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Abstract: The article presents the hybrid metaheuristic-neural assessment of the pull-off adhesion in
existing multi-layer cement composites using artificial neural networks (ANNs) and the imperialist
competitive algorithm (ICA). The ICA is a metaheuristic algorithm inspired by the human
political-social evolution. This method is based solely on the use of ANNs and two non-destructive
testing (NDT) methods: the impact-echo method (I-E) and the impulse response method (IR). In this
research, the ICA has been used to optimize the weights of the ANN. The combined ICA-ANN
model has been compared to the genetic algorithm (GA) and particle swarm optimization (PSO) to
evaluate its accuracy. The results showed that the ICA-ANN model outperforms other techniques
when testing datasets in terms of both effectiveness and efficiency. As presented in the validation
stage, it is possible to reliably map the adhesion level on a tested surface without local damage to
the latter.

Keywords: cement mortar; overlay; concrete substrate; interlayer bond; pull-off adhesion;
artificial intelligence; metaheuristics; imperialist competitive algorithm; genetic algorithm; particle
swarm optimization

1. Introduction

Layered cement composites, recently an issue attracting numerous researchers [1-4], usually
consist of an overlay placed on an existing concrete substrate. It is always necessary to ensure an
appropriate bond between the overlay and existing concrete substrate. The measure of this bond is
the value of the pull-off adhesion (f},), obtained using the pull-off method [5]. This method is time
consuming due to the delay time of the curing of the resin used for bonding the steel disc. Moreover,
results can be influenced by variation on the rupture surface, the orientation and position of the
aggregate onto the disc, the disc material, diameter, and thickness, the backpressure system, and also
the speed of load application [6-8]. The tested surface in each of the measuring places is damaged
and the efficiency of this method depends on the number of measuring places. The damage has to
be repaired after the test. When considering the above, it is advisable to use non-destructive testing
(NDT) methods for the purpose of the assessment of the interlayer bond. It has been verified in
practice that the impact-echo (I-E) and impulse response (IR) methods may be used individually to
make a successful zero-one assessment [9,10]. However, it is not possible to individually use the
above-mentioned NDT methods to make a full, reliable assessment of the value of f;, [11-13]. Insuch a
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case it is helpful to use artificial neural networks (ANNSs) which, in recent years, are increasingly used
in civil engineering [14-23].

A new method of identifying f}, by means of the ANN method has recently been proposed [24-29].
The database for this identification was created using 3D morphological parameters, which were
evaluated on the existing concrete substrate surface using 3D LASER scanning, and also acoustic
parameters obtained with the use of the IR and I-E methods on the surface of the overlay.
Various methods have been used, such as radial basis functions (RBF) [24], multi-layer perceptron
(MLP) [25-27], and principal component analysis (PCA), in combination with self-organizing feature
maps (SOFM) [28].

It is evident that there is no possibility in existing layered cement composites of obtaining 3D
morphological parameters of the existing concrete substrate surface. Consequently, it is not possible
to adopt the previously-developed method to identify the value of f}, in existing cement composites.
Thus, the attempt presented in [29] proved that it is possible to identify the value of f}, between the
overlay and existing concrete substrate in existing cement composites on the basis of the acoustic
parameters obtained on the overlay surface using the ANN, IR, and I-E methods. The multi-layer
perceptron ANN with the gradient descent (MLP-GS) learning algorithm has been found to be useful
for this purpose. However, values of determination coefficient R? greater than 0.77 were not satisfied.
Simple back-propagation (BP) has also been used for optimizing the ANN, which is plagued with
inconsistent and unpredictable performances, a slow learning rate, and becoming trapped in local
minima [30,31]. Thus, in some applications it is necessary to improve the performance of the ANN
with the use of optimization algorithms. The imperialist competitive algorithms (ICA), the genetic
algorithm (GA), or particle swarm optimization (PSO) have recently been used for this purpose [32].

The recently developed ICA is a randomized population method inspired by the human
political-social evolution [33-37]. It belongs to the metaheuristic group of methods that are expected to
become more popular in various engineering applications [38-44]. In the ICA, a number of colonial
countries, along with their colonies, try to find a general optimal point in solving the optimization
problem. Different methods are then introduced to solve the optimization problems [45,46]. It is worth
noting that there have recently been a few attempts to apply the ICA for engineering problems [47-49],
e.g., the prediction of soil compaction [50], oil flow rate [51], optimum cost [52] or corrosion current
density [53].

With consideration of the above, the article presents the hybrid metaheuristic-neural assessment
of the value of the f}, in existing cement composites using the ICA. This method is based solely on the
use of ANNSs and two NDT methods: I-E and IR. In this research, the ANN was used for prediction
and the ICA was used to improve the performance of the ANN. The role of the ICA was to optimize
the weights of the ANN. The combined ICA-ANN model has been compared to the GA and PSO in
order to evaluate its accuracy.

2. Experimental Setup

As mentioned previously in [29], the NDT tests were carried out on a surface of a two-layer
cement composite with dimensions of 2500 x 2500 mm? and with a constant thickness of the overlay
equal to 25 mm (Figure 1a,b). The overlay was made of C20/25 class cement mortar with the maximum
quartz aggregate grain size equal to 2 mm. The overlay was laid on the existing substrate with a
constant thickness of 125 mm made of C30/37 class concrete. In this concrete, the maximum broken
basalt aggregate grain size was equal to 8 mm. The surface of the existing concrete substrate was
sandblasted. In order to achieve a wider range of adhesion between the overlay and the substrate,
half of the surface of the substrate was covered with a bonding agent in the form of concentrate to be
diluted with water. Table 1 shows the weight composition of the mixes that were used to make the
substrate and the overlay.
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Figure 1. The tested two-layer cement composite: (a) arrangement of testing areas on the surface of the
overlay; (b) cross-section; and (c) view of the surface of the overlay after pull-off testing.

Table 1. Weight composition of mixes.

Components of Mixes (kg/m?)

Lflyer . Portland Portland Fine Coarse Plasticizer
Designation Cement CEM  Cement CEM  Fly Ash  Water  Aggregate Aggregate Visco
I42.5R I A-LL 42.5R 0-2 mm 2-8 mm Flow 6920
Overlay 276.0 - - 138 1599.0 - -
Substrate - 352.0 40 165 7244 1086.6 2.0

The grid of the testing areas was applied on the surface of the overlay 500 mm from its edge
(Figure 1a) and the number of testing areas was equal to 256. 90 days after laying the overlay, tests using
two acoustic NDT methods were carried out on its surface in 256 designated testing areas (Figure 2a,b).

a)

Figure 2. Exemplary view of tests carried out on the surface of the overlay using: (a) the IR method;
(b) the I-E method; and (c) the pull-off method.

The values of the following parameters were determined in all these areas using the IR method:
average mobility (Nay), dynamic stiffness (Ky), mobility slope (M} /N), and void index (v) according
to [54-56]. The value of the frequency of the sound wave reflection from the bottom of a sample (ft),
obtained using the I-E method, was also measured according to [57-59].

After finishing the tests using acoustic NDT methods, tests using the pull-off method were
conducted in the same testing areas in order to obtain the real values of the f}, (Figure 2c). The f},
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values were then used as patterns for learning and testing the ANN. The data used for development of
the models was obtained from past experiments [29]. In this article, the output value of the pull-off
adhesion predicted by the ANN is denoted as f.},. Exemplary data is presented in Table 2.

Table 2. Exemplary data.

Name of Test Method and Parameters

Number

of Test The IR Method The I-E Method The Pull-off Method
Nav (m/s-N) Kd MP/N 0 fT (kHZ) fb (MPa)
1 155.000 0.002 0.503 3.149 13.20 1.044
2 128.000 2.000 0.662 3.000 15.63 1.019
3 79.000 2.000 1.413 1.000 12.20 1.070
4 96.000 2.000 0.630 0.709 12.20 0.968
5 80.000 1.000 0.740 1.040 12.60 0.891
6 71.000 0.038 0.531 0.500 5.86 1.248
7 92.000 1.000 0.612 0.629 15.14 1.095
8 89.000 1.000 0.472 1.000 14.65 0.968
9 103.000 1.000 0.661 0.689 12.21 1.070
10 82.000 9.000 0.571 1.000 15.14 0.968
256 108.065 1.000 1.825 1.000 14.65 0.866

3. Results of Training and Testing

After applying the Chauvenet criterion of the elimination of questionable results and reducing
the database to 239 sets of results, the resulting variables were randomly divided into ANN learning,
testing, and experimental verification data. Once the data was normalized, out of 239 such sets of
results, 70% of the samples (167 patterns) were randomly used for training and 15% of the selected
samples (36 patterns) were randomly used to test the ANN. The rest of the samples were randomly
used for validation (36 patterns). In order to include all the parameters in a numerical range and make
the data dimensionless, the contributing input and output parameters should be normalized prior to
the training phase according to Equation (1):

xN = (x — MinX)/(MaxX — MinX) x 2 - 1 1)

where xy is the normalized input and output data, x is the input data, MinX is the minimum of all
data, and MaxX is the maximum of all data. Therefore, all of the normalized data is placed in the
numerical distance of [-1,+1]. The hidden layer node numbers were determined according to [60] by
using Equation (2):

Ny <2Nj+1 2)

where Ny is the maximum number of neurons in the hidden layers and N is the number of inputs.
Considering that the number of effective inputs obtained is 5, the maximum number of nodes in the
hidden layer is equal to 11.

The ICA is used to determine the optimized weight of each of the ANN models. The structure of
the ICA-ANN used in the analysis is presented in Figure 3. Table 3 indicates the optimized structure
of each model along with features of the ICA. Furthermore, Table 4 indicates the analytical results
of training and testing each of the models with optimal structure, which is provided in Table 3.
Five statistical parameters of mean error (ME), mean absolute error (MAE), mean squared error (MSE),
root mean squared error (RMSE), and mean squared reduced error (MSRE) are presented in Table 5.
The performance measurements from all models have been collected and averaged. Due to the
randomness of weights and data sampling, each experiment is simulated ten times in order to obtain
more reliable results. To determine the performance of the models and to decide on the best model,
the MSE test and MSE training criteria obtained from the models are compared with each other and
shown in Table 3. According to the indicated results, the 250GEN_5IN model, the weight of which has
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been optimized by the ICA, has been optimized by 500 countries, 50 empires, and 250 repetitions, and
has the best results among the models of its kind.

Input layer

Hidden layer

Output layer

N

Figure 3. The structure of the ICA-ANN used in the analysis.

Table 3. Optimized structure of the ICA-ANN.

Utilized Initialization

ANN Features Parameters in the ICA
Models Numb Number Number of Number of T £ Number Number Number
Name fuIm e: of Hidden Neurons in F ran:‘ er of of of
ot fnput Output Layer Hidden Layer unction Country Imperialist Decades
50GEN_5IN 5 1 1 13 satlins 400 40 50
100GEN_5IN 5 1 2 5-5 logsig 300 30 100
150GEN_5IN 5 1 1 9 purelin 450 45 150
200GEN_5IN 5 1 3 6-4-3 satlins 500 50 200
250GEN_5IN 5 1 2 6-5 tansig 500 50 250
Table 4. Results of testing and training of the ICA-ANN.
Testing Training Errors
Model X N .
Equation R? Equation R? MSE Test MSE Train Best Cost
50GEN_5IN y =0.482x — 0.019 0.215 y=0.273x — 0.032 0.084 0.131 0.152 0.152
100GEN_5IN  y =0.476x + 0.134 0.547 y =0.366x + 0.135 0.456 0.048 0.051 0.051
150GEN_5IN  y =0.475x +0.120 0.288 y=0.380x + 0.115 0.315 0.082 0.063 0.063
200GEN_5IN  y =0.002x — 0.179 0.001 y =0.001x — 0.179 0.041 0.289 0.226 0.226
250GEN_5IN vy =0.802x + 0.041 0.858 y =0.679x + 0.045 0.844 0.044 0.047 0.047
Table 5. Statistical results of ICA-ANN errors.
ME MAE MSE RMSE MSRE
Model - - - - .
Train Test Train Test Train Test Train Test Train Test
50GEN_5IN —-0.169 —0.153 0.308 0270 0.151 0.128 0.389 0.357 1.648 1.346
100GEN_5IN  0.016 —0.001 0.158 0.148 0.0561 0.043 0.227 0.208 0.560 0.455
150GEN_5IN —0.001 —0.012 0.184 0.198 0.064 0.077 0252 0.278 0.693 0.815
200GEN_5IN —0.367 —0.438 0.399 0.458 0.226 0286 0475 0.535 2.459 3.011
250GEN_5IN —0.015 —0.010 0.104 0.094 0.017 0.014 0.131 0.117 0.188 0.144
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As indicated in Tables 3 and 4, in model 5 the values of the determination coefficient R? for the
parameter of f}, at the training and testing stages are equal, respectively, to 0.844 and 0.858. The slope
of the straight line for this parameter equals 0.679 and 0.802, which represents the accuracy of the
model and less modeling error. According to [61], in this model the nonlinear tan-sigmoid function
(TANSIG), which shows the minimal error, was considered as the transfer function:

2

T ®

Tansig(n)
According to Table 5, the coefficients of ME, MAE, MSE, RMSE, and MSRE in two training and
testing stages for the ANN model with a 1-5-6-5 structure, and also the properties of 500 countries,
50 empires, and 250 repetitions, are less than for all of the other models. This represents lower errors of
this ANN in comparison to other models. Therefore, the ICA-ANN model with the title of 250GEN_5IN
is more accurate than other models of its kind. The result of comparing the selected 250GEN_5IN
ICA-ANN model with the observation data is presented in Figure 4. The minimum cost and the mean
cost diagrams are shown in Figure 5.

1
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Figure 4. Results of the ICA-ANN for (a) training and (b) testing.
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Figure 5. Graph cost for 250 iterations in the 250GEN_5IN model.
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4. Comparison with the Genetic Algorithm (GA) and Particle Swarm Optimization (PSO)

In order to evaluate the accuracy of the ICA-ANN model, which has been optimized by the ICA, it
was compared with both the GA and PSO, the features of which are provided in Table 6. The ICA-ANN
model with a 1-5-6-5 structure and the TANSIG stimulation function were used. According to a study
conducted on three algorithms for training data and testing, R? coefficients and the slope of the straight
line are presented in Table 7. Figure 5 shows graph cost for 250 iterations in the 250GEN_5IN model.
Figure 6 shows the comparison of the f}, values for the computational and observational data using the
three algorithms in the training stage. According to the equations of lines fitted to the computational
and observational values in each model, and also the coefficient of determination that corresponds to
them (Table 7), it can be seen that the ANN optimized by the ICA determines the amount of f;, more
accurately than the GA and PSO algorithms. Moreover, the determination of f;, using the three models
shown in Figure 6 indicates that the ANN optimized by the ICA has higher accuracy and flexibility.

Table 6. Applied GA, ICA, and PSO parameters.

GA ICA PSO
Population 150 Countries 500 .
Mutation rate 15 Revolution Rate 0.3 Swarm Size 200
c ; 50 Empires 50 Cognition Coefficient 2
rossover rate Uniting threshold 0.02 Social Coefficient 2
Generation 250 Generation 250 Generation 250

Table 7. Results of ANN models optimized by the GA, ICA, and PSO algorithms in training and testing.

Best Fitting Line in Testing Best Fitting Line in Training Errors
Model
Equation R? Equation R? MSE Test MSE Train Best Cost
ICA-ANN y=0.802x + 0.041 0.858  y=0.679x +0.045 0.844 0.044 0.047 0.047
GA-ANN y=—0.010x + 0.240 0.000  y=0.035x+0.200 0.003 0.076 0499 0.049
PSO-ANN y=0.612x + 0.089 0.530  y=0.485x +0.095 0.506 0.050 0.045 0.045

Computing Data

Observation Data

(a)

Figure 6. Cont.
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Figure 6. Comparison of the selected ICA-ANN with GA-ANN and PSO-ANN in (a) training and

(b) testing.

5. Results of Validation of the Proposed ICA-ANN Model

In order to conduct the validation of the ICA-ANN model, a set of 36 results was randomly
selected. These results were not previously used to train and test the ICA-ANN. As a result, the taught
ICA-ANN model generated the value of the pull-off adhesion for each of these areas. Table 8 presents
a comparative summary of the values of f;, and f..},, defined, respectively, using the pull-off method

and ICA-ANN.

Table 8. Comparative summary of the values of f, and f.},, defined using the pull-off method and
ICA-ANN, respectively.

fo fe» IAfl IREI fo fe» IAfl IREI fo fe» IAfl IREI
No. MPa MPa MPa % MPa MPa MPa % No. MPa MPa MPa %
1 130 129 001 08% 13 1.06 106 001 056% 25 155 142 013 9.09%
2 113 108 004 416% 14 1.04 106 002 146% 26 119 119 000 0.25%
3 150 140 0.10 7.06% 15 121 119 003 212% 27 123 112 011 10.01%
4 126 118 008 683% 16 1.01 1.05 004 413% 28 107 1.07 000 0.28%
5 121 112 009 7.8% 17 092 106 014 1313% 29 1.19 117 0.03 2.44%
6 062 068 006 925% 18 1.02 106 004 352% 30 106 106 0.00 0.20%
7 118 113 005 410% 19 095 106 011 1016% 31 095 106 0.10 9.60%
8 130 116 014 1210% 20 1.02 106 004 38% 32 111 110 001 0.79%
9 116 107 009 807% 21 130 129 000 032% 33 121 116 005 4.68%
10 056 058 002 371% 22 113 116 003 290% 34 111 105 006 5.63%
11 1.09 108 001 123% 23 133 134 001 098% 35 094 105 011 10.89%
12 106 106 001 052% 24 097 106 009 831% 36 130 129 001 0.85%
- - - - - - - - - -  Mean 111 111 005 4.50%

The results of validation presented in Table 8 indicate the correct identification of validation data.
It is evidenced by the obtained low mean value of the absolute error amounting to 0.05 MPa and the
satisfactory mean value of the relative error | RE| amounting to 4.89%. Interestingly, the values of f .},
identified by the ICA-ANN are equal to 1.11 MPa and are, on average, the same as the f}, obtained
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experimentally using the pull-off method. The results of the validation were used to plot the adhesion
maps shown in Figure 7 (results in the other points on the tested surface were obtained by means of
linear interpolation). This figure illustrates two adhesion maps. The first one was obtained on the basis
of experimental tests conducted using the pull-off method (Figure 7a). The second one was identified
by the ICA-ANN.

f; (MPa)

-6
<16
<15
<14
[]<13
<12
<11
<10

y [m]

0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 122 14 16
x [m] x [m]

(a) (b)

Figure 7. Comparative maps of the value of the f},, based on validation results yielded by: (a) the
pull-off method; (b) the ICA-ANN model (the symbol “e” represents a randomly-selected test point
used for validation).

6. Conclusions

The results of the proposed hybrid method indicate that the metaheuristic ICA is successful in
optimizing the ANN. The prediction model requires knowledge of a total of five parameters: K4, Nay,
My /N, and v, obtained using the IR method, and also parameter f1, which was obtained using the
I-E method. ANN with a 1-5-6-5 structure with the nonlinear tan-sigmoid transfer function and the
properties related to the ICA with 500 countries and 50 primary empires and 250 repetitions has a
higher ability and accuracy in determining the value of the f,.

In the best ANN model, optimized by the ICA for determining the value of the f}, the
determination coefficient R? at the stages of training and testing is 0.844 and 0.858, respectively.
The results indicated that the ICA-ANN model outperforms the other methods, such as the GA and
PSO. The R? values are also higher than those obtained previously by the simple MLP-ANN [29].
The obtained values of R? can be considered as satisfactory, taking into account the fact that it is not
necessary to use the 3D roughness parameters of an existing concrete substrate surface.

Various functional issues solved by this algorithm also indicate that the proposed optimization
strategy can successfully help to solve practical problems. The pull-off adhesion of the cement mortar
in the existing concrete substrate in real cement composites can be obtained with the use of the
proposed method. However, this method is applicable when the thicknesses of the layers of the cement
mortar and substrate, and also the composition of the cement mortar and existing concrete substrate
in the particular cement composite, are similar to the ones that were used to create the database in
this article. Otherwise, it is necessary to create a new database for cement composites that are tested
in practice.
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