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Abstract: Large-scale use of biomass and recycled fuel is increasing in energy production due
to climate and energy targets. A 40% cut in greenhouse gas emission compared to 1990 levels
and at least a 27% share of renewable energy consumption are set in EU Energy Strategy 2030.
Burning fuels with high content of corrosive species such as chlorine and heavy metals causes
deterioration of boiler components, shortened lifetime, limited availability of a plant and hence
higher maintenance and investment costs and lower thermal and economic efficiency. Coatings
can be applied to protect the critical boiler components against high temperature corrosion. In this
study, five thermal spray coatings were tested in an actual biomass co-firing boiler for 1300 h with
a measurement probe. The coatings were analyzed after the exposure by metallographic means
and scanning electron microscope/energy-dispersive X-ray spectroscope (SEM/EDX). The deposits
formed on the specimens were analyzed by X-ray fluorescence. At 550 °C, the coatings showed
excellent corrosion performance compared to reference material ferritic steel T92. At 750 °C, tube
material A263 together with NiCr and NiCrTi had the highest corrosion resistance. To conclude,
thermal spray coatings can offer substantial corrosion protection in biomass and recycled fuel burning
power plants.
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1. Introduction

Response to the threat of climate change has taken a major step with the Paris Agreement [1],
which is an extensive and legally binding climate agreement with target of holding global warming
well below 2 °C compared to pre-industrial levels. For the first time, almost all countries around
the world have agreed to take actions to combat climate change. Energy and climate targets to
prevent greenhouse gas emissions have been tightened from the 20-20-20 targets, including 20% cut in
greenhouse gas emissions from 1990 levels, 20% of EU energy from renewables and 20% improved in
energy efficiency, to 2030 targets of a 40% cut in the greenhouse gas emissions and at least 27% share
of renewable energy consumption [2]. While share of wind and solar energy are increasing rapidly,
other renewable energy forms producing base load are needed, during and beyond the transformation
period until the year 2050, when 26% to 29% of global electricity is predicted to be produced by wind
and solar power [3,4]. Bioenergy, especially production of thermal energy by biomass, is currently the
largest form of renewable energy and is expected to keep its dominant position. However, biomass
combustion together with enhanced recycled fuel (waste) combustion is detrimental to components of
the power plants due to very reactive species that cause slagging and high temperature corrosion.

Severe fireside corrosion, encountered especially in boilers using biomass and recycled fuel,
occurs when chemical reactions with the combustion gases and deposits at high temperatures cause
the loss of heat exchanger surfaces, e.g., superheaters. It is often caused by a gaseous or molten attack
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induced by compounds of chlorine, bromine, alkali metals (K, Na), sulfur, and heavy metals (Zn,
Pb, Cu, etc.) [5-8]. Corrosion may cause a leakage, which leads to a shut-down of the boiler and
hence severe costs by reduced availability and repair [9]. Other than using higher alloyed steels or
nickel-based alloy tubes, thermal spray coatings can be applied to low alloyed tubes for corrosion
protection with economical cost and high thermo-mechanical properties. In thermal spraying, the
coating is formed from molten or semi-melted droplets producing a lamellar structure. High velocity
spray methods generate coatings with good adhesion and low porosity [10], which are essential for
sufficient protection of the substrate material. Thermal spray coatings have proven their ability for
corrosion protection in laboratory tests, e.g., plasma sprayed NiCr coating against high temperature
corrosion under deposits simulating conditions of coal-biomass firing [11]. The performance was
strongly dependent on the amount of the chromium in the coating, as the corrosion protection took
place by a protective chromium oxide layer.

In this study, five thermal spray coatings were tested in a co-firing biomass boiler for 1300 h,
up to 750 °C material temperatures, with a measurement probe in order to validate the corrosion
performance in actual conditions [12]. As reference, ferritic steel and nickel based alloys were exposed
to the same conditions.

2. Materials and Methods

High temperature corrosion performance of five thermal spray coatings were tested in a biomass
co-fired circulating fluidized bed boiler for about 1300 h with a controlled probe measurement.

Two tube metal alloys were used as reference materials. Test temperatures for the materials were
550 °C and 750 °C.

2.1. Thermal Spray Coatings

Five thermal spray coatings were manufactured for high temperature corrosion exposure in a
biomass co-firing boiler. Four of the coatings were sprayed by high velocity oxy-fuel (HVOF) method,
and one with a wire arc. The coating was performed on two substrate materials. The coating materials
were nickel based powders Ni-980-1/1260F from Praxair (NiCr), Diamalloy 1005 from Sulzer Metco
(IN625) and Diamalloy 4006 from Sulzer Metco (NiCrW), a wire TAFA Nickel Chrome 45 CT from
Praxair (NiCrTi), and an iron based powder SH59172 from Nanosteel (FeCr). The substrate materials
were a ferritic steel T92 (ASTM A213 T92) and a nickel super alloy A263 (NIMONIC® Alloy 263, Special
Metals, Hereford, UK). Chemical composition of the coating and substrate materials are presented
in Table 1.

Table 1. Chemical composition of the coating and substrate materials (wt.%).

Material Ni Cr Fe Mo \%Y Co Nb Si
NiCr Bal. >45 1.1 - - - - 2.1
IN625 Bal. 21.5 2.5 9.0 - - 3.7 0.2
NiCrW Bal. 20.5 <1.0 9.0 10.0 - - -
FeCr - <25.0 Bal. <6.0 <15.0 - <12.0 <2.0
NiCrTi Bal. 42-46 - - - - - -
T92 - 8-9.5 Bal. 0.3-0.6 1.5-2 - - <0.5
A263 Bal. 19-21 <0.7 5.6-6.1 - 19-21 - <0.4
Material Mn Cu Al Ti A% C B
NiCr - - - - - - -
IN625 0.1 - - - - - -
NiCrW - 4.0 - - - 0.75 0.75
FeCr <3.0 - - - - <4.0 <5.0
NiCrTi - - - 0.3-1 - - -
T92 0.3-0.6 - <04 - 0.15-0.25 0.07-0.013 -

A263 <0.6 - <0.6 1.9-2.4 - 0.04-0.08 -
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The coating was performed on the perimeter of tube rings with size of ® 48 mm x 12.5 mm
for exposure at 550 °C, and ¢ 34 mm x 15 mm for 750 °C. HVOF process with CJS (Carbide Jet
Spray by Thermico GmbH & Co KG, Dortmund, Germany) spray gun was used for spraying the
powders. Depending on process parameters, CJS produces high velocity and low thermal input on
the sprayed powders, generating thick coatings with low oxidation rate and good adhesion to the
substrate material. However, small particle size would be optimal for CJS to enhance the melting of
the powder particles and hence sufficient cohesion between the lamellas. In this study, the applied
powders were designed for a previous generation spray gun (e.g., Diamond Jet Hybrid from Sulzer
Metco, Westbury, NY, USA), and therefore slightly too coarse for the used method. Arc spraying was
performed with Smart Arc (by Sulzer Metco). The process parameters of the spraying are presented in
Table 2. Powder feed rate was 50 g/min for HVOF and applied spraying distance was 250 mm. For arc
spraying, the spraying distance was 150 mm. Images of the cross-section of the coated specimens
are presented in Figure 1. Both NiCr and IN625 showed reasonably large lamellas with very little
oxidation in the lamellar boundaries, whereas the arc sprayed NiCrTi was highly oxidized (darker
areas in the micrograph) with fully molten structure.

Table 2. Process parameters for high velocity oxy-fuel (HVOF) spraying (L/min). Below: process
parameters for arc spraying.

Coating Spray Method H; Kerosene 0, N» Sweeps Thickness (um)
NiCr CJS, 140 mm 100 16 1000 6+6 14 130
IN625 CJS, 140 mm 100 16 1000 6+6 10 140

NiCrW CJS, 140 mm 100 16 1000 6+6 20 270
FeCr CJS, 140 mm 100 16 850 6+6 21 200

Coating Spray Method  Voltage Current Air Thickness (um)

NiCrTi Smart Arc 30V 220 A 3.5/2.5 bar 180

% Vg

NG oo oo 30MM | Fecr . 30unt

Figure 1. Optical micrographs of the thermal spray coatings before testing: (a) HVOF sprayed NiCr
and (b) IN625; (c) arc sprayed NiCrTi; (d) HVOF sprayed NiCrW and (e) FeCr.

Porosity of the coatings was measured with image analysis from optical micrographs. Oxides at
lamellar boundaries and pull-outs due to specimen preparation may influence to the image analysis
results. According to the analysis, the most dense coating was HVOF sprayed NiCrW with 2.6%
porosity. Porosity of other HVOF-sprayed coatings varied from 3.3% for NiCr, 4.8% for IN625 to 5.8%
for FeCr coating. Arc sprayed NiCrTi had porosity of about 4.6%.
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2.2. Measurement Probe

Measurement probes can be applied for corrosion monitoring and deposit analysis in high
temperature combustion plants. They can be used for analyzing both short- and long-term deposition
build-up and corrosion risks. An advanced water-air-cooled probe was developed to test materials in
two different temperatures. The probe is approximately two meters in length and can accommodate
two sections with six test rings in each. One section is water- and air-cooled and is exposed at metal
temperatures of approximately 550 °C and the second is air-cooled at metal temperatures around
750 °C. The probe with two separate sample regions is presented in Figure 2.

Primary head

Secondary head

/el B T

Temperature set point 550 °C (windward) Temperature set point 750 °C (windward)

Figure 2. High temperature probe for corrosion testing at two temperature regions.

There are several temperature measurements in different sides of the probe for both temperature
areas. The primary head consists of a stationary part, which has four thermo-couples and area for
detachable material rings. The width of a detachable material ring in the primary head is 12.5 mm/each.
In the secondary head, the detachable material rings are connected to the system through a separate
extension ring. The width of a detachable material ring in the secondary head is 15 mm/each. There
are two thermo-couples in the extension ring and material temperatures of the detachable material
rings are measured at three rings. The flue gas temperature is measured in the tip of the probe with
one covered thermo-couple. The thermal expansion in primary and secondary heads as well as in the
casing is eliminated with a special spring system consisting of four separate springs.

The probe is air- and water-cooled with a separate controllable cooling unit. During the tests the
two meter casing remains cool by water cooling whereas the temperatures of the sample exposure
heads are adjusted as desired by additional air cooling. The surface temperatures of the probes vary
depending on the direction of the flue gas flow. During the insertion of the probe into the boiler, the
direction is chosen so that the windward (i.e., against the flue gas flux) temperature in the sample ring
area is maintained constant by adjusting the air cooling rate. The temperatures on the other sides of
the probe vary depending on the deposit formation and cleaning stages.

2.3. Test Facility—The Biomass Co-Firing Plant

The probe exposure trial was performed at the Alholmens Kraft power plant located in the
western coast region of Finland, in the town of Pietarsaari. The facility is one of the largest biomass
fueled power plants in the world producing electricity, district heating and process steam and heat for
the UPM-Kymmene plant. The exposure involved deployment of the corrosion probe in a 550 MWy,
circulating fluidized bed boiler, which has live steam parameters of 194 kg/s, 165 bar, 545 °C. During
the measurements the boiler was fired on average with 30% peat, 10% coal, 50% of biomass (forest
residues, industrial wood and bark etc.) and 10 % SRF (solid recovered fuel). Daily fluctuations in
the fuel shares in comparison to those averages can be wide as well as the fluctuations in the whole
process parameters. The probe was inserted into the superheater area after the cyclones.

2.4. Specimen Characterization

After the exposure the coated and reference ring specimens were removed from the probe and
embedded in cold setting resin on site. The embedded specimens were cross-sectioned by grinding
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with ethanol followed by polishing. The cross-sections were studied by an optical microscope and
a scanning electron microscope (SEM) (FEI/Philips XL30 ESEM, FEI, Eindhoven, The Netherlands)
equipped with energy-dispersive X-ray spectroscope (EDX) (UltraDry EDS Detector, Thermo Fisher
Scientific Inc., Waltham, MA, USA) for elemental analysis and mapping. Separate deposit samples were
detached from the probe near the test samples and they were analyzed by X-ray fluorescence (XRF)
using the Philips PW2404 X-ray spectrometer and semiquantitative SemiQ program (PANalytical,
Almelo, The Netherlands). The samples were analyzed for fluorine (F) and heavier elements excluding
noble gases. The detection limit of the method is typically in the order of 0.01 wt.%.

3. Results

3.1. Process and Probe Measurement Data

Plant electricity output varied a lot in short intervals depending on the electricity markets, which
had a strong effect on the flue gas temperatures inside the boiler, and further on the temperatures at
the probe surfaces, Figure 3a. Some fluctuations were also present in the flue gas emissions, e.g., the
HCl and SO, emissions presented in Figure 3b. Due to high variations in the plant load and process
temperatures, the probe temperature profiles were fluctuating as well, which influenced the stability
of the controlled temperature on the windward surface, as presented in Figure 4a. Hence, the actual
material temperatures were lower than planned: 536 °C for the primary and 697 °C for the secondary
head in the windward side on average. For the leeward side, the average temperatures were 502 °C
for the primary and 609 °C for the secondary head. Minimum values in the probe were in the leeward
side; 331 °C for the primary and 566 °C for the secondary head. The maximum values in the windward
side were 602 °C (primary) and 764 °C (secondary head). The temperatures are presented in the form
of a stability curve, where the fluctuations, which followed the flue gas temperature, are not shown.
The diagram shows overall temperature behavior to the exposure period, but not in a chronological
order. Three short temperature and pressure changes occurred in the probe during the test period
due to shutting the cooling water circulation and cleaning the filter. Operational thermal cycling
(627-874 °C flue gas) was caused by the electric output variation. After the exposure, the material
testing probe was covered with a light brown deposit, which had partly detached. The probe is
presented in Figure 4b.
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Figure 3. Cont.
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Figure 3. Process data during the test exposure: (a) Plant electricity output (MW) and flue gas

temperature (°C) at the cyclone; (b) Flue gas data of sulfur dioxide SO, and hydrogen chloride HCl
during the test (mg/Nm3).

900
— Flue gas S (Windward) S (Leeward)

850

e P (Windward) e P (Leeward)
800 -

400
350
300 -
0 200 400 600 800 1000 1200 1400
Hours of the exposure period
(a)

(b)

Figure 4. (a) Probe measurement data presented in the form of stability curve for flue gas, windward
and leeward temperatures (°C) (S = secondary head, P = primary head); (b) Probe after the 1300 h
exposure, material samples at metal temperatures of approximately 550 °C.
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3.2. Formed Deposits

The deposit after the exposure was light brown and easily detachable from the probe. At 750 °C
probe section, the deposit layer was slightly thicker compared to the lower temperature section.
Deposits were composed mainly of sulfur, calcium, potassium, silicon, sodium, iron and aluminum,
as presented in Table 3. Other elements in the deposit were magnesium, phosphorus, titanium and
manganese. The amount of zinc was considerable (0.4/0.7 wt.%) in the analyzed deposits. At the
lower temperature, amounts of sulfur, potassium and sodium were higher compared to the 750 °C
temperature. At the higher temperature, no chlorine was detected in the deposit.

Table 3. Composition of the formed deposits on the probe sections at 550 °C and 750 °C (wt.%).

Element S Ca K Si Na Fe Al Mg P Ti

550 °C 14 10 14 45 5.7 42 2.7 1.1 0.78 0.7
750 °C 11 10 9.8 9.7 1.6 52 4.7 091 091 0.84

Element Zn Mn Ba Cu Pb Sr Cr Rb Cl Ni

550 °C 0.42 0.38 0.3 0.12 0.08 0.06 0.15 0.06 0.05 0.03
750 °C 0.71 0.29 0.23 0.06 0.12 0.05 0.09 0.07 - 0.02

3.3. Corrosion Resistance at 550 °C

All the coated specimens showed high corrosion resistance against the biomass co-firing
conditions and endured the exposure at 550 °C without significant changes, whereas the uncoated
substrate material steel T92 had corroded strongly during the exposure. IN625 coating had minor
corrosion within the top 20 um of the coating at the flue gas side. Figure 5 presents SEM images of T92,
NiCr and IN625 after the exposure. NiCrW, IN625, NiCr and NiCrTi had formed a 1-2 pm thin Cr rich
oxide layer, which protected against corrosion.

o4

/45, N 420.pm”

iCr UM N625

Figure 5. SEM (BSE-Back scattered electron) images of the cross-section of the specimens after the
1300 h exposure at 550 °C: (a—c) Windward side of T92, NiCr and IN625 coatings; (d—f) Same materials
at the leeward side.

FeCr was found to be corroded at the side of 90° from the flue gas direction and it peaked at the
leeward side (i.e., opposite to the flue gas flux), Figure 6, with a 30 um thick corrosion product layer
and internal coating degradation up to 2040 um depth. Chlorine was detected at the outer surface of
the FeCr coating in the leeward side. According to the EDX point analysis (wt.%), the separate chlorine



Coatings 2016, 6, 65 8of 13

containing areas on the coating (one marked with an arrow in Figure 6) contained 7.3% Cl, 50.2% iron,
24.1% oxygen, 9.1% chromium. There was also tungsten (5.2%), niobium (3.1%), aluminum and silicon
(0.5 % each). In the internal degradation area, composition included Fe (44.1%), Cr (23.1%), W (11.9%),
O (8.9%), Nb (8.3%), Si (1.8%), CI (1.1%), Al (0.6%), and K (0.2%). Chlorine had formed a thin, about
5 um in thickness, mixed iron-chromium chlorine-oxide layer on the surface of the coating. Right next
to the coating, this layer contained Cr (22.3%), O (18.2%), Mo (19.3%), W (13.7), Fe (10.7%), Si (8.5%),
Cl (5.1%), Al (1.9%), and K (0.4%). At about 3 um from the coating surface, the layer consisted of Cr
(47.9%), O (25.6%), Fe (15.7%), Zn (2.3%), S (2.2%), Mg (1.6%), K (1.4%), Al (1.0%), C1 (1.0%), P (0.4%),
Ti (0.4%) and Si (0.3%).

~Windward e ) Leeward

Deposit -

(b)

Figure 6. SEM (BSE) image of the outer surface of the FeCr coating and energy-dispersive X-ray
spectroscope (EDX) map analysis from the windward (a) and leeward side (b).

The uncoated T92 steel had up to 200 um thick corrosion product layer both at the windward and
leeward side, as presented in Figure 7. The multilayered oxide iron-chromium oxide was porous and
partly detached from the metal surface. Next to the metal, internally grown mixed iron and chromium
oxide was comprised from several layers. A dense oxide containing a higher amount of chromium
was detected above it, and the most outer iron oxide layer was mixed with the deposit, containing
mainly oxygen, iron, sulfur, calcium, potassium, aluminum and silicon.

104 o 3o [O K] %4 ommao[Cr K] %4 o313

: 100 ym 0-17 K K| 1996m o 11

100 um o p 26 [AL K | 122 4™ o 22 [Ca K | "% #™ ojmmm 12

|Accelerating Voltage|Spot Size Magmflcat\on Detector|Working Distance| A1 180 NGP
20 kV 5 200x | BSE 9,3 mm —100 ym——

Figure 7. SEM (BSE) image of the T92 uncoated tube material with EDX mapping from the leeward side.
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3.4. Corrosion Resistance at 750 °C

The coatings exposed at 750 °C showed distinct differences between the coatings and also between
locations within the specimens. Generally the flue gas direction had the most severe corrosion and
the leeward direction the least. The uncoated substrate material A263 had formed a 1-10 pm thin
Cr-rich oxide scale, where 10 um represents slight pitting. On average, the scale was around 3 pm thin.
On the windward side, the protective oxide layer was dense and uniform. The scale was observed to
be thickest at the leeward orientation. S, Ti and Al were found in the Cr-rich oxide scale. A thin porous
oxide layer above the chromium oxide layer, shown with an arrow in Figure 8, contained mainly nickel,
oxygen and iron, but also sodium (2.4 wt.%), sulfur (2.1 wt.%) and zinc (1.8 wt.%). Traces of chlorine
(0.2 wt.%) were detected only in the deposit layer. Deepest penetration into the material through grain
boundaries was 10 um.

Figure 8. SEM (BSE) image of the metal surface of A263 nickel alloy and EDX map analysis from the
leeward side. The arrow pointing to the porous oxide scale containing zinc.

NiCr coating had formed a thin, 2 pm thick layer on the coating, Figure 9. EDX analysis revealed
that the thin layer contained high amounts of chromium and oxygen. EDX mapping confirmed that
the thin layer had protected the coating against the environment: The coating forming elements Ni
and Cr were not found on the deposits, which contained mainly K, Ca and Na along with S and O.

Figure 9. SEM (BSE) images of NiCr coating after the exposure at 750 °C for 1300 h: (a) windward and
(b) leeward side.

IN625 coating exhibited pit corrosion not only at flue gas direction but also at side areas of the
test ring. In many cases, the corrosion had already reached the substrate and continued deeper into it
and also widened the pit. One such location was at the windward side, where the coating had been
completely lost over a wide area and pits could be seen where there was still coating left. Figure 10
shows the remaining coating at windward orientation.
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Figure 10. SEM (BSE) image of the remains of the IN625 coating and EDX map analysis from the
windward side.

FeCr coating hade corroded rather uniformly. The highest corrosion rate was at the windward
side with a 25-55 pum thick corrosion product that consisted of two irregular layers: topmost being
porous iron oxide rich layer, which was partially mixed with the deposit. A porous Cr and Nb rich layer
was under the topmost layer. The thickest parts of the corrosion product had the least dense Cr-layer.
At leeward and side orientations, the thickness of the corrosion product layer was around 20 pm.

NiCrW coating was completely consumed on the flue gas orientation, but the corrosion products
and deposits were unfortunately lost during removal of the specimen from the probe. Prior to the
removal, it was observed that the deposits around the specimen were massively bulging, unlike on
the other specimens. At the side area, some corrosion products were found. EDX analyses revealed
that they were related to the corrosion of the substrate material, which indicates that the coating had
been completely lost, even before the unfortunate spallation during specimen removal. At the leeward
direction, a short piece of coating was found. The thickness of the remaining coating was 80 um, of
which 30 pm was badly degraded. EDX analyses showed that oxygen had penetrated the coating
and formed a layer with chromium next to the substrate. Nevertheless, sulfur had not been able to
penetrate the coating and was found only in the severely degraded topmost 30 um.

The only arc sprayed coating, NiCrTi, had uniform corrosion throughout the coating surface.
EDX analyses revealed that the coating forming elements were protected by a Cr-rich layer on top
of the coating. The thickness of the Cr and O-rich layer was at times up to 20 pm, but generally
around 2—4 um. It is worth noting that, due to the arc spraying method, the coating was moderately
pre-oxidized: Oxidation at the lamella boundaries is clearly visible in the elemental maps of Figure 11.
Sulphur was unable to penetrate the coating.

25m_ opmmmmw[Cr K] 2um_ op——=[0K]

2um  ommmmms[CaK]  250m o

Detect
1000 x BSE

Figure 11. SEM (BSE) image of the outer surface of the arc sprayed NiCrTi coating and EDX map
analysis from the leeward side.
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4. Discussion

An exposure campaign with corrosion probe was conducted in a 550 MWy, (produced thermal
power) circulating fluidized bed boiler at Alholmens Kraft power plant. During this 1300 h test
exposure, the samples with five thermal spray coatings NiCr, IN625, NiCrW, FeCr and NiCrTi were
exposed at two metal temperature ranges of 550 and 750 °C together with reference tube materials
ferritic steel T92 and nickel super alloy A263. Due to high variations in the plant load and process
temperatures the probe temperature profiles were fluctuating and also fluctuations in the fuel shares
were wide. In this context the effects of fuels and boiler process parameters on corrosion phenomena
were not straightforward. However, the relatively high peak and average temperatures in the probe
surface and the high shares of biomass and SRF fuels used in the boiler sustained the risks for corrosion
phenomena, which were shown also in the analyzed samples.

The coating performance at 550 °C was excellent compared to the ferritic tube material T92.
The corrosion layer thicknesses of the coatings were about 1/7 or negligible compared to the corrosion
layer thickness of the T92. The corrosion rates of the coatings varied between 1-5 um /1000 h in the
windward side and 1-31 um/1000 h in the leeward side at lower test temperature. The corresponding
corrosion rates of T92 steel were 186 um /1000 h and 275 um /1000 h. The corrosion mechanism differed
at 550 °C in the FeCr coating between the different sides: only minor corrosion was detected in the
windward side, whereas in the leeward side the corrosion was pronounced. The non-protective layer
that formed in the leeward side may have been caused by lower material temperature, which allowed
zinc to deposit on the coating, which reacted with chlorine, chromium and iron, forming low melting
compounds and hence causing stronger corrosion. Zinc can condensate on heat transfer surfaces at
temperatures below 335 °C (0.5% Zn in fuel) and 472 °C (50% of Zn in fuel) [8]. This can explain the
occurrence of zinc in the FeCr coating at the leeward side, where the minimum temperature during
the exposure was 331 °C and zinc may have reacted with the iron oxide layer, forming ZnCl,, causing
accelerated corrosion.

At the higher temperature, clear differences between the coatings emerged: tube material
A263 together with NiCr and NiCrTi coatings were the top performers. The corrosion rate for A263
was 1 um/1000 h in the windward side and 9 pm/1000 h for the leeward side. For coatings, the
corrosion rates varied between 5-22 um /1000 h (windward) and 2-235 um /1000 h (leeward). Zinc
together with sulfur was detected on A263 material in the leeward side, where the corrosion attack
was more pronounced compared to the protective oxide layer in the windward side. This is well in
accordance with a previous study with zinc compounds, in which zinc is predicted to form sulfates in
oxidizing conditions [7].

The amount of chromium in the composition of nickel based coatings was significant for the
corrosion resistance at 750 °C. NiCr and NiCrTi coatings with 46 wt.% Cr showed very high corrosion
performance, whereas NiCrW and IN625 corroded severely in the conditions, Figure 12. Even though
FeCr coating contained less than 25 wt.% Cr, it showed better corrosion resistance in the boiler exposure.
FeCr coating had high amounts of refractory metals niobium and tantalum. On the other hand, the
amount of molybdenum, which can degrade by metal dusting at temperatures over 700 °C, was lower
compared to NiCrW and IN625. The corrosion mechanism may also have changed from the lower
temperature (550 °C) to the higher temperature (750 °C). Chlorine-activated corrosion was detected in
the FeCr coating at 550 °C, but at 750 °C strong reactions of sulfur with nickel were observed. In a
corrosion mechanism, the type of attack can change from salt molten attack to gaseous attack, which
has strong influence on the corrosion rate [13]. In the case of NiCrW and IN625, the corrosion started
with pitting, and led to catastrophic corrosion, when the protective chromium oxide layer formation
failed after consuming the chromium. Similar accelerated corrosion and selective corrosion have been
reported for TP347H steel and IN625 weld overlay material in a biomass and a waste incineration
plant [5,6]. It has been concluded that corrosion rate accelerates above steam temperatures of 540 °C
and selective corrosion occurs when Zn-K-Cl forms a molten phase.
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Figure 12. SEM (BSE) images of the HVOF Ni based coatings after exposure at 750 °C for 1300 h.
Chromium content of the coatings varied from (a) NiCr with 46 wt.% Cr with deposit layer on top of
the coating to (b,c) NiCrW and IN625 with 21 wt.% Cr.

In the future, studies with actual coated boiler tubes should be performed in order to validate
the promising corrosion resistance of thermal spray coatings in biomass co-firing conditions at
high temperatures.
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