plasma. The O2 plasma was strong enough to instantaneously remove
the grown Ru layer. Similar etching phenomena were reported by Belau et al. [20]. Even by changing
the deposition temperature, a further improvement of the surface roughness was not possible, and a
deposition with NH3 is currently not available in our laboratories.

As potential option to improve the nucleation seed density and thus the fast formation of the first
fully closed metal layer, a metal-based seed layer can be implemented as Lu et al. reported that no
nucleation delay was found on Pt and Pd layers [5]. Furthermore, Kim et al. showed a nucleation
improvement and a surface roughness reduction by O3 supply [10]. An alternative chemistry of
precursor and co-reactant is also possible. There are several other precursors and processes that
achieved smoother Ru ALD films, e.g., Ru(MePy)2: σ = 0.2 nm [50], RuEtPy: σ = 0.4 nm [51] and RuO4

with H2: σ = 0.3 nm. However, with regard to other necessary requirements for optical applications,
e.g., high purity and high density, these processes need to be evaluated in detail.

The chemical analysis of the ALD Ru surface has confirmed the presence of a thin oxide layer at
the surface of the coating; however, not within the film. This ultra-thin surface layer also significantly
affects the XUV reflection of the ALD Ru, even though not as much as the high surface roughness.
The oxide layer might be related to the chemical process which involves an oxidizing step to remove
the organic ligands of the Ru(EtCp)2 precursor. In the O2 pulse step, the Ru would be also partially
oxidized. In the following metalorganic pulse, the oxide is probably decomposed and the precursor
ligands serve as a reducing agent. Hence, little oxygen contamination is being detected in the film.
In contrast, at the surface, the reaction terminates with the O2 pulse and remaining RuO2 is not further
reduced. This further motivates the development of oxygen free ALD processes of metals.
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5. Conclusions

Ruthenium thin films grown by ALD have been evaluated for optical applications. High-density
Ru films have successfully been deposited on Si and fused silica substrates. Temperatures above
230 ◦C are required for a film formation using Ru(EtCp)2 and O2. Higher deposition temperatures
above 275 ◦C have led to blisters that increased the surface roughness significantly and reduced the
adhesion properties. With an optimized deposition temperature of 250 ◦C, we have explored the
film growth and the resulting optical properties. The polycrystalline growth and the corresponding
evolution of the surface roughness have led to major reflection losses at short wavelengths. Sputtered
Ru coatings show similar density but are much smoother than ALD coatings. The ALD samples show
a thin (<2 nm) RuO2 surface layer and 0.8 at % residual O in bulk material. Carbon impurities were not
measurable. Further experimental development is required to leverage on the major benefit of ALD to
realize conformal coatings on complex-shaped substrates towards coatings with high reflectance and
stability for optical applications.
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