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Abstract: High-stability photovoltaic devices are crucial for low-power or passive applica-
tions in fields such as renewable energy, wearable electronics, and deep-space exploration.
However, achieving stable and controllable doping in two-dimensional (2D) materials
remains challenging, hindering the optimization of photovoltaic performance. Here, we
fabricate three high-performance, self-driven photodetectors based on layered WSe2 with
varying doping concentrations. By leveraging asymmetric Schottky barriers and introduc-
ing a defect-free, high-bandgap intrinsic region with a long mean free path, we construct
a positive–intrinsic–negative (PIN) vertical homojunction that significantly enhances the
photogenerated voltage, photon absorption, and carrier transport efficiency. The resulting
PIN junction exhibits a photogenerated voltage of up to 0.58 V, a responsivity of 0.35 A/W,
and an external quantum efficiency of 83.9%. Moreover, it maintains a reverse saturation
current as low as 0.2 nA at 430 K. These results provide a promising route toward the
development of high-responsivity, high-stability van der Waals devices and highlight the
potential for 2D material-based technologies to operate reliably under extreme conditions.

Keywords: photovoltaic; two-dimensional materials; homojunction; external quantum efficiency

1. Introduction
Amidst the rapidly expanding photovoltaic industry, an unprecedented energy trans-

formation is underway. Photovoltaic (PV) technology, known for its cleanliness and sus-
tainability, has evolved from small-scale demonstration projects to become a fundamental
part of the global energy infrastructure [1,2]. However, as conventional PV materials, par-
ticularly silicon (Si) solar cells, approach their performance thresholds, the need for novel
materials capable of delivering higher efficiency and stability has intensified [3]. Silicon
solar cells are known for their mature technology, reliable performance, and impressive
photoelectric conversion efficiencies. Nevertheless, the substantial manufacturing costs
and energy consumption associated with their production hinder their widespread adop-
tion [4]. Against this backdrop, two-dimensional materials [5] and perovskites [6], with
their unique structural and functional properties, have emerged as promising candidates
for the next generation of PV devices. Nonetheless, perovskites continue to suffer from
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stability issues [7], prompting increased attention toward 2D materials as more robust
alternatives.

Consisting of atomically thin layers, 2D materials, which feature a large surface area,
tunable band structures, and excellent optoelectronic properties, are highly appealing for PV
applications [8]. Herein, transition metal dichalcogenides (TMDs) [9–12], such as MoS2 and
WSe2, exhibit strong light–matter interactions and significant photocatalytic potential [13–18].
These diverse capabilities afford 2D materials considerable promise in enhancing the pho-
toelectric conversion efficiency of PV devices, as well as broad applicability in fields like
photocatalysis [19] and optical sensing [20,21]. However, the lack of precisely controllable
doping techniques in two-dimensional materials makes it challenging to optimize the band
structure of homojunction photovoltaic devices in a manner similar to that for silicon-
based or perovskite materials [22,23]. This limitation partially restricts the application of
TMDs. The introduction of interlayer interfaces results in low responsivity, rapid carrier
recombination, and limited environmental stability [24,25]. Consequently, improving pho-
toelectric conversion efficiency via sophisticated band engineering and device architecture
optimization remains a principal challenge.

In this work, we propose an enhanced WSe2 homojunction photovoltaic device that
capitalizes on the combined effects of asymmetric Schottky barriers and a PIN junction. By
systematically validating the photovoltaic characteristics of Schottky and PN junctions, we
integrate these elements into a PIN junction with matched energy bands. The resulting
structure features a wide bandgap, a high mean free path for photogenerated carriers, and
multiple co-directional built-in electric fields, substantially reducing non-equilibrium car-
rier recombination and thereby elevating the photogenerated electromotive force. Through
contact engineering to further optimize absorption, our device achieves an open-circuit
voltage as high as 0.58 V, a responsivity of 0.35 A/W, and an external quantum efficiency of
83.9%. Notably, it also demonstrates excellent high-temperature stability. This work pro-
vides crucial theoretical and technical support for developing flexible electronics, wearable
devices, solar cells, and sensors designed to operate in extreme environments [26,27].

2. Methods
2.1. Device Fabrication

Few-layer WSe2 flakes were extracted from commercial bulk crystals using mechan-
ical exfoliation. The flakes were then transferred to a silicon substrate with a 285 nm
silicon dioxide layer using polydimethylsiloxane (PDMS) in sequence and stacked to form
a van der Waals junction. For the preparation of metal electrodes, the photoresist was
first spin-coated, and the electrode pattern was defined using a laser direct-write system.
The electrodes were deposited via electron beam evaporation with a base pressure of
8 × 10−7 Torr and a deposition rate of 0.2 Å/s. The standard lift-off process was subse-
quently performed, repeating the steps to complete the fabrication of asymmetric electrodes.

2.2. Device Characterization

All tests were conducted at room temperature (300 K) in an atmospheric environment.
The morphology and dimensions of the exfoliated WSe2 flakes and fabricated devices were
verified using a Zeiss Lab5 optical microscope. Electrical measurements were performed
using a Keysight B2912 source meter, while optoelectronic performance was characterized
by directly illuminating the device surface with a single-wavelength laser at different biases.
The optical power density was determined using a photometer.
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2.3. DFT Simulations

The band structures of both intrinsic and doped WSe2 were simulated using Materials
Studio (Accelrys) and CASTEP programs based on density functional theory (DFT). In this
study, four-layer WSe2 supercell structures were established, and this model underwent
structural optimization with gradient-corrected functionals and utilized perfectly matched
basis sets [28]. Structural optimization convergence was set to “Fine”, with thresholds of
5.0 × 10−6 eV/atom for energy, 0.01 eV/Å for force, 0.02 GPa for stress, and 5.0 × 10−4 Å
for displacement.

3. Results and Discussion
WSe2 is a representative transition metal dichalcogenide with a hexagonal crystal

structure (space group: P63/mmc) and a typical layered arrangement. The layers are
held together by van der Waals forces, with tungsten atoms positioned between selenium
atoms, forming strong chemical bonds. The structure shows a hexagonal close-packed
(HCP) arrangement, as depicted in Figure 1a. Monolayer WSe2 has a direct bandgap of
approximately 1.6 eV [29], while thicker layers exhibit an indirect bandgap of around
1.2 eV to 1.3 eV [30] (Figure 1b). The bandgap is close to the Shockley–Queisser limit [31],
where most of the photon energy in the solar spectrum can be efficiently absorbed with low
thermalization losses. Therefore, WSe2 is an ideal material for single-junction photovoltaic
cells, achieving optimal light absorption efficiency. In addition, WSe2 exhibits a relatively
mature doping process, unlike materials such as MoS2, which tend to introduce sulfur
vacancies during growth, leading to uncertain doping [22,25]. Thus, the optical absorption
characteristics of intrinsic WSe2 were initially explored.
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Figure 1. The structure of WSe2 and the performance characterization of its Schottky diodes.
(a) Crystal structure of intrinsic WSe2, with orange spheres representing Se atoms and blue spheres
representing W atoms. (b) Band structure of intrinsic WSe2. (c) Optical microscope image of a
Cr/WSe2/Au photovoltaic device with asymmetric electrodes; scale bar 10 µm. (d) I–V characteristics
of the device under different optical power densities.

As shown in Figure 1c, a photovoltaic structure with asymmetric electrodes was
fabricated using intrinsic WSe2. The structure generates an internal electric field at the
metal–semiconductor interfaces. One side of the WSe2 contacts Au, creating p-type doping,
while the other side contacts Cr, creating n-type doping, forming a PIN junction [16,32]. The
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device’s optoelectronic response is shown in Figure 1d. The Schottky junction suppresses
the reverse leakage current to below 1 pA in the dark. However, due to the low conductivity
of the intrinsic semiconductor, the forward conduction current remains low. Under 520 nm
light illumination, a clear photocurrent and photovoltage are observed. The two Schottky
barriers in the WSe2’s space charge region create accumulation zones, which are narrow
and allow for the recombination of the photogenerated carriers, reducing light absorption
efficiency. As a result, the maximum short-circuit current is 1.57 nA, and the maximum
photovoltage is 0.27 V.

The homojunction PN junction can effectively address issues related to low semicon-
ductor interface states and the accumulation region [9]. Asymmetric electrodes enhance the
performance of the depletion region in PN junctions, as shown in Figure 2a. Thin layers of
n-type WSe2 (Re-doped) and p-type WSe2 (Nb-doped) were stacked on an SiO2 substrate
to form a vertical junction using mechanical transfer. The electrode positions were defined
based on a standard photolithography process, followed by electron beam evaporation
of Cr to contact the n-type WSe2 and Au to contact the p-type WSe2. The device’s optical
microscope image is shown in Figure 2b. Additionally, Figure 2c shows the band diagram
of the device, where the diffusion and drift currents in the PN junction balance to generate
an internal electric field. Due to the alignment of the band structure in the homojunction,
the issue of barrier spikes in the heterojunctions is effectively mitigated [10]. Although the
Fermi level pinning effect of doped materials can lead to a reduction in the Schottky barrier,
the asymmetric Schottky junction and the internal electric field of the PN junction further
enhance rectification and carrier separation.
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Figure 2. Structure and photoelectric response of the Au/(p)WSe2/(n)WSe2/Cr photovoltaic device.
(a) Schematic diagram of the device structure. (b) Optical microscope image of the device; scale bar
10 µm. (c) Band structure of the device. (d) I–V characteristics of the device under 520 nm illumination
with different optical power densities. (e) Response characterization of the device in the dark and
under illumination, demonstrating the diode’s self-driving effect. (f) I–V characteristics of the device
in the dark and under 830 nm illumination.

As shown in Figure 2d, the reverse leakage current in the dark state of the structure
slightly increases, which could be due to recombination or tunneling effects caused by
impurity states. However, the doping PN junction significantly improves the rectification
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ratio, reaching approximately 217 times. Additionally, under 520 nm illumination, the
device achieves a maximum photogenerated voltage of 0.43 V, with the short-circuit current
increasing to 54 nA.

To further demonstrate the application potential of our device, its self-driving effect
under intensities of 986.7 µW/mm2 illumination at 520 nm is shown in Figure 2e. The
device achieves a fill factor of 0.293 and a photovoltaic conversion efficiency of about 1.17%.
This result clearly demonstrates the potential application of the enhanced PN homojunction.
Furthermore, the device’s performance was tested under different bias voltages and 830 nm
illumination. Despite the photon energy being close to the WSe2 bandgap, the device shows
remarkable near-infrared light detection potential, with a responsivity of 36.8 mA/W at
zero bias.

To investigate the influence of different structures on device performance, another
enhanced PIN vertical structure was designed [33–35], as shown in Figure 3a. The p-type,
i-type, and n-type layered WSe2 materials were stacked to form a vertical junction, and
the device’s optical microscope image is shown in Figure 3b. The built-in potential barrier
heights at both ends of the PIN structure are equivalent to those of the PN junction, due to
the consistent effect of the same doped materials on the Fermi level. However, because of
minimal doping in the intrinsic region, the space charge region becomes wider, according
to Poisson’s equation, increasing the light absorption area.
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Figure 3. Structure and photoelectric response of the Au/(p)WSe2/(i)WSe2/(n)WSe2/Cr photovoltaic
device. (a) Schematic diagram of the device structure. (b) Optical microscope image of the device;
scale bar 5 µm. (c) I–V characteristics of the device under 520 nm illumination with different optical
power densities. (d) Response characterization of the device in the dark and under illumination,
demonstrating the diode’s self-driving effect. (e) High-temperature I–V response characteristics of
the diode. (f) Stability of the PIN device response under pulsed light modulation.

Further characterization of the device’s I–V curves under different optical power
density was performed. The PIN structure exhibited rectification behavior similar to
the PN junction in the dark state, due to the identical built-in electric field and Schottky
contact, which resulted in comparable carrier transport behavior. As shown in Figure 3c,
under 520 nm illumination, the device exhibited a remarkable photogenerated voltage
of 0.58 V. Furthermore, under the same optical power density, the short-circuit current
density increases. However, due to the expansion of the depletion region, the fill factor of
the PIN junction decreases, and optimizing the width of the intrinsic region can improve
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this issue. As shown in Figure 3d, the PCE of the PIN junction reached 1.72%, significantly
higher than the 1.17% of the PN junction. We will discuss this further in the next section.

Environmental adaptability refers to the stability and reliability of the photodetector
in various working environments, which determines its practicality. Under air oxidation,
a thin tungsten oxide (WO3) layer may form on the surface of WSe2, partially protecting
it from further oxidation and giving WSe2 strong atmospheric adaptability [36,37]. Our
unencapsulated WSe2 homojunction exhibited consistent response characteristics, before
and after being placed in an atmospheric environment for 5 days, confirming this viewpoint.
Additionally, the device’s high-temperature tolerance was explored. The rectification
characteristics of the device were tested from 300 K to 480 K, and the reverse leakage current
of the device did not significantly increase with temperature. As shown in Figure 3e, under
a reverse bias of −1 V, the device maintained a low reverse saturation leakage current of
less than 0.2 nA at temperatures below 430 K. This is partly due to the structural stability
provided by the dense WSe2 structure and partly due to the intrinsic layer in the PIN
junction, which effectively suppresses carrier recombination and tunneling effects with
its undoped, electrically neutral structure. Excessive carrier recombination and thermal
excitation are suppressed at high temperatures, demonstrating the device’s detection
potential in extreme environments.

4. Discussion of PN and PIN Junction
To further explore the internal mechanisms underlying the performance differences

between the PIN and PN structures, we analyze both the photogenerated voltage and
photoresponse characteristics. When photons with energy greater than the bandgap are
incident, they drive the device into a non-equilibrium state. Electrons in the conduction
band and holes in the valence band are each in a “quasi-equilibrium state”. As the light
intensity increases, the difference between the quasi-Fermi levels of the electrons and holes
also increases, leading to a larger photogenerated voltage. However, the difference is
capped by the material’s bandgap [31]. As shown in Figure 4a,b, when doped with Re,
additional impurity levels—especially those associated with the d-orbitals of Re—may be
introduced. These levels interact with the valence and conduction bands of WSe2, reducing
the bandgap size. In the case of Nb doping, a significant number of acceptor levels are
clearly introduced near the valence band maximum, reducing the bandgap to 1.1 eV at this
doping concentration.

However, factors such as carrier recombination, interface defects, and incomplete
charge separation result in a reduction in the actual upper limit of the photogenerated
voltage. In the PN structure, as shown in Figure 4c, photogenerated carriers are mainly
generated and separated in the space charge region. However, since the semiconductor
interface is located in the middle of the region, photogenerated carriers are subject to
significant recombination at the interface due to defect states. Furthermore, the collec-
tion process of photogenerated carriers in the PN junction is limited by minority carrier
diffusion and is prone to being trapped by ions in the space charge region. Therefore,
Shockley–Read–Hall (SRH) recombination and Auger recombination are the primary limit-
ing factors for photogenerated carrier collection in the PN junction [38]. In contrast, in the
PIN structure, photogenerated carriers are primarily absorbed and separated in the intrinsic
region, forming drift currents [35]. The mechanism significantly reduces the impact of
interface defects and ions, as shown in Figure 4d. In addition, while the intrinsic region
benefits from higher carrier mobility, it also increases the transport distance of carriers,
thereby raising the probability of carrier recombination. Therefore, reasonable doping
concentrations and structural adjustments can promote better carrier collection.
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In summary, the PIN structure not only offers a higher upper limit for the photogen-
erated voltage but also exhibits higher carrier collection efficiency, resulting in reduced
open-circuit voltage losses. Therefore, under the same optical power, the photogenerated
electromotive force of the PIN diode is larger, as shown in Figure 4e. Additionally, the
PIN structure’s larger absorption region results in a higher absorption rate, along with
improved carrier collection efficiency. As shown in Figure 4f and Table 1, the PIN structure
exhibits higher responsivity, especially at low power, with a responsivity of 0.35 A/W, an
external quantum efficiency of 83.9%, and a detectivity of 2.37 × 1011 cm Hz1/2 W−1, based
on the formulas R = I/PA, EQE = I/Phν, D* = A1/2R/(2eId)1/2. Herein, I is the photocurrent
at zero bias, P is the optical power density, A is the effective area of the device, h is Planck’s
constant, ν is the frequency, e is the elementary charge, and Id is the dark current.

Table 1. Performance of some recent two-dimensional material self-driven photodetectors.

Structure Max Voc (V) R (A/W) EQE (%)

ITO/WSe2/Au [39] 0.38 ~0.1 /
(p)MoSe2/(n)MoSe2 [9] 0.35 ~0.18 ~50
Double-Gate MoTe2 [11] 0.32 / ~40

Thick WSe2/Thin WSe2 [17] 0.49 0.112 /
Gd/WSe2/Pt [18] 0.34 / /

Thick MoTe2/Thin MoTe2 [10] 0.21 ~0.6 /
Double-Gate MoTe2 [12] 0.31 0.015 4.68

(p)BP/(n)BP [23] 0.14 0.006 /
Pd/(p)WSe2/Ti [40] 0.8 ~0.2 /

This work 0.58 0.35 83.9

5. Conclusions
In summary, we have demonstrated three types of self-powered photodetectors based

on layered WSe2, leveraging asymmetric Schottky barriers and homojunction architectures.
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By systematically examining devices with intrinsic WSe2 (Schottky), PN junctions, and PIN
junctions, we identified the PIN configuration as the most effective approach for improv-
ing photogenerated voltage, reducing carrier recombination, and enhancing responsivity.
Notably, the PIN device achieved a photovoltage of 0.58 V, a responsivity of 0.35 A/W, and
an EQE of 83.9%, along with excellent thermal stability up to 430 K. These improvements
stem from the inclusion of a wide intrinsic layer that extends the depletion region, thereby
boosting light absorption and carrier transport efficiency. Overall, our findings not only
shed light on the underlying carrier dynamics in WSe2-based van der Waals junctions
but also offer a practical route toward high-performance, flexible, and thermally stable
photovoltaics and photodetectors.
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