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Abstract: Methods used to design coating materials for polymer electrolyte membrane fuel cells
(PEMFCs) are unsystematic and time-consuming because current materials research relies on scientific
intuition and trial and error experimentation. In this study, a feasible and more efficient scheme of
screening and designing coating materials is established based on density function theory (DFT)
utilizing the fast-growing computing capacity. The scheme consists of four steps: Elements selection
by calculation of Pilling–Bedworth ratio and electrical resistivity, corrosion resistance assessment
leveraging the Pourbaix diagram approach, running BoltzTrap code to calculate electrical conductivity
(σ/τ), and interface binding strength evaluation by calculation of separation work. According to the
calculation results, TiCo and TiCo3 are proposed to be the two most promising candidates because of
relatively better properties required by harsh working environment of PEMFC. The high-throughput
screening strategy established in this study makes the ideal of rapidly evaluating hundreds of
thousands of possible coating materials candidates into reality and helps to indicate the direction of
further synthesis efforts.
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1. Introduction

With the increasing concern of fossil fuel reserves and environment protection, hydrogen energy
has attracted much attention as well as related research. The polymer electrolyte membrane fuel cell
(PEMFC), using hydrogen as the fuel, is an ideal candidate for power sources in automotive propulsion
applications and power plants due to its high power density and efficiency, low working temperature,
fast start-up, and near-zero emission [1–4]. However, the development of PEMFC is hindered by some
issues, mainly insufficient durability and high cost [5].

As a key component of the PEMFC stack, the bipolar plate is used to support the stack, collect cell
current, manage exhaust heat and water, and separate individual cells [6–8]. Because of the functional
requests listed above and the harsh working environment, an effective bipolar plate should have high
corrosion resistance, low interfacial contact resistance (ICR), and low cost [9]. Stainless steel is now
considered a suitable material for bipolar plates since it possesses most of the properties required.
However, surface modification is still necessary since it lacks the ability to combat corrosion in an
acidic environment for adequate working hours [10,11]. Therefore, investigations of cost-efficient
coatings which improve corrosion resistance and electrical conductivity, as well as coating materials
design methods, are crucial to enhance cell performance.
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The development of coating materials started from elementary substances like graphene to
transition metal nitrides and carbides, and now, to element/compound multilayers to eliminate defects
such as pinholes [12–14]. Until now, methods used in the design of coating materials are unsystematic
and time-consuming because current materials research relies on scientific intuition and trial and error
experimentation [15]. Thus, a systematic and more efficient method is needed to help researchers jump
out of the repetitive “experiment and characterization loop”. With the rapid development in computing
capacity, computational screening and analysis makes this possible. During the past few decades,
in silico screening and design of functional materials based on electronic structure calculations and
structural simulation tools has accelerated the pace of materials design by rapidly evaluating hundreds
and thousands of possible candidates. Greeley et al. [16] identified a new electrocatalyst BiPt out of
700 binary surface alloys for the hydrogen evolution reaction through a DFT-based high-throughput
screening strategy. The synthesized BiPt was tested and found to be better than the archetypical
catalyst. Kirklin et al. [17] screened out CoSi2, TiP, and NiSi2 as three promising materials for Li-ion
battery anodes by using the DFT + GCLP (grand canonical linear programming) automated tool to
evaluate 515 thermodynamically stable lithiation reactions on the basis of specific criteria. Besides these,
in silico screening techniques have been also applied in areas like thermal conductivity [18], drug
discovery [19], and methane storage [20]. This powerful design method is now recognized to help
indicate the direction of synthesis efforts. But so far, there are few works on designing coating materials
for PEMFC bipolar plates with a computational method, thus, our emphasis is to establish several
criteria and a corresponding screening scheme.

In this present paper, we introduce a computational screening procedure for coating materials of
bipolar plates using density function theory (DFT) calculations. We established corrosion resistance
criteria, detailed conductivity assessments, and a database of DFT calculations. According to the
screening result, TiCo and TiCo3, intermetallic compounds formed between titanium and cobalt,
are the most promising candidate materials. They are calculated to have better predicted corrosion
resistance, electrical conductivity, and combination between stainless steel substrates than other
binary compounds. Our efforts provide a systematic and feasible way to design coating materials for
PEMFC bipolar plates and we hope it could lead to the further synthesis and testing of the identified
candidate materials.

2. Methods

2.1. Computational Methods

We set up a computational screening procedure to indicate the direction of experimentation;
this approach is summarized in Figure 1. Beginning with all elements on the periodic table, we take
electrical resistivity, the Pilling–Bedworth ratio [21], and cost into account (these data can be found
and calculated from a DFT database [22]); 13 elements (Cu, Nb, Ni, Hf, Zr, V, Cr, Ti, Mo, Ta, W,
Al, and Co) were chosen. These elements combine with each other to form stable intermetallic
compounds (energy above hull = 0) and, together with their stable nitrides and carbides, are on
our researching list. Their nitrides and carbides are included because they are reported as “metallic
ceramics” with many desirable characteristics which are widely applied and investigated in current
works [11]. Next, a corrosion resistance assessment of compounds from the former step was carried
out by application of the Pourbaix diagram. Then, electrical conductivity was calculated using
BoltzTrap code. At last, separate work between coatings and stainless steel was studied using
DFT calculations. All compounds were ranked by calculated performance metrics and the most
attractive candidate was shown.
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electrochemical equilibria information is reasonably summarized in the diagrams so they serve as a 
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solutions [24]. This tool has been widely applied in areas of corrosion protection, inorganic chemistry, 
and hydrometallurgy [25] since they depict pictures of reaction products in solutions as functions of 
pH and potential. The Pourbaix diagram of the TiCo at 353 K (Figure 2) is constructed using first 
principle calculation combined with some experimental measurements [26,27]. As indicated in the 
diagram, the immunity domain (with only solid TiCo in it) is quite low with an equilibrium potential 
of dissolution of −1.9 V. With increasing electrode potential, TiCo corrodes in acid solutions and 
undergoes dissolution of titanium followed by cobalt. Then the passivation domain is proceeded 
which is mainly composed of TiO2. The passivation film is formed on the surface of TiCo and acts as 
a barrier preventing TiCo from further dissolution. Bipolar plates work in an environment of pH 1–
5 and electrode potential 0–1 V. The corresponding region is a passivation domain covered by solid 
TiO2 and bivalent cobalt iron, which indicates a possible stable situation that maintain high corrosion 
resistance in acidic working environment. With the use of Pourbaix diagrams, all candidates are 
evaluated to screen out compounds that can exist stably or protected by dense passivation films. 
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Figure 1. Process of screening to find suggestions for experimental investigation.

2.1.1. Corrosion Resistance Assessment

The corrosion resistance assessment is carried out by the use of Pourbaix diagrams (also called the
electrode potential-pH diagrams). Pourbaix diagrams are maps of multidimensional thermodynamic
space and areas of immunity, passivity, and corrosion [23]. Chemical and electrochemical equilibria
information is reasonably summarized in the diagrams so they serve as a straightforward materials
chemistry tool to learn the thermodynamics stabilities of metals in aqueous solutions [24]. This tool has
been widely applied in areas of corrosion protection, inorganic chemistry, and hydrometallurgy [25]
since they depict pictures of reaction products in solutions as functions of pH and potential.
The Pourbaix diagram of the TiCo at 353 K (Figure 2) is constructed using first principle calculation
combined with some experimental measurements [26,27]. As indicated in the diagram, the immunity
domain (with only solid TiCo in it) is quite low with an equilibrium potential of dissolution of −1.9 V.
With increasing electrode potential, TiCo corrodes in acid solutions and undergoes dissolution of
titanium followed by cobalt. Then the passivation domain is proceeded which is mainly composed
of TiO2. The passivation film is formed on the surface of TiCo and acts as a barrier preventing TiCo
from further dissolution. Bipolar plates work in an environment of pH 1–5 and electrode potential
0–1 V. The corresponding region is a passivation domain covered by solid TiO2 and bivalent cobalt iron,
which indicates a possible stable situation that maintain high corrosion resistance in acidic working
environment. With the use of Pourbaix diagrams, all candidates are evaluated to screen out compounds
that can exist stably or protected by dense passivation films.
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2.1.2. Electrical Conductivity Assessment

The electrical conductivity of candidate compounds has been studied using density functional
and semiclassical Boltzmann transport theories. Madsen and Singh [28] established the BoltzTrap
code based on Boltzmann transport theory and a well smoothed Fourier interpolation to analyze
the band expression for finding thermoelectrical materials. We run the BoltzTrap code based on
the DFT-calculated electronic structure under constant relaxation time approximation of the charge
carriers to obtain one of the transport properties, electrical conductivity (σ/τ), which has been well
tested as an accurate method to evaluate the movement of electrical charge in a substance [29–31].
Electrical conductivity tensors that are based on the rigid band approach are expressed by the
following equations.

σαβ(i, k) = e2τi,kvα(i, k)vβ(i, k) (1)

σαβ(ε) =
1
N ∑

i,k
σαβ(i, k)

δ(ε − εi,k)

d(ε)
(2)

where N is the number of k-points sampled, while the k-dependent conductivity tensor is given by
Equation (1), in which τ, the relaxation time, is set to kept constant because it is direction independent
after a detailed study of approximation. Electrical conductivity as a function of temperature T and
chemical potential µ is given by integrating the transport distribution in Equation (3).

σαβ(T,µ) =
1
Ω

∫
σαβ(ε)[−

∂ f0(T, ε,µ)
∂ε

] dε (3)

where α and β stand for tensor indicators. Ω, µ and f 0 are unit cell volume, carrier concentration,
and Fermi–Dirac distribution function, respectively. The electrical conductivity of corrosion resistant
compounds are calculated through this way.

2.1.3. Separation Work of Interface

In order to rank the stability of interfaces formed between coatings and 316 stainless steel,
we carried out ab initio calculations to study atomic structures and energetics of those interfaces.
The density functional theory (DFT) calculations with Perdew–Burke–Erzerhof (PBE) [32] generalized
gradient approximation (GGA) and projector augmented wave (PAW) [33] pseudopotentials were
performed within the Vienna Ab initio simulation package (VASP) [34]. As the interfaces contain a
ferromagnetic phase, bcc Fe, a spin-polarized calculation was performed. For all configurations
constructed, the plane-wave cut off energy was set to 520 eV. The k-point density of at least
1000/(numbers of atoms in unit cell) were similar to those used in the materials project (MP),
which have been tested extensively over a broad range of chemistries [22].

In practical, coherent, semicoherent, or noncoherent interfaces form between bcc Fe and candidate
compounds due to different lattice mismatch. But to rank the stability of interfaces for so many
compounds, we simplify the atomic model as coherent interface oriented according to the so-called
Baker–Nutting relation (Equation (4)), which is illustrated in Figure 3.

{001}compounds

∣∣∣∣∣∣{001}Fe, [100]compounds

∣∣∣∣∣∣[110]Fe (4)

The interface structure is simulated by a periodic supercell with 8 layers of bcc-Fe and 8 layers
of compounds. The convergence tests for this atomic structure with respect to nFe (layers of bcc-Fe)
show that nFe = 5 is already able to eliminate the interface energy error stemming from the finite
size of computational unite cell [35]. So we chose nFe = 8 to fit the requirement and ncompounds = 8
in order to produce two identical interfaces within the computational unit cell. Structural relaxation
calculation was carried out with minimizing total energy. The total interface energy Etotal is composed
of two terms:

Etotal= Echemistry+Eelastic (5)



Coatings 2018, 8, 386 5 of 10

where Echemistry stands for the chemistry part of total energy which stemming from breaking and
forming of bonds in constructing the interface. Eelastic is the elastic energy originating from creating
the interface.
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atom in binary compound; B: smaller atom in binary compound.

We constructed the planar interface between two phases, Fe and the candidate compound,
with different lattice spacings, a(1) and a(2). We assume a(2) > a(1), so Fe slab is expanded while
compound slab is compressed, so as to meet with the common constant a(3) (Equation (6)) which
minimizes the elastic contribution (Equation (7)) to the total interface energy according to linear
elasticity theory [36].

a(3) =

a(1)a(2)
2
[

C(1)
11 + C(2)

12 − 2 C(1)
12

2

C(1)
11

]
+ a(1)

2
a(2)
[

C(2)
11 + C(2)

12 − 2 C(2)
12

2

C(2)
11

]

a(2)2
(

C(1)
11 + C(1)

12 − 2 C(1)
12

2

C1
11

)
+ a(1)2

(
C(2)

11 + C(2)
12 − 2 C(2)

12

2

C(2)
11

) (6)

Eelastic = ε
(1)
||

2

C(1)
11 + C(1)

12 − 2
C(1)

12

2

C(1)
11

+ ε
(2)
||

2

C(2)
11 + C(2)

12 − 2
C(2)

12

2

C(2)
11

 (7)

where C11 and C12 are the elastic constants and ε|| is strain parallel to the interface plane given by

ε
(1)
|| =

a(2) − a(1)

a(1)
(8)

The parallel strain to the interface is always accompanied by strain perpendicular to the interface
(Poisson effect) given as

ε
(1)
⊥ = −2

C(1)
12

C(1)
11

ε
(1)
|| (9)

After building the interface model, we calculated the ideal work of separation, Wsep, to describe the
strength of the interface bonding. It is the reversible work that would be needed to separate the
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interface into two free surfaces if the plastic and diffusional degrees of freedom were suppressed. With
the slab geometry, Wsep can be calculated as

Wsep = (Eslab1 + Eslab2 − Eint)/A (10)

where Eint is the total energy of the supercell with the interface system; Eslab1 and Eslab2 are the total
energies of separated slabs calculated when one of the slabs is kept while the other one is replaced by
vacuum, A is the interfacial area.

3. Results and Discussion

3.1. Elements Selection

We began our scheme by selection of elements. We calculated electrical resistivity and
Pilling–Bedworth ratio of all elementary substance on periodic table and the result is shown in
Figure 4. Pilling–Bedworth ratio between 1 and 2 indicates better anticorrosion capacity [21] and
smaller electrical resistivity stands for better electrical conductivity. So the green colored circle is
our target candidate’s zone. Thirteen elements (Cu, Nb, Ni, Hf, Zr, V, Cr, Ti, Mo, Ta, W, Al, and Co)
were chosen from target zone with also taking cost into consideration. The distribution of elements
shows that elements in the same area on periodic table tend to gather in the same region in Figure 4.
IA and IIA elements are located in the yellow zone of Pilling–Bedworth ratio less than 1 with relatively
small electrical resistivity, which means bad anticorrosion capacity and good electrical conductivity.
Lanthanide and Actinide elements are in the blue circle of Pilling–Worth ratio slightly larger than
1 and electrical resistivity within 5 × 10−7 Ω·m to 1 × 10−6 Ω·m. Most of the transition metals are
included in our target zone which matches with the fact that current researches in surface modification
for PEMFC bipolar plates mainly focus on transition metals and their compounds.
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3.2. Electrical Conductivity

The chosen elements were combined with each other to form binary compounds. The corrosion
resistance of those stable compounds (energy above hull = 0) were assessed using the Pourbaix
approach introduced above. Binary compounds with considerable corrosion resistance were then sent
to the computational cluster to calculate their electrical conductivity (σ/τ); results shown in Figure 5,
the top ten compounds are displayed. Values of electrical conductivity are at the same order of
magnitude with the results of other theoretical studies [28,37]. The result shows carbides and nitrides
of transition metal are well conductive and corrosion resistant, which agrees well with the reported
experimental results [2,3,11]. Apart from these carbides and nitrides, Ti-composed intermetallic
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compounds are also on the list, which is intuitive. Pure titanium and titanium-containing alloys are
reported to have high corrosion resistance due to the thin and chemically stable titanium oxide formed
naturally on the surface [38,39]. Therefore they are widely applied in chemical processing, biomaterial,
and petrochemical industries.Coatings 2018, 8, x FOR PEER REVIEW  7 of 10 
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Figure 5. Electrical conductivity of candidate compounds after anticorrosion assessment.

3.3. Separation Work

After corrosion resistance assessment by the Pourbaix diagram approach and electrical
conductivity calculation, separation of compounds-stainless steel interfaces was calculated and the
results presented in Table 1 in sequence of σ/τ (electrical conductivity) for the top ten compounds.
As the results suggest, TiCo and TiCo3, two intermetallic compounds formed between titanium and
cobalt, exhibit strong binding with stainless steel substrate. The two compounds are particularly
interesting because there is relatively few works about surface modification on PEMFC bipolar plates
using titanium–cobalt compounds; the intermetallic composite of the Ti–Co system has already
attracted some interest. Lawley et al. [40] developed high hardness/strength Ti–Co intermetallics
utilizing powder metallurgy following heat treatment. Martinez-Sanchez et al. [41] synthesized Ti–Co
intermetallics by plasma-assisted sintering and mechanical alloying. These works mainly focused on
the mechanical properties of Ti–Co intermetallics with little discussion about corrosion resistance and
other properties required by bipolar plates. A recent research conducted by Fatoba et al. [42] may act
as supporting evidence for the accuracy of our design scheme. They synthesized Ti–Co coatings on a
Ti-6Al-4V alloy using the laser metal deposition method and the results showed that the Ti–Co coatings
had successfully enhanced the corrosion resistance of the substrate. To study these coating materials
in more detail, we suggest that further computational analysis, experimental synthesis, and testing
should be carried out.

Table 1. Calculated electrical conductivity and separation work after anticorrosion screening.

Compounds Common a
(Å)

ESlab−Fe
(eV)

ESlab−com
(eV)

EInt
(eV)

σ/τ
1020 (Ω·ms)−1

Wsep

(J/m2)

HfN 3.12 −30.61 −85.19 −118.21 17.1 3.9
ZrN 3.15 −30.48 −78.99 −111.74 15.3 3.6
TaC 3.10 −30.67 −86.95 −120.13 13.6 4.2
CoN 2.92 −30.16 −95.32 −125.59 10.8 0.2
Ta2N 2.98 −30.61 −74.57 −114.43 6.41 16.7
NbN 3.06 −30.34 −88.94 −119.51 6.33 0.4
TiCo 2.85 −30.81 −98.65 −133.74 5.35 8.4
CrN 3.02 −30.48 −97.99 −132.84 5.09 7.6
TiAl 2.85 −30.82 −85.45 −117.02 4.93 1.5

TiCo3 3.23 −30.54 −70.54 −114.41 4.48 20.5
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4. Conclusions

A systematic and feasible coating materials design method for PEMFC bipolar plates was
established to discover potential candidates using DFT as a tool. Several metrics and criteria were
introduced to assess corrosion resistance, electrical conductivity, and binding strength with substrates
of hundreds of thousands of materials. The screening scheme is divided into four steps: Elements
selection, corrosion resistance assessment, electrical conductivity calculation, and separation work
calculation. The results of elements selection shows that elements on the same area of the periodic table
tend to gather in the same region on the Pilling–Bedworth ratio electrical resistivity figure. Thirteen
elements (Cu, Nb, Ni, Hf, Zr, V, Cr, Ti, Mo, Ta, W, Al, and Co) were chosen from the target zone.
The top ten compounds were chosen after Pourbaix diagram-based corrosion resistance assessment
and calculation of σ/τ, including HfN, ZrN, TaC, CoN, Ta2N, TiCo, CrN, TiAl, and TiCo3. After the
separation work calculation, TiCo and TiCo3 were recommended as the ultimate candidates because of
strong binding with stainless steel. We suggest further computational analysis, experimental synthesis,
and testing be conducted to study the two coatings in more detail. This application of computational
methods to coating materials design is a step toward more efficient PEMFC bipolar plates development.
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