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Abstract: The development of a self-cleaning and corrosion resistant superhydrophobic coating
for aluminum alloy surfaces that is durable in aggressive conditions has attracted great interest
in materials science. In the present study, a superphydrophobic film was fabricated on an
AA5052 aluminum alloy surface by the electrodeposition of Ni–Co alloy coating, followed
by modification with 6-(N-allyl-1,1,2,2-tetrahydro-perfluorodecyl) amino-1,3,5-triazine-2,4-dithiol
monosodium (AF17N). The surface morphology and characteristics of the composite coatings were
investigated by means of scanning electron microscopy (SEM), energy dispersive X-ray spectrum
(EDS), atomic force microscope (AFM) and contact angle (CA). The corrosion resistance of the
coatings was assessed by electrochemical tests. The results showed that the surface exhibited excellent
superhydrophobicity and self-cleaning performance with a contact angle maintained at 160◦ after
exposed to the atmosphere for 240 days. Moreover, the superhydrophobic coatings significantly
improved the corrosion resistant performance of AA5052 aluminum alloy substrate in 3.5 wt.%
NaCl solution.
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1. Introduction

Aluminum and its alloys have widespread engineering applications owing to their
high strength-to-density ratio, ductility, low weight and formability [1,2]. The wrought
aluminum-zinc-magnesium-copper series alloys have been largely employed for production of
the AA5052 chemical equipment, pressure vessels, food packaging, fan blades, coding utilities,
automotive parts, etc. [3,4]. However, because the potential of aluminum alloys are more negative
compared to other conventional metals, they are highly susceptible to corrosion, especially in
moist environments, and undergo more rapid deterioration due to localized corrosion than their
homogeneous counterparts. This has seriously limited their widespread applications [5]. Increasing
the hydrophobicity of metal surfaces can reduce their interactions with corrosive media such as water,
thereby enhancing their corrosion resistance [6]. Therefore, a self-cleaning superhydrophobic surface
could be a potential solution to solve the functionality and aesthetic appearance problems caused by
corrosion and contamination.

In recent years, superhydrophobic surfaces, which exhibit a water contact angle (CA) above 150◦

and a sliding angle (SA) below 10◦, have aroused an enormous amount of interest in both fundamental
research and potential applications because of their unique characteristics, such as self-cleaning [7],
anti-icing [8,9], oil–water separation [10,11], antifouling property [12] and anticorrosion [13]. Inspired
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by biological materials in nature, such as lotus leaves [14], a variety of metallic surfaces with
super-hydrophobic property have been fabricated through the combination of surface micro/nano
structures and low surface energy materials [15,16].

Wettability on the surface of the material mainly depends on the surface chemical properties
and surface microstructure [17]; thus, the improvement of the hydrophobicity of material surface is
often achieved by changing the surface microscopic structure and lowering the surface energy [18,19].
Up to now, artificial super hydrophobic surfaces on aluminum and its alloy substrates have been
created by various methods [20–22]. However, practical use is often interrupted by time-consuming
processes, low mechanical strength or expensive cost. Additionally, most approaches involve the
use of fluorinated compounds, which are costly and environmentally undesirable. Herein, a simple,
environmental-friendly and cost-effective approach is still a much-needed study.

Triazinedithiol compounds, as a kind of environmentally friendly compounds, have attracted
many researchers’ attention during the past decade for their good properties such as high reactive,
low cost, good adhesion and dielectric property on a variety of metal category [23–25]. Specifically,
the triazinedithiol polymeric nanofilm exhibits excellent hydrophobicity and corrosion resistance in
previous studies [26].

In the present paper, we reported a simple and efficient process for the construction
of a superhydrophobic surface on an AA5052 aluminum alloy, wherein Ni–Co platings were
electrodeposited on the pretreated AA5052 substrate surface to first form hierarchical micro/nano
structures, which was then modified using an environmentally-friendly long-chain triazinedithiol
compound (AF17N) with a low surface energy. Additionally, the surface morphology, self-cleaning
characteristics and anticorrosion behavior of the obtained surface was investigated.

2. Materials and Methods

2.1. Materials

Aluminum alloys (AA5052, size 50 × 20 × 0.3 mm3, chemical composition: Cu: 0.1 wt.%, Si: 0.2 wt.%,
Fe: 0.4 wt.%, Mn: 0.1 wt.%, Mg: 2.8 wt.%, Zn: 0.1 wt.%, Cr: 0.3 wt.%, other impurities 0.15 wt.%,
and the remaining element Al) were used as substrates. 6-(N-allyl-1,1,2,2-tetrahydroperfluorodecyl)
amino-1,3,5-triazine-2,4-dithiol monosodium (AF17N) was prepared by the reaction between
6-(N-allyl-1,1,2,2-tetrahydroperfluorodecyl)-amine-1,3,5-triazine-2,4-dichloride and NaSH, according to
the method described previously in [27]. The structure of AF17N is shown in Figure 1. The nickel plate
with a purity of 99.99 wt.% was used as the anode in the electrodeposition process. The other chemical
reagents were obtained from Aladdin Reagent Database Inc., Shanghai, China. All regents were of
analytical grade and deionized water was used for all of the experiments.
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Figure 1. Structure of amino-1,3,5-triazine-2,4-dithiol monosodium (AF17N).

2.2. Preparation of the Superhydrophobic Coatings on AA5052 Surface

Synthesis of the superhydrophobic coatings on the AA5052 surface includes two steps: first,
creation of a rough AA5052 surface by electrodepositing a Ni–Co plating; second, lowering the surface
energy with AF17N.
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The AA5052 substrate was initially degreased in an alkaline solution containing 10 g L−1

Na3PO4, 10 g L−1 Na2CO3 at 70 ◦C for 1.5 min, and then rinsed with deionized water. Subsequently,
the AA5052 substrate was immersed in a solution (which contained 10 g L−1 NiCO3·2NiO2H2·4H2O,
5 g L−1 C6H8O7·H2O, 0.001 g L−1 (H4N)2S, 20 g L−1 NaH2PO2·H2O and 30 mL L−1 NH3·H2O)
for 40 min at 75 ◦C to form a electroless nickel coating [28]. Then, the samples were washed
with deionized water, and last, dried in open air. The Ni–Co plating was electrodeposited using
an electrochemical workstation (CHI 660C, CH Instrument, Shanghai, China) under direct current
conditions. The electrodeposition was performed by a three-electrode cell, with the as-prepared
samples with electroless nickel coating as a cathode, the saturated calomel electrode (SCE) as a
reference electrode and the nickel plate was used as anode. The optimized bath composition and other
parameters of electrodeposition Ni–Co alloy plating are given in Table 1.

Table 1. Bath compositions and operating conditions for electrodeposition of Ni–Co.

Compositions Concentration (g L−1) Conditions

NiCl2·6H2O 113 Current densities: 3 mA cm−2

CoCl2·6H2O 8 pH: 3.6
C2H8N2·2HCl 100 Temperature: 50 ◦C

H3BO3 15 Time: 360 s

Subsequently, the as-prepared AA5052 samples with Ni–Co alloy coatings were modified with
1 mM AF17N solution for 2 h at room temperature (25 ◦C ± 1 ◦C). Finally, the samples were rinsed
with deionized water and dried in an oven (150 ◦C, 15 min) for further characterization.

2.3. Characterization

The water contact angles (CAs) and sliding angles (SAs) were measured with a telescopic
goniometer (HARKE-SPCAX1). The volume of water drops was 3 µL. The values reported were
the average values by measuring five different positions on each sample. A field emission scanning
electron microscope (FESEM; HITACHI S-4800, Tokyo, Japan) and atomic force microscope (AFM;
JSM-6360LV; JEOL, Tokyo, Japan) were used to characterize the surface morphologies. Scanning
electron microscopy (SEM) with an energy dispersive X-ray spectrum (EDS) was used to characterize
the surface chemical composition. The potentiodynamic polarization curves and electrochemical
impedance spectroscopic (EIS) were performed on an electrochemical workstation (CHI 660C, CH
Instrument, Shanghai, China) in a cell with 3.5 wt.% NaCl solution at room temperature (25 ◦C ± 1 ◦C).
A three-electrode configuration was employed in all of the electrochemical tests, which consisted of
the sample as the working electrode (1 cm2), a graphite plate as the counter electrode and a saturated
calomel electrode (SCE) as the reference electrode. The polarization curves were recorded with a sweep
rate of 1 mV s−1. EIS plots were performed in the frequency range between 100 kHz (high frequency
area) and 10 mHz (low frequency area) with a sine-wave amplitude of 5 mV. The polarization curves
and EIS spectra were fitted by using the CorrTest software. Cyclic voltammetry (CV) was conducted
between the potential region from −0.7 V to 0.7 V at 20 mV s−1 in 0.1 M NaOH aqueous solution for
three circles. All the electrochemical tests were normally repeated at least three times under the same
conditions, indicating that they presented reasonable reproducibility.

3. Results

3.1. Surface Morphology and Chemical Compositions

The surface wettability of the as-obtained superhydrophobic surface was studied by CA and
SA measurements. The images of the water droplets on various surfaces were shown in Figure 2.
The bare aluminum surface exhibited a CA of 33.5◦ ± 1.6◦ (Figure 2a). After electrodeposition of
Ni–Co, the sample surface exhibited superhydrophilicity with a CA of approximately 5◦ (Figure 2b).
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Figure 2c shows that the static water droplet is in an approximately spherical shape on the level
as-prepared surface and the water contact angle is as high as 160◦, which is much higher than the
bare aluminum alloy surface. Additionally, the advancing angle is about 161.3◦ and the receding
angle is 158.7◦. After modification with AF17N, the wettability changes from superhydrophilicity to
superhydrophobicity. From Figure 2d, it can be observed that a 3 µL water droplet was bouncing on
the surface and finally rolled off the nearly horizontal surface immediately without any adhesion,
indicating that the superhydrophobic surface has an ultra-low sliding angle of about 1.0◦. This means
that the as-prepared superhydrophobic surface possesses excellent water-repellent property.
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Figure 2. The contact angle (CA) images of (a) bare aluminum alloy; (b) electrodeposited Ni–Co plating;
(c) superhydrophobic surface; (d) snapshot photograph of a water droplet rolling off on the tilted
superhydrophobic surface.

This phenomenon could be explained by the Cassie–Baxter equation [29]:

cosθr = f 1cosθ − f 2 (1)

where f 1 and f 2 are fractional areas of the solid and air on the surface, respectively (i.e., f 1 + f 2

= 1); θr and θ are the water contact angles of the rough heterogeneous surfaces and smooth solid
surfaces. According to Equation (1), with increasing the air surface fraction f 2, the solid surface
fraction f 1 decreases, however, the contact angle of the rough surface increases. The air trapped in the
grooves could reduce the contact area (f 1) between a water droplet and solid surface. Consequently,
the hydrophobicity of the surface is enormously enhanced, and a high contact angle and low sliding
angle would be obtained.

The SEM images of morphologies with different magnifications of the as-prepared
superhydrophobic surface are given in Figure 3. It can be seen that the surface consists of two
different microstructures. There are large amounts of small microparticles located on the electroless
nickel coating (Figure 3a). Careful inspection of the surface reveals that the microparticles were
cluster-like microclusters (Figure 3b) and the surface was completely and compactly covered with
these cluster-like microclusters. From observing Figure 3c,d, it can be easily found that the cluster
structures were composed of numerous irregular conelike structures with a width average length
of 100–200 nm, indicating that the cluster-like structures have hierarchical micro/nano structures.
More importantly, these hierarchical micro/nano structures can generate numerous grooves in which
the air can be trapped easily, which can lead to the larger CA and smaller SA.
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Figure 3. Scanning electron microscopy (SEM) images of the as-prepared superhydrophobic surface
with different magnifications. (a) 5,000 times; (b) 10,000 times; (c) 50,000 times; (d) 100,000 times.

Chemical compositions of the surfaces were analyzed by using EDS (Figure 4). Figure 4a shows
the EDS image of bare aluminum alloy. The EDS spectrum shows that no other evident peaks apart
from that of Al, which indicates the surface is mainly composed of Al element. The EDS spectrum in
Figure 4b reveals the additional presence of P and Ni elements, suggesting considerable changes in the
composition of the aluminum alloy surface after the electroless nickel. In order to testify the AF17N,
Figure 4c,d shows the EDS spectrum of the surface unmodified and modified by AF17N monomers
after electrodeposition Ni–Co alloy plating. The EDS spectrum of as-perpared superhydrophobic
aluminum surface in Figure 4d reveals the appearance of C, N, O, F, Al, P, Co and Ni elements.
The presence of N and F elements are attributed to the AF17N, indicates that the surface has been
covered with AF17N polymeric nanofilm after chemical modification, showing that the AF17N has
been successfully adsorbed onto the surface (Figure 4d).
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Figure 4. Energy dispersive X-ray spectrum (EDS) spectra and its corresponding element
content. (a) bare aluminum alloy; (b) electroless Ni coating;(c) electrodeposited Ni–Co plating;
(d) superhydrophobic surface after modified AF17N.
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In order to find out the reason for the change of the wettability, SEM and AFM were applied.
Figure 5 shows the SEM and AFM images of the aluminum alloy surface under different treatment
conditions. Figure 5a,e demonstrate the micrographs of the bare aluminum alloy after pretreament. It is
clear that the bare aluminum alloy surface is relatively flat without protuberance (surface roughness
Ra is about 25.7 nm). According to Figure 5b,f, after electroless nickel coating, the aluminum alloy
is covered with micro-sphere array structures, which have an average size of 500 nm in height and
2 µm in diameter. Simultaneously, the surface roughness distinctly increased (surface roughness Ra is
about 76.7 nm). After electrodeposition of Ni–Co alloy plating, it is obvious that the nickel coating
surface was completely and densely covered with enormous small particles. Moreover, the Ni–Co
alloy plating has a frosting surface morphology compared with the nickel coating, which may be
attributed to the smaller average size for the Ni–Co particles. It can be seen that the surface becomes
quite rough (surface roughness Ra is about 92.5 nm) and develops mountain-like structure with the size
of 864 nm in height (Figure 5g). The rough surface could then be changed from superhydrophilicity to
superhydrophobic after modification by AF17N. It can be easily seen that the surface morphologies of
the resulting superhydrophobic surface shown in Figure 5d,h are nearly the same as that of the Ni–Co
alloy plating. This means that the surface morphologies of the Ni–Co alloy plating before and after
modification with AF17N show hardly any change. This is because only a small amount of AF17N was
absorbed onto the Ni–Co alloy plating. However, the surface roughness slightly decreased (surface
roughness Ra is about 84.3 nm), owing to the AF17N might fill in some nano-scale pores of the rough
surface (Figure 5h).
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3.2. Chemical Stability and Corrosion Resistance

To elucidate the stability of sample surfaces, the superhydrophobicity of the obtained surfaces
were exposed to open air (room temperature of 24–26 ◦C and relative humidity of 40%–50%) and
the contact angles were measured. Figure 6 shows the variation in the water contact angles of the
as-prepared superhydrophobic surface with different exposure times. The water contact angles change
from 151.3◦ ± 2.5◦ to 155.6◦ ± 2.1◦ after 4 weeks. When exposure was more than 16 weeks, the water
contact angles increased, rather than decreased, from 155.6◦ to 160.0◦. The results indicate that the
as-obtained surface exhibit long-term stability; this is of great importance to the practical application
of superhydrophobic surface.

Corrosion resistance ability was performed on the superhydrophobic AA5052 surface using the
potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) method. Figure 7
depicts the potentiodynamic polarization curves for the bare aluminum alloy substrate and the
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as-prepared superhydrophobic surface in neutral 3.5 wt.% NaCl solution. The relevant electrochemical
parameters including corrosion potential and corrosion current density derived from polarization
curves using the Tafel extrapolation method are listed in Table 2. Corrosion potential (Ecorr), corrosion
current density (Icorr), corrosion rate and protection efficiency (PE) are often applied to evaluate the
corrosion protective property of the coatings. According to Table 2, the result clearly shows that the
corrosion potential (Ecorr) increase in positive direction from −0.69 V of the bare aluminum alloy to
−0.28 V of the as-prepared superhydrophobic surface. Additionally, the corrosion current density (Icorr)
decreased from 1.03 × 10−2 A cm−2 of bare aluminum alloy to 6.76 × 10−5 A cm−2 of as-prepared
superhydrophobic surface. Moreover, its corrosion rate is merely 0.6% of the bare aluminum alloy.

The protection efficiency (PE) was calculated by using the expression:

PE(%) = 100 × [1 − (i/i0)] (2)

where i and i0 are the corrosion current density of aluminum alloy with as-prepared super-hydrophobic
surface and bare aluminum alloy, respectively. The protection efficiency calculated from
potentiodynamic polarization data is found to be as high as 99.34%, demonstrating that the
superhydrophobic surface significantly improves the corrosion resistance of aluminum alloys.
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Table 2. Electrochemical parameters of potentiodynamic polarization curves.

Sample Ecorr (V) Icorr (A cm−2) Corrision Rate (mm a−1) PE (%)

Bare aluminum alloy −0.69 1.03 × 10−2 1.12 × 10−1 −
Superhydrophobic −0.28 6.76 × 10−5 7.39 × 10−4 99.34

Figure 8 shows the Nyquist plots and Bode plots of the bare aluminum alloy and the as-prepared
superhydrophobic surface. The results show quite different capacitive loops in the Nyquist plots. It is
well known that the diameter of the capacitive loop represents the polarization resistance of the work
electrode. As shown in Figure 8, the diameter of the as-prepared surface is obviously bigger than that
of the bare substrate, which is attributed to a protective surface film of Ni–Co plating and AF17N
polymeric nanofilms. Furthermore, we used the Bode plots to continue the investigation. From Figure 8,
it can be observed that the impedance modulus |Z| of the as-prepared superhydrophobic surface is
more than one order of magnitude higher than bare substrate, indicating that the superhydrophobic
coating retards the formation of the corrosion products. Simultaneously, this result is consistent with
that derived from the potentiodynamic polarization curves, showing that superhydrophobic surface
can supply excellent corrosion protection for bare aluminum alloy in 3.5 wt.% NaCl solution.
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For better evaluation, the effect of AF17N polymeric nanofilm to the corrosion inhibition property
of superhydrophobic AA5052 surface, the cyclic voltammetry (CV) curves of the bare aluminum
alloy and the as-prepared superhydrophobic surface were measured in 0.1 mol L−1 NaOH aqueous
solution to study the surface coverage of AF17N molecules (Figure 9). Noticeably, the surface
covered with or without polymeric nanofilm has significant influence on the general shape of the
cyclic voltammograms. For the surface without polymeric nanofilm, the activated anodic peaks at
0.37 V could be observed. It attributed to the formation of Ni(OH)2 and Co(OH)2 as a result of
electro-oxidation of the Ni–Co plating. Cathodic peaks at 0.3 V was resulting from the reduction
of Ni(OH)2 and Co(OH)2, respectively. Compared with the surface without polymeric nanofilm,
the current and area of the superhydrophobic surface was much smaller. Thus, we can draw a
conclusion that the changes observed in the curves of the superhydrophobic surface must result from
specific interactions by AF17N monomer. These observations indicate that the oxidative reaction
of superhydrophobic surface was highly blocked in alkaline aqueous, demonstrating the AF17N
polymeric nanofilm is a good barrier to block charge or reactant ion transmission. It is expected that
the resulting AF17N polymeric nanofilm supply excellent corrosion protection for bare aluminum
alloy. Perfluoro alkyl chains in the polymer films are perpendicular to the substrate surface [30].
The hydrophobic group can isolate the water molecules effectively and provide good corrosion
protection to aluminum alloy. In conclusion, superhydrophobic surfaces were fabricated with the –CF3

group and –CF2− group of low surface energy from the AF17N.
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3.3. Self-Cleaning Effect

The self-cleaning effect is an important character of superhydrophobic surfaces for their
applications. The simulation process for the as-prepared superhydrophobic surface was carried
out by deliberately sprinkling Al2O3 powder on the sample surface as a model dust contaminant.
Figure 10 shows the evolution process of the self-cleaning effect, which was recorded by a digital
camera at a speed of 60 frames per second. The sample with superhydrophobic surface was placed with
a tilting angle of about 5◦ above horizontal and then a water droplet was dropped to the contaminant
surface. When a water droplet was dropped to the sample surface, it rolled off immediately with
removing all the Al2O3 powder along the path of the droplet. Amazingly, it was observed that the
water droplet maintained its almost spherical shape. This result means that the as-prepared surface
has an excellent self-cleaning effect due to the superior superhydrophobic property.
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4. Conclusions

In summary, a functional superhydrophobic surface was successfully fabricated on AA5052
aluminum alloy by electrodeposition of Ni–Co films and surface modification with AF17N.
The as-prepared superhydrophobic surface with hierarchical nano/micro structures has a high
contact angle of 167.3◦ ± 1.3◦ and an ultra-low sliding angle of about 1◦. It was found that the
superhydrophobicity was governed by both geometrical microstructures and the surface chemical
composition. Electrochemical measurements showed that the as-prepared sample possessed a better
corrosion resistance than bare aluminum alloy, indicating that the superhydrophobic surface can
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effectively protect aluminum alloy from corrosion. Furthermore, the resulting superhydrophobic surface
has good chemical stability and long-term durability as well as self-cleaning effect. This method is
of great value for industrial preparation of superhydrophobic surfaces and it is also meaningful for
extending the applications in other relevant engineered materials fields.
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