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Abstract: Vertically-aligned carbon nanotubes (VACNTs) have extraordinary structural and
mechanical properties, and have been considered as potential candidates for creating dry adhesives
inspired by adhesive structures in nature. Catalytic chemical vapor deposition is widely used to
grow VACNTs; however, the influential mechanism of VACNT preparation parameters (such as H2

concentration) on its adhesion property is not clear, making accurate control over the structure of
VACNTs adhesive an ongoing challenge. In this article, we use electron beam-deposited SiO2/Al2O3

as a support layer, Fe as catalyst, and C2H4/H2 gas mixtures as a feed gas to prepare VACNTs, while
varying the ratio of the reducing atmosphere (H2) from 0% to 35%. VACNTs synthesized at a 15%
H2 concentration (5 mm × 5 mm in size) can support a maximal weight of 856 g, which indicates a
macroscopic shear adhesive strength of 34 N/cm2. We propose a hydrogen-concentration-dependent
model for the shear adhesive performance of VACNTs. By adjusting the amount of hydrogen present
during the reaction, the morphology and quality of the prepared VACNTs can be precisely controlled,
which significantly influences its shear adhesive performance. These results are advantageous for the
application of carbon nanotubes as dry adhesives.

Keywords: carbon nanotubes; chemical vapor deposition; hydrogen concentration; adhesion;
gecko-inspired

1. Introduction

Geckos contain millions of microscopic beta keratin hairs on their feet, which allow them to exhibit
controllable adhesion and detachment of their feet from a surface. The ends of these hairs are split
into nanoscale spatula-like structures, which come in close contact with the target surface to induce
accumulated van der Waals forces (~10 N/cm2) and form strong bonds [1,2]. This unique adhesive
capability of geckos has led to the development of advanced adhesives, including dry adhesives, which
unlike chemical adhesives, leave no residue [3]. Such dry adhesives generally have micro-nano array
structures, and are expected to be suitable for robotic end-effectors [4–7]. At present, there are generally
two main types of materials being researched as materials for gecko-inspired dry adhesives [8]:
Synthetic polymers [5,9,10] and vertically-aligned carbon nanotubes (VACNTs) [11–14]. Among them,
the nano-scale diameters of carbon nanotubes are far less than the micro-scale diameters of the generally
polymeric fibers. Zhao et al. [15] tested the adhesion strength of VACNTs with 5–10 µm height. Under
125 N/cm2 preload, the normal adhesion reached 11.7 N/cm2. Under 31.25 N/cm2, the shear adhesion
reached 7.8 N/cm2. Ge et al. [16] designed VACNTs with pillar pattern structure, the shear adhesion
of which reached 36 N/cm2, and sustained for 8–12 h. Through LPCVD (low-pressure chemical vapor
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deposition) method, Qu et al. [11] produced VACNTs with hierarchical structure, which could exert
100 N/cm2 shear adhesion and 10 N/cm2 normal adhesion, respectively. By synergy with straight
bodies but curly entangled tops of VACNTs, better adaptability to the characteristics of contact glass
surface is exhibited, resulting in greater and anisotropic adhesion [11]. This anisotropic adhesive
behavior is also the key for geckos to switch between adhesion and detachment while moving [17].
During shear movement, the contact area of VACNT with target surface could be side contact, which
is obviously larger than point contact during normal movement [18]. From the past research results,
it is easy to conclude that the shear adhesive performance of VACNT is usually stronger than normal
adhesive performance, exhibiting strong adhesion and easy detachment [19–21].

Given the extraordinary performance of carbon nanotubes in fabricating gecko-inspired dry
adhesives, it is important to realize accurate control over the morphology and structure of the carbon
nanotubes. Presently, catalytic chemical vapor deposition (CVD) is the main preparation method for
obtaining carbon nanotubes due to its many advantages such as simple processing, low technical
cost, and high degrees of control and scalability [22,23]. The mechanism of CNT growth through
CVD methods has been studied [24–29]. The morphology and quality of the resulting CNTs depend
on the catalyst, carbon source, temperature, flow rate, and feedstock pressure during CVD, among
other factors [30]. Schneider [31] considered that the CVD growth process of VACNTs could be a
complex situation, in which all of the parameters have to be precisely-tuned, individually against each
other (such as processing parameters, size of the reactor, dwell time and sample positioning in the
reactor) to obtain a CNT material with certain structure in the most reproducible way. During CVD,
the mixture gas typically includes a carbon source, a reducing gas, and an inert carrier gas, which is
then fed into an airtight tube furnace. Carbon deposition occurs by catalytic decomposition of the
carbon source gas on the surface of metal nanoparticles under high temperature. Research on the
effect of carbon source gas in the reaction atmosphere on CNT growth has been widely published
previously [32–34]. It is generally accepted that the type and flow rate of the carbon source will affect
the number of carbon atoms provided for CNT formation, and the accumulation of impurities (such as
amorphous carbon) due to the self-decomposition of the carbon source is one of the reasons for the
termination of CNT growth [35]. Studies regarding the influence of the reducing gas (usually hydrogen)
in growth kinetics are relatively rare, although its effect on nanotube morphology has been investigated
extensively [31,36]. One widely accepted theory is that hydrogen can remove the barriers for CNT
growth by etching the impurities on the catalyst surface [37–39]. In addition, maintaining a balance
between carbon and hydrogen radicals in the reaction system is very important for CNT growth [40].
Insufficient hydrogen causes the oxidized catalyst Fe to be reduced incompletely, while excessive
hydrogen converted the carbon production in the gas phase into the reagents, thus decreasing the
overall driving force of the process [41]. Joshi et al. [37,42,43] experimentally observed the role of water
and hydrogen in terms of their influence on CNT growth, and point out that hydrogen controls the
cracking of the carbon precursor ethylene, thereby controlling the purity as well as the number of walls
of the CNTs grown. Schaber et al. [44,45] investigated the tribological properties of densely-packed
VACNTs and the morphology effect on the frictional coefficients. Chen et al. [46] systematically
tested the effect of packing density and surface roughness of VACNTs on their biomimetic frictional
adhesion. Previous research into this phenomenon has focused on the influence of hydrogen on the
morphology, size, distribution, and structure of the catalyst, or focused on the effect of morphology
and structure on the adhesion property of VACNTs. Due to the multiple influencing factors of the CVD
process, the influential mechanism of CNTs morphology and structure controlled by CVD processing
parameters on their adhesion property is still not completely clear.

In this work, highly-controlled CVD growth was used to fabricate VACNTs. The morphology
and structure of the prepared VACNTs were controlled by adjusting the amount of hydrogen in the
reaction atmosphere. As mentioned above, the shear adhesive performance is usually stronger than
normal pull-off force, thus the shear adhesive performances of these VACNTs prepared under different
growth conditions were tested and compared using a hanging-weight system. Morphological and
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structural characterizations of the VACNTs were carried out to determine the mechanism by which
hydrogen concentration during synthesis affects the shear adhesive performance of the final VACNTs.

2. Materials and Methods

2.1. VACNTs Preparation

A 4-inch silicon wafer was chosen as the growth substrate. A SiO2/Al2O3 (film thickness is
300 nm/20 nm) nm layer and a 2 nm-thick Fe film were deposited as support and catalyst, respectively,
using an electron beam system (E-beam 500, Xingnan, Chengdu, China). Laser-cut growth substrates
(5 mm × 5 mm in size) were placed into a CVD tube furnace (Nano-Tytan 160, Tystar Corporation,
Garden Grove, CA, USA) and heated under Ar to a growth temperature of 750 ◦C. H2 concentration
of 15% was injected into the furnace under low pressures (~100 Torr) for pretreatment of the catalyst;
pretreatment reduces the oxide on the catalyst surface and etches the catalyst film into nano-scale
metal islands. After 30 s of pretreatment, the carbon source gas ethylene (C2H4) was added to initiate
CNT growth. While maintaining a constant flow of C2H4 (272 sccm) and the mixture atmosphere
(1183 sccm), the proportion of hydrogen was adjusted to 0%, 5%, 15%, 25%, and 35% during different
trials. After 40 min of deposition, VACNTs with different adhesive performance were obtained.

2.2. Characterization and Test Methods

High-resolution field emission scanning electron microscopy (HR-FESEM, S-4800, Hitachi, Japan)
was used to analyze the morphology of the VACNTs prepared under different H2 conditions, including
growth height, distribution density, and vertical orientation degree of the tube bodies. Field emission
transmission electron microscopy (FETEM, Tecnai G2 F20, Thermo Fisher Scientific, Hilsporo, OR,
USA) was used to further observe the diameter, wall number, and impurity distribution of single
tubes. Laser confocal Raman spectroscopy (Raman, Labram HR 800, Horiba Scientific, Edison, NJ,
USA) was used to analyze the defects and graphitization degree of VACNT samples in order to judge
their quality and purity. The adhesive performance of the VACNTs was tested using a self-made
hanging-weight system. In order to keep the preload constant each test, VACNT sample was first
attached to a plastic sheet using double-sided adhesive tape and the top side of VACNTs made parallel
contact with a glass slide. Another glass slide was covered on the back side of the plastic sheet to make
a sandwich structure. The sandwich structure was placed on top of an electronic balance, the glass
slide was hand-pressed until the display showed 1000 g (near 40 N/cm2). Then, glass slide B was taken
and the hanging weight test was continued. In this way, the preload could be controlled precisely
to some extent. Copper powder (Analytical Reagent, AR) was continuously added to the tray on
the end of the plastic sheet to directly test the macroscopic shear adhesive strength of the VACNTs.
The average was calculated as the shear adhesive strength of the VACNTs with three replications.
The underlying causes of the different adhesive performances for VACNTs prepared under different
hydrogen concentration conditions were analyzed. Atomic force microscopy (A Dimension 3100 AFM,
Bruker-Nano, Santa Barbara, CA, USA) was used to analyze the morphology of catalyst surface after
the CVD process under different H2 concentrations. After the CVD synthesis process, the carbon
nanotube array was peeled off from the growth substrate with tweezers for the AFM test.

3. Results and Discussion

3.1. Morphological Analysis of VACNTs

The surface morphology of VACNTs is very important for their application as dry adhesive
materials. SEM images of VACNTs prepared under different hydrogen conditions are presented
in Figure 1, and show typical side profiles and top surfaces of VACNTs. Figure 1 illustrates the
significant influence of hydrogen concentration on the morphology of prepared VACNTs. The absence
of hydrogen during deposition causes CNTs to grow in a disorderly distribution and without coherent
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directional alignment. As shown in Figure 1a–c, the tube bodies of the CNTs gradually orient more
in the vertical direction as more H2 is introduced into the reaction atmosphere. Figure 1c shows the
sample under a H2 concentration of 15%, which presents relatively good vertically-aligned distribution
among others. As the H2 concentration is further increased (Figure 1d,e), the neighboring tubes are
entangled with each other and the vertical orientation of the tubes becomes random. From top-view
SEM images, we also see that carbon nanotubes on the top surface of VACNTs prepared under a H2

concentration of 15% form uniform small clusters, which are beneficial to maximizing the contact area
with the target surfaces to realize better adhesive performance [11].
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Figure 1. SEM images showing side (above) and top (below) views of Vertically-aligned carbon nanotubes
(VACNTs) created under different H2 concentrations: (a) 0%; (b) 5%; (c) 15%; (d) 25%; (e) 35%.

The height variation of VACNTs under different H2 concentrations are shown in Figure 2. There
is almost no growth of VACNTs without hydrogen present during the deposition process. It can be
speculated that without the etching effect of hydrogen, the amorphous carbon accumulates on the
surface of the catalyst and hinders the contact between carbon atoms (from thermal decomposition
of C2H4) and metal catalytic particles, thus seriously affecting the growth height of VACNTs [38].
When the H2 concentration increased to 15%, the prepared VACNTs reached a maximum height of
350.7 µm, which indicates that a suitable H2 concentration can make the growth of VACNTs more
efficient. When the H2 concentration is gradually increased to 35%, there is an evident decrease in the
growth height of the VACNTs. It can be explained that excess hydrogen reacts with the carbon product
during deposition, hindering the effective growth of CNTs [41]. These results show that VACNTs
synthesized under a H2 concentration of 15% feature a good vertical orientation, and the tops of these
arrays form small and homogeneous clusters. The prepared VACNTs can grow up to 350.7 µm, which
is high enough to adapt to the roughness of different surfaces. The hydrogen in this case can etch away
the impurities on the catalyst surface, but does not react with the carbon product and affect the CNT
growth efficiency.
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Figure 3 shows TEM images of single CNTs prepared under H2 concentrations of 5%, 15%, 25%,
and 35%, respectively. The height of VACNTs prepared under 0% H2 is too low to serve as interfacial
adhesion material. When the H2 concentration was increased from 5% to 35%, the diameters of the
prepared VACNTs were only slightly reduced, to approximately 10 nm. The number of walls in the
multi-walled VACNTs prepared under H2 concentrations of 5%, 15%, 25%, and 35% are 9, 7, 6, and 4,
respectively. The numbers of walls gradually decreased with increasing hydrogen concentration in the
reaction atmosphere. It is widely accepted that catalyst particle size has a direct templating effect on the
morphology and distribution of prepared CNTs [43,47–51]. We speculate that the change of hydrogen
concentration in the gas deposition process (by influencing the catalyst particle size) leads to changes
in the diameter and number of walls in the prepared VACNTs. It can be deduced from the variation
of diameter that the catalyst particle size decreases slightly with increasing hydrogen concentration.
The impurity distribution in the prepared VACNTs is also shown in Figure 3. The VACNTs prepared
under a H2 concentration of 15% show a clean tube center, with few impurities or defects; only the outer
walls of the tubes have a small number of impurities. This condition is therefore ideal for obtaining
more orderly arranged CNTs and reducing the formation of amorphous carbon and other impurities.
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3.2. The Quality Analysis of VACNTs

Raman spectroscopies of the different VACNTs are shown in Figure 4. There are two Raman
characteristic peaks for CNTs. The D-band (~1350 cm−1) represents the structural defects and
adsorbed carbon nanoparticles, amorphous carbon, and other nanoscale microcrystals on the tube
walls. The G-band (~1580 cm−1) arises the E2g vibration of the graphite plane, characterizing the
orderly graphitization of the tubes [52]. The D/G peak intensity ratios (ID/IG) of the VACNTs under
H2 concentrations of 0% and 15% decreased from 1.17 to 1.07. This shows that the hydrogen added
during the deposition process effectively etches these impurities and maintains a dynamic balance of
carbon and hydrogen free radicals, favors the formation of sp2-like graphite structures, and ensures
higher-quality VACNTs. As the hydrogen concentration continues to increase, the D/G peak intensity
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ratio increases as well. This indicates that additional hydrogen destroys the dynamic balance of
carbon and hydrogen free radicals, forming sp3 structural defects on the walls of CNTs. Additionally,
the formation of amorphous carbon and other impurities on the surface of arrays decreases the quality
of VACNTs. A 15% H2 concentration is most favorable for growing VACNTs with a high degree of
graphitization or crystallization, fewer defects and impurities, and higher quality.
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3.3. Influence Mechanism of Hydrogen Concentration on VACNTs Synthesis

Based on the above observation and analysis, we examined the morphology of iron catalyst
particles after CVD process under different H2 concentrations (as shown in Figure 5a–c), and propose a
simple model to explain the influence of hydrogen concentration on the structure of VACNTs to explain
the shear adhesive performance difference (as shown in Figure 5d). The growth process of CNTs
includes two stages. First, the gas-phase precursor Cgas is shifted to an activated surface-bound form,
C*. C* can then diffuse through the catalyst particles, and some of these C* species are incorporated
into the growing carbon nanotubes. The remaining C* forms amorphous carbon patches Cam and other
impurities that block the catalyst particle surface [53]. From Figure 5a, under the H2 concentrations
of 5%, the size of iron catalyst is relatively larger and non-uniformly distributed, and some catalyst
particles even aggregated. At low hydrogen concentrations (0%–5%), the small amount of hydrogen
present cannot etch the catalyst layer to form evenly-distributed iron particles, which decreases the
catalytic efficiency for the growth of VACNTs. The accumulated impurities on the catalyst surfaces
hinder the carbon atoms from the thermal decomposition to effectively contact with the catalyst
particles; thus, the growth height of the prepared VACNTs is significantly affected. The heights of the
prepared VACNTs are sensitive to the characteristics of the contact surfaces, and then affect the adhesive
properties. From Figure 5b, under the H2 concentration of 35%, the number of catalyst particles is
relatively small and the size distribution is obviously uneven. At high hydrogen concentrations
(25%–35%), the additional hydrogen can etch away the carbon impurities on the catalyst surface.
However, there still exist more impurities and structure defects on the top surfaces and tube walls of
VACNTs. Moreover, research of Behr et al. shows that the excess hydrogen changes the crystal phase
of catalyst from FeC3 with catalyst activity into body-centered cubic (BCC) Fe [54]. So, we speculate
that the excess hydrogen leads the saturated carbon atoms to form more sp3 structure defects but not
sp2 graphite-structure arrangement by shifting the catalyst phase.

At the most suitable hydrogen concentration of 15%, it effectively etches the catalyst to form
evenly-distributed iron particles (as shown in Figure 5c), which maximizes their catalytic efficiency and
reduces the formation of impurities. The catalyst phase is maintained as the active component of FeC3,
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which ensures the most carbon atoms to separate out with sp2 graphite structure and grow VACNTs
at a rapid rate. Therefore, the prepared samples can grow higher (up to 350 µm in our experiment),
and have less structure defects and attached impurities.Coatings 2017, 7, 221 7 of 12 
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Figure 5. Atomic force microscopy (AFM) analysis of catalyst surface after chemical vapor deposition
(CVD) process under different H2 concentrations: (a) 5%; (b) 15%; (c) 35%. (d) The influential
mechanism model of hydrogen concentration on the structure of VACNTs.

3.4. Adhesive Performance Test of VACNTs

A hanging-weight system was used to test the macroscopic shear adhesive strength of the
prepared VACNTs (Figure 6a). The institutive test method has been widely used to test the adhesion
performance of VACNTs in previous research [11,13–15,19]. Samples 5 mm × 5 mm in size were
preloaded (~40 N/cm2) onto glass surfaces to form sufficient contact between the VACNTs and the
test surface. Copper powder was continuously added to the attached tray until failure of the VACNT
assembly was observed. The schematic diagram of the adhesion process is shown in Figure 6b. At first,
the point contact between the top of VACNTs and the glass slide causes the actual contact area to be
relatively small. After preloading, the VACNTs bend and form close packing. When there is a shear
loading, the point contact becomes a line contact. It has been proven that the shear adhesive strength
is directly related to the horizontally-aligned nanotube, and a larger actual contact area makes it so
that the VACNTs realize good adhesive performance by accumulated van der Waals force [11].

The shear adhesive strength of VACNTs synthesized under different hydrogen concentrations is
shown in Figure 6c. The shear adhesive strength of VACNTs shows an increasing trend when the H2

concentration is lower than 15%, whereas the shear adhesive strength shows a decreasing trend when
H2 concentration is over 15%. VACNTs (5 mm × 5 mm) synthesized under 15% H2 concentration
can support an average weight of 806 g, which means the macroscopic shear adhesive strength is
near 32 N/cm2, and this value is 3.2 times than that of a gecko foot. Compared with the morphology
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and structure analysis in Sections 3.1 and 3.2 (Figures 1–4), it can be deduced that the shear adhesive
performance of VACNTs is related to their morphology, length, and purity. In addition, the best
shear adhesive performance is dependent on those parameters synthesized under 15% hydrogen
concentration during CVD process.Coatings 2017, 7, 221 8 of 12 
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Figure 6. (a) The hanging-weight system to test the shear adhesive strength of VACNTs; (b) The
schematic diagram of the shear adhesive strength test process; (c) The shear adhesive strength
of VACNTs prepared under different hydrogen concentrations; (d) The shear adhesive durability
of VACNTs.

It is not strong enough when compared with the maximum shear adhesive strength (100 N/cm2)
tested by Qu et al. in 2008 [11]; however, the ratio between adhesion and preload of our sample and
Qu’s test both reached 0.8. It has been proved that the shear adhesion increased with preload to a
certain extent [55]. In addition, when the VACNT adhesive is applied to the climbing robot, the higher
adhesion strength is not the only consideration. Actually, how to generate higher adhesion in a small
preload is more important for the climbing robot. In this paper, we pay more attention to the influential
mechanism of H2 concentration on the morphology and structure of the carbon nanotubes, which will
further affect the adhesion property.

Ten VACNTs samples prepared under 15% H2 concentration were used to test the shear adhesive
durability, and each sample was repeatedly tested 15 times under the same preload (near 40 N/cm2)
as described in Section 2.2. The test results show the similar decreasing trends of each sample; thus,
one representative result of the adhesion durability test is shown in Figure 6d. The samples reach the
maximal shear adhesive strength of 34 N/cm2 in the second test. The possible reason is that after the
first adhesion test, VACNTs can form good tilted distribution in the shear direction and maximize the
effective contact between arrays and target surfaces. However, after several tests, some of the CNTs
broke and separated from their substrate (see inset of Figure 6d), which obviously reduces the actual
contact area. This might be responsible for the gradually decreased shear adhesive strength of VACNTs.
The results show that the VACNTs have a certain repeat durability. The above analyses reveal that by
changing the morphology and crystal phase of the catalyst, the variable hydrogen concentration affects
the height, orientation, and graphitization of the prepared VACNTs, which further influences their



Coatings 2017, 7, 221 9 of 12

adhesive performance. In the present experiments, the VACNTs prepared under a H2 concentration
of 15% feature proper structural integrity, quality, purity, and the best adhesive performance during
adhesion tests. These results also demonstrate that control over the adhesive performance of VACNTs
can be achieved by controlling the reaction gases in the atmosphere during synthesis, which provides
greater possibility for the application of VACNTs on climbing robot appendages.

4. Conclusions

In summary, we have presented the relationship between hydrogen concentration during VACNT
preparation and the adhesive performance of the resulting VACNTs. When the hydrogen concentration
is low, there are too many accumulated impurities on the catalyst surfaces, which hinder the effective
growth of VACNTs. Short VACNTs are adverse to good contact with the target surfaces, resulting
in poor adhesive performance. However, excessive hydrogen shifts the crystal phase of catalyst and
creates more structural defects in the growing VACNTs, which also leads to poor adhesive performance.
Under a suitable hydrogen concentration (15%), the resulting VACNTs feature a proper morphology
and high degree of quality. SEM analysis shows that the tube bodies are perfectly vertically-oriented,
and the top surfaces of the arrays form uniform cluster structures. TEM observations show purer
tube centers, straighter tube bodies, and fewer impurities. Raman characterization illustrates that the
VACNTs have fewer structural defects and impurities, as well as a high degree of graphitization. These
VACNTs also present excellent shear adhesive performance. The maximum shear adhesive strength
is 32 N/cm2, which is 3.2 times that of a gecko foot. Our work shows the possibility of achieving
accurate control over VACNT structures by controlling the gases present during their creation and
further optimizing the growth process. These synthetic gecko-inspired VACNT dry adhesives exhibit
better adhesive performance, and could see a wider degree of application in the future.
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