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Abstract: Magnesium and its alloys are widely used for bone fixation and repair due to
their biodegradability. However, their application is limited due to their poor corrosion
resistance and rapid degradation rate in the human body. Surface engineering represents
an effective approach to modifying the degradation characteristics of magnesium alloys
to meet the requirements of biological systems. Constructing bioactive coatings on the
surface of substrates is essential to improve their biocompatibility and corrosion resistance,
representing an effective method of surface modification. This review summarizes the
current research on the construction of bioactive coatings on magnesium and its alloys,
including inorganic coatings, polymer coatings, and composite coatings, which presents
an analysis of their respective research statuses. Furthermore, this review discusses the
future developments of biodegradable magnesium and its alloy systems, focusing on
achieving satisfactory specifications for clinical trials and implementation. Its goal is to
provide critical insights to materials scientists and clinical practitioners involved in the
development of applicable biodegradable magnesium alloys.

Keywords: magnesium alloy; coating; corrosion resistance; biocompatibility

1. Introduction
Metals, due to their relatively high mechanical strength and fracture toughness, are

more suitable for load-bearing applications compared with ceramic or polymer materials.
Currently, the commonly used metal biomaterials include stainless steel, titanium, cobalt-
chromium alloys, and magnesium and its alloys [1,2]. However, metallic biomaterials, such
as stainless steel and titanium, are intended to remain in the human body as permanent
fixtures and require removal by a second operation; material–tissue mismatches may also
occur [3,4]. In contrast, magnesium and its alloys possess mechanical properties closer to
human bones and exhibit ideal biocompatibility and degradability, which prevents stress
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shielding and avoids secondary surgery to remove implants, thereby reducing patient costs
and alleviating pain [5,6]. In recent years, magnesium and its alloys have gained wide
acceptance as materials for bone fixation and repair in orthopedics [7,8]. Owing to their
biodegradability in biological environments [9] and coupled with favorable mechanical
properties—particularly an elastic modulus comparable to that of bone-magnesium and
its alloys—it can effectively reduce the stress shielding effect [10]. Numerous studies
have been conducted on magnesium and its alloys as materials for orthopedic implants,
including bone nails, bone plates, and vascular stents [11].

The utilization of magnesium-based alloys is limited due to their generally high degra-
dation rates [12]. This rapid degradation results in the expeditious release of hydrogen [13],
which creates localized alkaline conditions and compromises mechanical integrity before
the tissue has healed [14]. Consequently, a range of strategies, including alloying [15]
and surface coatings, has been adopted to modulate the degradation rate of magnesium
in physiological environments. Another critical aspect of these prospective biomedical
materials, equally significant as corrosion resistance, is their bioactivity: the implant’s
capacity to bond with surrounding bone tissue post-implantation [16]. Furthermore, in
addition to alloying, Mg alloys enhanced with biocompatible coatings can regulate the
degradation rate throughout the requisite healing period and concurrently enhance the
implant/tissue interaction.

Numerous studies have explored biocompatibility coatings on the surface of magne-
sium and its alloys for their utility as biodegradable materials [17]. The outcomes have been
promising. It is widely recognized that the characteristics of a coating are chiefly influenced
by the coating’s composition and microstructure, influencing the corrosion resistance and
biological activity of magnesium alloys in turn. Subsequently, surface coatings, including
inorganic coatings [18], polymer coatings [19,20], and composite coatings [21], have been
applied to the surface of magnesium and its alloys to enhance their corrosion resistance and
reduce the degradation rate. The enhancement of the comprehensive properties of biomate-
rials through coatings has been one of the focal points of research in recent years [22,23].
Extending from existing research efforts, this review provides a summary of the research
development regarding three principal types of biocompatibility coatings on Mg alloys
(Scheme 1). Moreover, this review outlines the distinctive characteristics of these coatings.
Finally, this review offers an analysis of both the prospects and challenges related to the
utilization of magnesium alloy biomaterials.
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2. Inorganic Coatings
2.1. Ca-P-Based Coatings

Calcium and phosphorus are the principal elements in human bones, and they play
critical roles in the processes of bone mineralization and absorption. The majority of these
elements exist in the form of hydroxyapatite in bones and teeth. Calcium and phosphorus
are also key components of Ca-P coatings, which have been widely used as biomaterials.
Various coating processes, such as biomineralization, chemical conversion, electrophoretic,
electrodeposition, and micro-arc oxidation were used to fabricate Ca-P-based coatings on
Mg alloys (as shown in Figure 1).

Ca-P coatings primarily comprise hydroxyapatite (HA) and tricalcium phosphate
(TCP). A Ca-P coating composed of dicalcium phosphate dihydrate (DCPD, CaHPO4·2H2O)
was electrochemically deposited on an Mg-Ca alloy by M. B. Kannan and co-workers [24].
This deposited coating significantly reduced the release of Mg2+ ions from the substrate
and minimized the localized degradation susceptibility of the alloy. Similarly, Cesarz-
Andraczke et al. [25] synthesized a Ca-P coating including DCPD on an AM50 alloy,
which effectively protected against the progression of corrosion into the substrate. The
DCPD imparted biocompatibility and osteoconductive properties to the Ca-P coating.
Trang et al. [26] developed several Ca-P coatings at varying pH levels. Cellular and in vivo
responses were examined using osteoblastic cells and subsequent implantation in a rabbit
model. The coatings remarkably enhanced the corrosion resistance of the alloy.

Y. Wang et al. [27] fabricated a Ca-P coating on the surface of an AZ31 alloy using a
chemical deposition process, and the coating not only reduced the corrosion rate of the
AZ31 alloy but also enhanced its biocompatibility. Wei et al. [28] synthesized a nanos-
tructured needle-like hydroxyapatite (HA) coating on an AZ31 alloy using the sodium
citrate template-assisted hydrothermal method. The needle-like morphology of HA tran-
sitioned to a flake morphology of β-tricalcium phosphate (β-TCP) as the mole ratio of
Ca/sodium citrate increased. When the molar ratio of Ca/sodium citrate was 1, the HA
coating exhibited significant corrosion resistance (Rt = 235.300 ± 3.584 kΩ·cm2), almost
200 times larger than that of the uncoated AZ31 alloy. M. Zaludin et al. [29] investigated the
corrosion behavior of HA-coated Mg in various media, and their findings indicated that the
corrosiveness of the solution media (ranging from least to most corrosive) was in the order
of PBS < SBF < Ringers. The inhibition of corrosion by Cl- ions may be attributable to the
presence of other ions such as HCO3

−, HPO4
2−, and SO4

2−. Yang and Gray-Munro [30]
applied a corrosion-resistant Ca-P coating to the AZ31 alloy utilizing a two-step method.
The coating derived from SBF solution, when supplemented with low levels of Ca(H2PO4)2,
exhibited the highest corrosion resistance, demonstrating a reduction in the degradation
rate of 99.8% compared with untreated samples, furthermore, it demonstrated improved
uniformity and increased grain size.

Due to the rapid dissolution rate of pure Ca-P coating in a human environment, many
researchers have incorporated various elements into the Ca-P coating to improve its prop-
erties. Most of the incorporated elements are beneficial to the human body and promote
bone formation, such as Nb, F, and Sr. Nb-reinforced HA (HA-Nb) coatings were fabricated
using plasma spray techniques by Singh and co-workers [34]. The HA-Nb coatings proved
more effective than both the pure HA and Nb coatings in inhibiting the rapid corrosion
of the Mg alloy. Shen et al. [35] reported the substitution of OH− in the HA lattice with
F− to form fluoridated hydroxyapatite (FHA). The FHA coating, in combination with the
formed HA mineralized layer, offered favorable long-term protection for the magnesium
alloy and significantly enhanced the osteogenic differentiation capacity. Su et al. [36]
investigated the effect of fluorine content on the degradation and biomineralization behav-
iors of FHA coatings. Fluorine incorporation enhanced apatite crystallization and purity,
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which in turn could mitigate the oxidation of the magnesium alloy substrate. Furthermore,
strontium-doped (Sr-doped) HA coatings were prepared on Mg-4Zn substrates by Wei and
co-workers [37]. The incorporation of Sr into the HA coatings resulted in lattice distortion
and reduced crystallinity, which significantly enhanced osteogenic differentiation. Sedel-
nikova et al. [38] conducted a comparison of Sr-TCP with Sr-HA coatings on the Mg0.8Ca
alloy substrate. The Sr-HA coatings were found to be thicker, less soluble, and exhibited
greater roughness along with improved corrosion resistance. Lu et al. [39] fabricated Sr-Ca-
P coatings in Sr-containing electrolyte solutions using chemical deposition. Sr altered the
microstructure of the coating and reduced its thickness. The coating effectively shielded
the magnesium substrate from degradation.
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Figure 1. Schematic diagram illustrating the formation process of Ca-P coatings: (a) schematic illustra-
tion of the reaction mechanism of calcium phosphate coatings on ZK60 substrate [31], (b) schematic
illustration of the formation and growth mechanism of the HAp coating [32], (c) schematic illustration
of the reaction mechanism of calcium phosphate coatings by electrodeposition, and (d) schematic
illustration of the ion distribution on the surface of the Mg anode during MAO process [33].

Other elements, including Si, Mn, Fe, and Ta, have also been incorporated into the Ca-P
coatings. Dehghanian et al. [40] deposited Si–HA coatings on Mg-5Zn-0.3Ca alloys, the
presence of Si was found to increase the compactness of the coatings, and those prepared
with an electrolyte containing 0.005 mol/L SiO3

2− exhibited higher corrosion resistance
than the pure HA coatings. Su et al. [41] prepared an optimum coating using a solution
containing 0.05 mol/L Mn2+. The coating possessed a uniform and compact microstructure
and was composed of MnHPO4·3H2O, CaHPO4·2H2O, and Ca3(PO4)2. Iron-substituted
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tricalcium phosphate (Fe-TCP) coatings, comprising approximately 1 wt. %, were deposited
on Mg-Ca alloys by Antoniac and co-workers [42]. Fe-TCP coatings deposited at 300 ◦C
were found to have the highest protection efficiency in simulated body fluid (SBF), along
with the best biocompatibility and antibacterial properties. Singh et al. [43] incorporated Ta
into HA coatings, which effectively enhanced the surface hardness of the Mg-Ca alloys,
and the surface roughness of the HA coatings was observed to decrease with an increase in
Ta’s content.

Wang et al. [44] prepared CaHPO4·2H2O (DCPD) and MgHPO4·3H2O coatings using
a one-step chemical conversion method. MgHPO4·3H2O could play a supportive role
in maintaining structural integrity during the degradation process. The coatings demon-
strated optimal long-term corrosion resistance and exhibited biomineralization capacity.
Pana et al. [45] successfully applied a uniform Mg-doped hydroxyapatite coating to the
AZ31B magnesium alloy via RF magnetron sputtering. This coating demonstrated excellent
bonding strength and enhanced chemical reactivity. Kalaiyarasan et al. [46] fabricated a
flaky-like aggregated structure of Fe/Ag doped hydroxyapatite (Fe/Ag-HAp) coating on
the surface of the AZ31 Mg alloy, which exhibited improved anticorrosion properties and
cellular responses. Hernández et al. [47] deposited HAp coatings on pure Mg substrates
via a biomimetic method, which demonstrated higher corrosion resistance and bioactivity.
Calcium phosphate (Ca-P) composite coatings were prepared using supersonic atmospheric
plasma spraying and the microwave-hydrothermal method. The microwave-hydrothermal
treatment can seal surface defects and improve the bioactivity and corrosion resistance of
the sprayed Ca-P coatings [48].

2.2. Oxide Coatings

In addition to Ca-P coatings, other inorganic coatings commonly used on magnesium
alloys include oxides such as TiO2, ZrO2, Al2O3, SiO2, and MgO. Zirconium (Zr) and
zirconia (ZrO2) not only promote bone formation but also exhibit good corrosion resistance,
cell compatibility, and antibacterial properties. Hydrothermal method, laser deposition
method, and chemical conversion method were applied to formed oxide coatings on the
surface of the Mg alloy (as shown in Figure 2).

A porous ZrO2 coating was engineered onto the surface of an AZ31B alloy as demon-
strated by Gao and co-workers [49]. The ZrO2-AZ31B coating exhibited enhanced corrosion
resistance compared with the AZ31B substrate when immersed in a simulated body fluid
solution. Similarly, Amiri et al. [50] fabricated a nano-structured zirconia coating on the
alloy utilizing the EPD technique. The zirconia coating served as a long-term barrier
against corrosion, with the coating reducing the corrosion current density of the AZ91D
alloy from 18.4 to 12 µA/cm2 under optimal conditions. However, the obtained coating
did not significantly enhance hydroxyapatite formation on the surface.

Al2O3 ceramic coatings offer many advantages, including high hardness, excellent
chemical properties, optimal stability, and adaptability. Gao et al. [51] applied an Al2O3

coating to an AZ91HP magnesium alloy using plasma spraying technology. The coating
was composed primarily of stable α-Al2O3 and metastable γ-Al2O3 phases, featuring a
lamellar microstructure. Ji et al. [52] developed coatings from various aluminum sources
(aluminum isopropoxide, aluminum nitrate, or a mixture of these two) on AZ31 alloys. The
coatings deposited from aluminum isopropoxide were composed of γ-Al2O3, while those
derived from aluminum nitrate consisted of MgAl2O4. The former was noted to be more
compact and uniform than the latter.

Kong et al. [53] synthesized wollastonite nanoceramic coatings using an electrophoretic
technique. The incorporation of wollastonite with silica nanoparticles into a magnesium
alloy significantly enhances bone formation, as evidenced by the highest level of apatite
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formation in the alloy containing 10% wollastonite. Kotoka et al. [54] engineered Al2O3

and ZrO2 coatings onto pure Mg; the Al2O3 thin film coatings exhibited circular grains
ranging from 5 to 25 nm, whereas the ZrO2 coatings featured larger ellipsoidal grains. The
Mg coated with Al2O3 demonstrated a corrosion resistance approximately threefold greater
than that of the Mg coated with ZrO2.

TiO2 is also known for its good biocompatibility. Yang et al. [55] applied a nanoscale
TiO2 coating using a precisely controlled temperature and thickness through atomic layer
deposition (ALD) to the magnesium–zinc alloy stent material. The coating is capable
of stimulating the adhesion and proliferation of coronary artery endothelial cells, and it
possesses a protective barrier function.
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Figure 2. Schematic diagram illustrating the formation process of oxide coatings: (a) mechanism
of zinc-doped phosphate coating [56], (b) deposition mechanism of schematic illustration of the
reaction mechanism of calcium phosphate coatings on ZK60 substrate, and (c) schematic of laser
processing [57].

The use of nanostructures for orthopedic coatings has increased to enhance stabiliza-
tion, integration with host tissues, and to promote bone tissue regeneration. The application
of nano- and microstructured oxide coatings has significantly advanced due to their favor-
able biological properties. Jiang et al. [58] employed a hydrothermal method to apply a
coating of CaCO3 and MgSO4 onto the Mg alloy. The findings indicated that this coating
not only enhanced the corrosion resistance but also improved the biological activity of the
substrate. Liu et al. [57] reported that the degradation of Mg alloys could be regulated by
utilizing laser surface treatments. Li et al. [59] integrated nano-ZnO into the MAO elec-
trolyte to create micro-arc oxidation coatings that contain ZnO. The findings demonstrated
that the incorporation of nano-ZnO significantly improved the corrosion resistance of the
MAO-coated alloy. The alloy coated with nano-ZnO exhibited remarkable resistance to
degradation, enhanced corrosion resistance, and effective antibacterial properties.

2.3. LDHs Coatings

Common inorganic coatings include calcium phosphate (Ca-P) coatings and oxide
coatings. In addition, in recent years, hydrotalcite (layered double hydroxides—LDHs)
coatings characterized by their unique structure have been utilized for the corrosion protec-
tion of magnesium alloys. The chemical composition of hydrotalcite is represented by the
formula [M1-x

2+Mx
3+(OH)2]x+[(An-)x/n·mH2O]; M2+ is Mg2+, Ni2+, Co2+, Mn2+, Cu2+, and

other trivalent metal cations; M3+ is Al3+, Cr3+, Fe3+, Sc3+, and other divalent metal cations;
An− is CO3

2−, NO3
−, Cl−, OH−, SO4

2−, PO4
3−, C6H4(COO)2

2−, and other inorganic,
organic, and complex ions. If the inorganic anions between the layers are different, the
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interlayer spacing of LDHs is different [60]. The structural characteristics of LDHs facilitate
the exchange of interlayer anions with a diverse array of anions, including inorganic, or-
ganic, homoionic, and coordination compound anions. Owing to their high anion exchange
capacity, LDHs hold significant potential in the realm of corrosion protection.

A uniform and dense zinc-aluminum layered double hydroxide (Zn-Al LDH) coating
was electrochemically deposited on an AZ91D alloy substrate by Wu and co-workers [61].
The coating consisted of crystalline Zn-Al LDH with nitrate intercalated. The LDH-coated
Mg alloy exhibited enhanced corrosion resistance compared with the uncoated alloy in
3.5 wt. % NaCl solution. Peng et al. [62] incorporated magnesium-aluminum layered
double hydroxide (Mg-Al LDH) into an Mg(OH)2 coating via hydrothermal treatment.
The Mg-Al LDH significantly enhanced cell adhesion, migration, and proliferation in-vitro
and offered exceptional long-lasting corrosion protection. The mechanism was further
elucidated, with the explanation that anions in the interlayer of Mg-Al LDH could be
substituted by chloride ions, leading to a relatively low chloride ion concentration near
the surface of the coating. Zheng et al. [63] synthesized a Zn-Fe interlayered phosphate
ion-layered double hydroxide coating on an AZ31 Mg alloy via hydrothermal treatment.
The results demonstrated that the AZ31 Mg alloy coated with ZnFe-PO4

3− could engage in
interactions with Ca2+ ions, leading to the formation of Ca-P deposits. Furthermore, the
coating promoted the proliferation and adhesion of MC3T3-E1 cells.

There are also studies focusing on the combination of LDH and other coatings.
Yang et al. [64] synthesized an LDH-containing coating on AZ61 alloy. Compared with
Zn-Al LDH and ZIF-8/LDH coatings, the ZIF-8-DMBIM/LDH composite coating exhibited
a high contact angle (115.7◦), low corrosion current density, high corrosion potential, and
polarization resistance due to its near-smooth surface, dense two-layer structure, and hy-
drophobic characteristics. Wu et al. [65] deposited a magnesium-aluminum layered-double
hydroxides (Mg-Al LDHs) coating onto the surface of an AZ31 alloy, followed by the
electrophoretic deposition of an Al2O3 nanoparticle layer. The mechanism is discussed as
shown in Figure 3. LDHs and Al2O3 exhibit a synergistic effect in improving the corrosion
resistance of the alloy. The ion exchange capacity of LDHs prevents the release of chloride
ions and nitrate ions, while the formation of Mg(OH)2 under alkaline conditions can in-
hibit the expansion of pitting corrosion. Simultaneously, the Al2O3 nanoparticle layer is
deposited to block the channels between the nanosheets, further improving the corrosion
resistance of the coating. Hydrothermal method, chemical conversion method, etc., are
applied to fabricated LDH coatings on Mg alloys (as shown in Figure 4).
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Li et al. [66] effectively developed a magnesium-aluminum layered double hydroxide
coating intercalated with silicate (LDH-SiO3) using a hydrothermal technique combined
with an anion exchange process. They discovered that the corrosion current density of the
alloy modified by this coating was reduced by two orders of magnitude compared with the
substrate. Furthermore, the LDH-SiO3 coating improved the attachment and proliferation
of MC3T3-E1 pre-osteoblasts.

Coatings 2025, 15, x FOR PEER REVIEW 8 of 29 
 

 

ions and nitrate ions, while the formation of Mg(OH)2 under alkaline conditions can in-
hibit the expansion of pitting corrosion. Simultaneously, the Al2O3 nanoparticle layer is 
deposited to block the channels between the nanosheets, further improving the corrosion 
resistance of the coating. Hydrothermal method, chemical conversion method, etc., are 
applied to fabricated LDH coatings on Mg alloys (as shown in Figure 4). 

 

Figure 3. Schematic diagram illustrating the corrosion process of oxide coatings: (a) schematic illus-
tration for the effect of MgSO4 on the formation and anti-corrosion performance of CaCO3 coatings 
on Mg alloy. Red arrow indicates the penetration of aggressive ions into coating for Mg corrosion 
[58], and (b) corrosion schematic [57]. 

Li et al. [66] effectively developed a magnesium-aluminum layered double hydrox-
ide coating intercalated with silicate (LDH-SiO3) using a hydrothermal technique com-
bined with an anion exchange process. They discovered that the corrosion current density 
of the alloy modified by this coating was reduced by two orders of magnitude compared 
with the substrate. Furthermore, the LDH-SiO3 coating improved the attachment and pro-
liferation of MC3T3-E1 pre-osteoblasts. 

 
Figure 4. Schematic diagram illustrating the formation process and corrosion process of LDHs coat-
ings: (a) schematic illustration of the CPCC formation process [67], (b) the schematic representation 

Figure 4. Schematic diagram illustrating the formation process and corrosion process of LDHs
coatings: (a) schematic illustration of the CPCC formation process [67], (b) the schematic represen-
tation of the protection mechanism for LDHs film and Mg-LDHs-HA composite film in SBF [68],
(c) schematic of the preparation of LDH-SiO3 coatings on anodized AZ [66], and (d) schematic
showing the self-healing mechanism of the smart LDH-SiO3 coating on anodized AZ [66].

The preparation processes of the magnesium alloy substrate and hydrotalcite also
affect the formation and properties of the LDHs coating. The effects of the preparation
process and grain size on the corrosion resistance of the LDHs coating have been studied
by Chen and co-workers [69]. The corrosion protection performance of the LDHs coat-
ings was ranked as an increasing series: CS-LDHs < AE-LDHs < SE-LDHs < RS-LDHs.
The grain size of the RS-LDHs sample was finer and more uniform, providing more nu-
cleation sites for the formation of the LDHs coating. The effect of hot extrusion on the
microstructure and anti-corrosion performance of the LDHs coating on AZ91D alloy has
also been investigated by Zhang and co-workers [70]. The refinement and rearrangement
of the β-Mg17Al12 phase promote the micro-galvanic effect during the formation process
after hot extrusion. Due to microstructural differences, the electrochemical activity of
various specimens during the formation process can be ranked in an increasing series:
as-cast < transverse < longitudinal. To address the issues of long preparation time and
the difficulty of controlling the formation process in the traditional method of preparing
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hydrotalcite conversion coatings, an LDHs coating has been prepared on the surface of a
magnesium alloy by the CO2 pressure method by Zhang and co-workers [71]. The CO2

pressurization has been shown to promote the formation reaction rate, achieving high
formation efficiency and good stability without pollution.

3. Polymer Coatings
Mg alloys coated with biodegradable polymers demonstrate great potential due to

their degradability, which is coupled with features such as biocompatibility, self-healing
properties, and osteo-inductive potential. In addition, polymeric coatings are widely recog-
nized as a feasible means to modulate cell responses, such as adhesion, proliferation, and
differentiation. Numerous investigations have reported on the efficacy of forming coatings
from polylactic acid (PLA) [72], poly (lactic-co-glycolic) acid (PLGA) [73], polycaprolactone
(PCL) [74], polydopamine (PDA) [75], and natural polymers such as chitosan (CS) [76,77]
and collagen (Co) [78].

3.1. Phytic Acid (PA) Coatings

PA (Phytic acid, C6H18O24P6) is a naturally occurring organic macromolecular com-
pound, which is non-toxic and can be degraded and absorbed in the human body.
Hernández-Alvarado et al. [79] fabricated powder metallurgy Mg and AZ31 alloy samples
coated with a phytic acid layer. The test results in a saline phosphate buffer solution (PBS)
at 37 ◦C indicated that the powder metallurgy magnesium specimens underwent complete
dissolution within 250 h of immersion due to their inherent heterogeneity and porosity. In
contrast, the phytic acid coating on AZ31 was shown to improve corrosion resistance in
long-term tests up to 336 h, without affecting biocompatibility and biodegradability.

To enhance the biocompatibility and corrosion resistance of PA coatings, studies have
focused on incorporating drugs or other substances into the PA coatings. Heparin (Hep)
or bivalirudin (BVLD) were immobilized within an organic phytic acid (PA) coating on
Mg surfaces by Chen and co-workers [80]. The phytic acid coating, when combined with
both drugs, exhibited comparable corrosion protection on the magnesium surface to that of
the direct PA coating and enhanced anticoagulation, thereby improving histocompatibility.
The results were attributed to the distinct coordination mechanisms that occur between the
drug biomolecules and the Mg-chelated PA molecules.

Tang et al. [81] prepared a TiO2-containing PA coating on an Mg substrate. A small
amount of TiO2 was incorporated in situ into the PA coating under ultraviolet (UV) irra-
diation. This coating significantly enhanced the adhesion and proliferation of MC3T3-E1
pre-osteoblasts. Compared with the PA or TiO2 coatings, the PA and TiO2-UV coating was
denser, thicker, and more hydrophilic. The electrochemical corrosion current density of
the PA and TiO2-UV coating on the Mg substrate decreased by a factor of seven, and the
in-vitro degradation rate in phosphate buffer solution was significantly lower. A series of
phytic acid/3-aminopropyltrimethoxysilane (γ-APS) hybrid coatings were prepared on
AZ31 alloys by immersing the magnesium alloy in a mixed solution of phytic acid and
γ-APS by Li and co-workers [82]. The pH of the mixed solution considerably influenced
the uniformity of the coating, which, in turn, affected the coating’s corrosion resistance.
The coating also possessed self-healing properties. After prolonged immersion in SBF,
the coating’s quality loss diminished, its surface cracks gradually healed, and the charge
transfer resistance increased.
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3.2. Polycaprolactone (PCL) Coatings

Polycaprolactone (PCL) exhibits good mechanical properties, tissue compatibility, and
biodegradability. It can be completely decomposed into CO2 and H2O within 6–12 months
when exposed to a soil–water environment. J. Degner et al. [83] synthesized a biodegrad-
able polycaprolactone (PCL) coating at various concentrations using spin coating. The
PCL coatings proved to be uniform and pore-free. The corrosion resistance of the coat-
ings was enhanced, but the bonding strength to the substrate remained low. Numerous
studies have addressed the issue of poor adhesion between PCL coating and substrates.
Palanisamy et al. [84] introduced a two-layer coating technique, where magnesium car-
bonate served as the initial layer, deposited via a chemical conversion method, followed
by the application of a PCL coating through dipping. The PCL layer adhered effectively
to the MgCO3 surface, with penetration into the MgCO3 crystals, enhancing the double-
layer coating’s adhesion to the substrate as well as its corrosion resistance and bioactivity.
Niu et al. [85] bonded PCL to the Mg matrix via silane coupling agent (SCA) pretreatment.
Concurrently, alkali pretreatment ensured adequate OH− availability for the reaction be-
tween the Mg matrix and SCA. Owing to the coupling effect of SCA, the adhesion of the
PCL coating to the Mg substrate was significantly enhanced, along with a nearly two or-
ders of magnitude improvement in corrosion resistance. Carangelo et al. [86] utilized a
polydopamine (PDOPA) layer to augment adhesion between the metallic substrate and
the external organic coating. This intermediate layer can effectively bolster the corrosion
resistance of the organic coating and strengthen the bond between PLA and the magnesium
alloy substrate.

Research has also focused on improving the antibacterial performance of the PCL
coating by incorporating antibacterial particles or agents. Yang et al. [87] introduced cop-
per (Cu)-containing bioactive glass nanoparticles (Cu-BGNs) into polycaprolactone (PCL)
coating systems to enhance the bioactivity, antibacterial properties, and corrosion resis-
tance of susceptible magnesium matrices. Cu-BGNs were evenly distributed within the
PCL coating, and the Cu2+ ions released by the Cu-BGNs coating effectively inhibited the
growth of S. carnosus and E. coli. In comparison to pure magnesium, the activity and
proliferation of MG-63 cells on the Cu-BGN coating were significantly enhanced; however,
as the concentration of Cu-BGNs increased, a marginal decline in cell proliferation and
activity was observed, alongside a reduction in corrosion resistance. Zomorodian et al. [88]
fabricated a degradable polycaprolactone (PCL) coating on an AZ31 alloy. The coating was
modified with nano-HA particles and cephalexin; this modification with HA particles was
found to enhance the biocompatibility of the PCL coating. The PCL coating acquired an
antibacterial effect through the addition of cephalexin, which promoted osseointegration
and cell viability, although corrosion resistance experienced a concomitant decrease. There-
fore, the enhancement of the corrosion resistance of the organic coating remains an area
necessitating further investigation.

3.3. Chitosan (CS) Coatings

Chitosan is a naturally occurring alkaline polysaccharide that is non-toxic and ex-
hibits good degradability. Studies have demonstrated that coatings made of chitosan
are biocompatible and can effectively enhance corrosion resistance and reduce the forma-
tion of subcutaneous gas pockets. Consequently, chitosan coatings have been applied to
magnesium and its alloy surfaces in order to improve their corrosion resistance [89].

A Mg-Zn-tricalcium phosphate composite coated with chitosan was synthesized by
Zhao and co-workers [77]. The immersion corrosion rate, the pH values of the simulated
body fluids, and the concentration of released metal ions in the chitosan-coated composite
were all found to be lower than those associated with the uncoated composite. In vivo
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testing further demonstrated that the chitosan-coated composite was non-toxic to the rab-
bits’ vital visceral organs and promoted healing in bone tissues. Dai et al. [90] synthesized
Mg-6%Zn-10%β-Ca3(PO4)2 composites with 4, 7, and 10 layers of chitosan coatings. Chi-
tosan coatings proved to be non-toxic and were able to modulate the biodegradation rate of
composites. Specimens with seven layers of chitosan coating exhibited superior corrosion
resistance, characterized by the minimal volume of hydrogen evolution and the most stable
pH value fluctuations in SBF.

Höhlinger et al. [91] developed surface pre-treatments for corrosion protection. The
results indicated that DMEM and HF pretreatments were the most effective at protecting
the magnesium alloy matrix from corrosion during the electrophoretic deposition process.
Francis et al. [92] employed a straightforward one-step chemical conversion treatment
to synthesize a Mg(II)-chitosan composite coating. The interaction of chitosan with the
magnesium matrix led to the formation of a Mg(II)-chitosan complex, which prevented
alkalization near the coating’s surface, thus constraining the pH conditions conducive to
hydrogen evolution, diminishing hydrogen production, and enhancing the magnesium
matrix’s corrosion resistance. Cui et al. [93] fabricated a corrosion-resistant and antimicro-
bial coating through the layer-by-layer assembly of chitosan (CHI) and poly-L-glutamic
acid (PGA). The coating’s effective corrosion resistance and antibacterial properties were
attributed to the pH buffering capacity of the weak polyelectrolyte pair. Jia et al. [94] con-
structed biodegradable sodium alginate and carboxymethyl chitosan (SA/CMCS) coatings
on the surface of magnesium alloys using hydrothermal treatment and a dipping method.
The SA/CMCS coating facilitated endothelial cell growth, proliferation, and migration,
thereby promoting neovascularization.

4. Composite Coatings
Composite coatings can combine the advantages of multiple coatings while com-

pensating for the shortcomings of a single coating. Currently, inorganic composite coat-
ings, polymer composite coatings, and inorganic–polymer composite coatings are being
actively researched. By combining the corrosion resistance, biocompatibility, and antibac-
terial properties of multiple coatings, the preparation of bioactive coatings with excellent
comprehensive performance becomes highly significant for the surface modification of
bioimplant materials.

4.1. Inorganic-Inorganic Composite Coatings
4.1.1. Ca-P-Based Composite Coatings

Owing to their excellent biocompatibility, Ca-P coatings are widely used as surface
coatings on bone repair and bone fixation metal materials to enhance both their corro-
sion resistance and biocompatibility. Numerous studies explore the combination of Ca-P
coatings with other materials to develop bioactive coatings that exhibit superior corrosion
resistance, biocompatibility, and antibacterial properties. Studies also focus on depositing
these elements as coatings and forming composites with Ca-P coatings on the surfaces of
magnesium alloys. For instance, Bakhsheshi-Rad et al. [95] initially deposited a nano-silicon
(Si) coating on an Mg-6Zn-0.8Mn-3Ca substrate, followed by a subsequent layer of nano-
hydroxyapatite (HA). The resulting composite coating proved to be uniform and dense.
Moreover, the Si–HA composite coating on the magnesium alloy significantly reduced the
corrosion current density and the hydrogen evolution rate, while simultaneously increasing
the polarization resistance (Rp).

Calcium phosphate (Ca-P) coatings are susceptible to large cracks in physiological
environments. To address this issue, Peng et al. [96] developed a composite coating
comprising an impermeable hydroxyapatite inner layer and a graphene oxide outer layer
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on an AZ31 alloy. This coating combined the impermeability of graphene oxide with the
biocompatibility of hydroxyapatite, which not only inhibited the growth of coating cracks
but also enhanced the corrosion resistance of the substrate. Additionally, Neupane et al. [97]
applied a graphene oxide coating to shield the magnesium matrix against ion diffusion from
oxidizing gases and corrosive liquid solutions. Santos et al. [98] fabricated a multifunctional
biodegradable surface by incorporating hydroxyapatite nanoparticles and graphene oxide
(GO), whereby the surface wettability of the coating could be modulated by varying the
concentrations of hydroxyapatite nanoparticles and GO.

Cao et al. [99] affixed the arginine-glycine-aspartate-cysteine (RGDC) peptide to the
surface of the AZ31 alloy, effectively promoting the nucleation and crystallization of Ca-P
coatings. Compared with the uncoated alloy, the corrosion resistance and biocompatibility
of the magnesium alloy coated with the RGDC-HA were significantly improved, but the
adhesion of the Ca-P coating to the AZ31 substrate remained suboptimal. A composite
coating of calcium phosphate/zirconia (Ca-P/ZrO2) was applied to the AZ91D alloy by
Wang and co-workers [100]. The adhesion strength between the coating and the substrate
increased from 12.1 MPa for a single-layer Ca-P coating to 24.4 MPa. This increase was
attributed to the fact that the Ca-P/ZrO2 coating formed strong chemical bonds and
facilitated interdiffusion between elements during the deposition process. The uppermost
Ca-P layer also significantly enhanced cell adhesion and proliferation.

The incorporation of the Ca-P coating with an antibacterial agent to enhance the
anti-inflammatory and antibacterial properties of the composite coating has been investi-
gated. Tan et al. [101] reported a novel Ca-P/TC composite coating for Mg implants that
enhances both the corrosion resistance of Mg and offers sustained drug release. Utilizing a
hydrothermal method, Bai et al. [102] fabricated a cost-effective and multifunctional hy-
droxyapatite/pefloxacin (HA/PFLX) composite coating on the surface of AZ91 alloy. PFLX
possesses broad-spectrum antibacterial properties analogous to TC, which can effectively
prevent bone infection and inflammation. Additionally, Tian et al. [103] applied a Ca-P
coating on the surface of AZ91 alloy combined with AMPs to decelerate the corrosion
rate of the substrate. The AMP-loaded coating exhibited antibacterial activity against
Staphylococcus aureus, achieving an antibacterial rate exceeding 50% after 4 days and
sustaining this efficacy for 7 days. A two-step electrodeposition process was employed
to synthesize a ceria/calcium-phosphate (Ce/Ca-P) composite coating on magnesium
alloys [104]. The pin-like structure of the outer layer of the Ce/Ca-P coating enhances its
antibacterial properties during the initial stages of implantation. The calcium-phosphate
outer layer, in conjunction with the ceria interlayer, facilitates the deposition of calcium
and phosphate ions, thereby aiding bone healing over the medium term.

4.1.2. MAO-Based Composite Coatings

Micro-arc oxidation (MAO) is an effective and economical method to reduce the
corrosion rate due to its high hardness, enhanced adhesion to the substrate, and superior
corrosion resistance achieved within a brief duration. However, the application of the
coating is constrained by issues such as porosity, poor density, electric spark occurrence
during the process, and a significant reduction in the protective effect over time [105].
Generally, additional coatings combined with the MAO coating can fill and seal its pores,
thereby preventing the ingress of corrosive agents and enhancing the corrosion resistance of
the composite coating. Seyfoori et al. [106] synthesized a nanostructured composite coating
that included biphasic calcium phosphate (BCP) through the micro-arc oxidation (MAO)
technique applied to an AZ31 alloy. Compared with the pure MAO coating, the composite
coating exhibited better corrosion resistance, attributed to the nanoparticle-induced barriers
to corrosive agents penetrating the substrate. Wang et al. [107] deposited a dense layer of
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needle-like fluorapatite (FHA) with a thickness of 6 µm atop the MAO layer. The MAO-
FHA coating demonstrated a high mineralization capacity in simulated body fluid, which
facilitated the deposition of hydroxyapatite. Compared with the alloy coated with the
MAO coating, the alloy treated with the MAO-FHA coating exhibited greater surface tissue
integration, enhanced bone tissue adhesion, and improved biocompatibility by mitigating
the excessive release of Mg2+ ions from MAO-treated samples.

Wei et al. [108] fabricated a micro-arc oxidized/poly (L-lactide) (MAO/PLLA) com-
posite coating on an AZ31 alloy by combining the MAO process and sealing with PLLA.
The composite coating notably enhanced the corrosion resistance of the AZ31 alloy. The
release of Mg2+ ions and hydrogen, along with the pH value changes in the solution due
to degradation, were all significantly reduced. Bai et al. [109] prepared a chitosan/MAO
composite coating for a Mg-Zn-Ca alloy. The corrosion current density of the coated al-
loy decreased by nearly three orders of magnitude compared with the uncoated alloy.
This improvement was attributed to the fact that the composite coating sealed the pores,
altered the interface bonding conditions, and provided a barrier against corrosive me-
dia. Feng et al. [110] employed a micro-arc oxidation coating incorporating HA particles
(MAO-HA) as the inner layer and polydopamine (PDA) as the outer layer. The PDA layer
completely covered the surface of the MAO-HA layer, resulting in the transition of the
coating from hydrophobic to hydrophilic. Compared with the MAO-HA layer, the pores on
the surface of the PDA/MAO-HA layer were significantly reduced, resulting in a decrease
in corrosion current density by an order of magnitude, and the coating exhibited good cell
compatibility.

The chemical conversion method, hydrothermal method, solvothermal method, elec-
trodeposition method, etc., were exploited to fabricate inorganic coatings on the surface
of MAO coatings (as shown in Figure 5). Zhang et al. [111] developed a double-layer
coating (Ca-P/PEO) for the application on pure magnesium. The results indicated that the
corrosion current density of the coated Mg was two orders of magnitude lower than that
of the uncoated Mg before immersion in SBF solution, and threefold lower after 168 h of
immersion. Additionally, the coating facilitated the nucleation of osteoconductive minerals.
Zhang et al. [112] engineered Mg-Fe LDH films on the surface of MAO-coated Mg alloy via
immersion and hydrothermal treatment. The findings demonstrated that the MAO/Mg-Fe
LDH coatings presented a lower hemolysis rate (less than 5%) in comparison to the MAO
coating alone. Furthermore, the MAO/Mg-Fe LDH coatings enhanced cell adhesion and
proliferation more effectively than the MAO coating alone. Abolfazl Zarei et al. [113]
fabricated an akermanite (Ca2MgSi2O7) and alginate (C6H9NaO7) layer on the surface
of an MAO coating using the electrophoretic deposition method, which demonstrated a
significant reduction in the release of Mg2+ ions and hydrogen bubbles, thereby enhancing
corrosion resistance.

In addition to traditional Ca-P and organic coatings, other substances, including var-
ious oxides and pharmacological agents, are compounded with MAO. Xiong et al. [114]
prepared MAO coatings in alkaline electrolytes enriched with CeO2 and ZrO2 nanoparti-
cles. The resultant MAO coating exhibited good mechanical properties, including wear
resistance, enhanced hardness, and strong adhesion to the substrate. Subsequently, the
bioactive HA coating was applied to the MAO coating, and the MAO-HA composite coat-
ing demonstrated improved corrosion resistance in the SBF solution. A dense Mg(OH)2

coating was developed on a MAO-coated AZ31 alloy in an alkaline electrolyte that included
ethylenediamine tetra acetic acid disodium (EDTA-2Na) by Li and co-workers [115]. The
intermetallic compound of the Al-Mn phase in the substrate is instrumental in the growth
of the Mg(OH)2 coating. The addition of EDTA-2Na facilitates the nucleation and growth
of Mg(OH)2. The Mg(OH)2 coating features a porous nano-sized structure and effectively
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seals the micro-pores and micro-cracks of the MAO coating, thereby promoting the for-
mation of calcium phosphate corrosion products. Bordbar-Khiabani et al. [116] created
a thin layer of magnesium oxide (MgO) on the surface of AZ91 alloy by the micro-arc
oxidation (MAO) process and then deposited a betamethasone sodium phosphate (BSP)
layer onto the MAO coating. The BSP layer effectively sealed the holes and cracks of the
MAO coating, serving as a barrier layer against the penetration of the SBF solution. The
MAO/BSP coating exhibited a higher impedance mode, which was 300 times greater than
that of the MAO coating. At the same time, the coating spontaneously formed a highly
active Ca-P layer on the surface of the MAO/BSP.
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coating. (a) Schematic illustrations showing the deposition mechanisms of the 5.7Ca-P coating on PEO
coated Mg in a 5.7Ca-P solution [111], (b) schematic illustrations showing the deposition mechanisms
of the 5.7Ca-P coating on PEO coated Mg in a 5.7Ca-P solution [111], and (c) diagram of preparation
process of PEO/Mg-Fe LDH composite coating [112].

Integrating other technologies with MAO represents a promising approach to enhanc-
ing material properties. Xiong et al. [117] developed an LSP/MAO composite bio-coating
on AZ80 alloy by combining the LSP and MAO processes. LSP is an alternative non-contact
surface treatment technique that utilizes high-power, short-pulse laser shock waves to
enhance the target surface’s mechanical properties, including fatigue, corrosion cracking,
and wear resistance, and to induce grain refinement. In comparison with the LSP layer
and MAO coating alone, the LSP/MAO composite coating not only significantly enhances
the magnesium alloy substrate’s corrosion resistance but also its mechanical properties.
Liu et al. [118] fabricated a chitosan and polystyrene sulfonic acid composite coating on
a WE43 alloy substrate that had been treated by micro-arc oxidation (MAO) using layer-
by-layer (LBL) self-assembly technology. The resulting MAO/LBL coating significantly
improved the corrosion resistance of magnesium alloys in simulated body fluids.
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4.2. Polymer–Polymer Composite Coatings

Composite coatings, which consist of multiple polymers, serve as protective layers
utilizing an inert barrier to shield substrates from exposure to external conditions. The effi-
cacy of these coatings in providing protection largely derives from the benefits previously
highlighted. Among them, biodegradable polymeric coatings are particularly appealing
because of their degradable nature. Moreover, the capacity to tailor these coatings to
enhance bone integration (osseointegration) and enable precise, site-specific drug release
makes biodegradable polymer coatings ideally suited for application with magnesium
alloys in the context of implants, as reported in the literature. Nonetheless, for such medical
applications, it is essential that these coatings not only exhibit biocompatibility but also
meet the fundamental requirements of providing complete surface coverage and preserv-
ing structural integrity. Figure 6 shows several typical processes for the preparation of
composite coatings.
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Figure 6. Schematic representation of the preparation of polymer–polymer composite coatings:
(a) the schematic diagram of PCNZ preparation [119], (b) schematic of process for coating prepara-
tion [120], (c) schematic representation of the S-C technique used for the coating production [121],
and (d) schematic illustration of preparation of (CHI/DNA)5/Mg(OH)2 composite coating on an
AZ31 substrate [122].

A composite coating of chitosan and polylactic acid was developed for the AZ31 alloy,
tailored specifically for medical applications. This coating successfully sealed the pores
within the chitosan layer, imparting robust protection to the AZ31 alloy and significantly
reducing its corrosion current density by four orders of magnitude [120]. Furthermore,
the composite’s exceptional biocompatibility was corroborated by improved cell viabil-
ity assays and by observing the morphology of cells adhered to the chitosan/polylactic
acid-coated sample. Zhao and colleagues [121] skillfully engineered a composite coat-
ing of polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) on an AZ31 magnesium
alloy using the spin-casting method. The findings indicated that the PVP/PAA com-
posite layer, noted for its absence of defects, density, and uniformity, was successfully
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applied to the magnesium alloy’s surface. Additionally, this coating exhibited superior
corrosion resistance and robust adhesion characteristics. A coating comprising alternating
layers of polyvinylpyrrolidone (PVP) and deoxyribonucleic acid (DNA), referred to as
(PVP/DNA)n, was synthesized using a layer-by-layer (LbL) assembly dip-coating tech-
nique [122]. Cui et al. [123] described the application of a novel biomimetic polyelectrolyte
multilayer template, composed of polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA),
which was assembled using a layer-by-layer (LbL) technique. This approach enhanced the
corrosion resistance of the alloy. Both hydrogen evolution and electrochemical corrosion
tests confirmed the effectiveness of the polyelectrolyte-induced Ca-P coating in protecting
the AZ31 alloy from corrosion (as shown in Figure 7).
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A multilayered coating of chitosan/deoxyribonucleic acid (CHI/DNA) was engi-
neered on the AZ31 alloy using the layer-by-layer assembly dip-coating technique, with
an underlying Mg(OH)2 coating acting as the protective layer [124]. The outer CHI/DNA
coating serves as a catalyst for the formation of a biocompatible calcium phosphate (Ca-P)
corrosion-resistant coating during immersion, offsetting its relatively thin profile. Fur-
thermore, this composite coating promotes bone growth, owing to the biomineralization
properties of the outer polyelectrolyte layers. The outcomes indicated that the (PVP/DNA)n
coating displayed a smooth surface, albeit with minor scratches and several corrosion-
related cracks. Despite these imperfections, the coating retained good corrosion resistance
when exposed to simulated body fluid. Monfared et al. [125] developed tannic acid/poly
(N-vinylpyrrolidone) composite coatings on the surface of Mg, which demonstrated that
the coating significantly enhanced the corrosion resistance of Mg.

Zhao et al. [126] developed a self-healing polymer coating on the surface of Mg alloy
using a spin-spray layer-by-layer assembly process. The results demonstrated that the
coating supported the activity of alkaline phosphatase and accelerated the mineralization
of the extracellular matrix. A novel coating comprising silk fibroin (SF) and cellulose
nanocrystals (CNCs) was designed for application on the biodegradable AZ31 magnesium
alloy [127]. Electrochemical corrosion assessments and in-vitro immersion experiments
conclusively demonstrated that the corrosion resistance of the SF-coated alloy significantly
improved with the addition of CNCs. Compared with the Mg alloy, the SF-CNC-coated
AZ31 exhibited a significant improvement in cytocompatibility, as evidenced by a cell
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viability of 114%, along with enhanced adhesion and proliferation of human fetal osteoblast
cells on the coated surface.

4.3. Inorganic–Organic Composite Coatings

A single inorganic or organic coating alone cannot meet the requirements of biomate-
rials. Therefore, combining the advantages of inorganic and organic coatings is essential to
obtain a more suitable coating with improved properties. Due to their excellent biocompat-
ibility, Ca-P coatings have been combined with organic coatings, such as Ca-P/PLA [128],
HA/SA [129], and HA/Methylcellulose [130].

G. Perumal et al. [131] developed a polycaprolactone (PCL) and nano-hydroxyapatite
(nHA) composite coating via dip-coating and electrospinning on an AZ31 alloy, subse-
quently implanting it in New Zealand white rabbits as a femoral repair material. After
four weeks, the defect was successfully repaired, and the material’s corrosion resistance
was significantly enhanced. Similarly, Tian et al. [132] applied a nHA-PLGA composite
coating on pure Mg via EPD, using electrolytes containing 1 mg/mL HA and 0.2 mg/mL
PLGA, with a deposition voltage of 75 V for 6 min. J. Zhang et al. [133] designed a Ca-
P/chitosan/carbon nanotube (CNT) coating on AZ91D magnesium alloy. The addition
of CNTs increased the gentamicin loading and cell viability, while decreasing the release
rate of gentamicin compared with the Ca-P/chitosan coating. Kim et al. [134] fabricated an
HA/PLLA micro-textured coating layer onto a Mg implant by treating the Mg substrate
with a micro-patterned photoresist surface in an aqueous solution containing calcium
and phosphate ions. The HA micro-dots were surrounded by PLLA. The HA/PLLA
micro-textured coating consisted of a porous top surface and a dense layer on the Mg
surface, which protected the substrate, thereby exhibiting excellent corrosion resistance and
providing a favorable environment for cellular interactions. Additionally, the HA/PLLA
micro-textured coating exhibited excellent stability under mechanical strain, even at an
elongation of 5%. It effectively retained the coating without producing noticeable de-
fects, while the single HA and PLLA coatings were damaged due to brittleness and weak
bond strength. The micro-textured coating combined the high flexibility of PLLA with
the excellent biocompatibility and bioactivity of HA, thus offering promising potential
for application.

Electrophoresis, dip cast, electrostatic spinning, and hydrothermal, etc., were utilized
to form composite coatings (as shown in Figure 8). Qian et al. [135] developed a composite
coating system (PTMC-MAO) for Mg alloys, seamlessly integrating micro-arc oxidation
(MAO) and poly (trimethylene carbonate) (PTMC) layers. The coatings achieved a distin-
guished protection efficiency (η) of 99.9%, accompanied by higher impedance. The ∆pH
change and the released Mg2+ concentration were 0.25 and 42 µg/mL, respectively, after
21 days of immersion. Lv et al. [136] successfully synthesized a polypyrrole (PPy)-loaded
polycaprolactone (PCL) organic composite layer on MAO-coated Mg alloy using the dip-
casting method. They found that the formation of this organic composite layer resulted
in a reduction in the corrosion current by four orders of magnitude. A combination of
MAO coating and electrospun nanofibers was formed on ZK60 magnesium alloy, with
curcumin-loaded mesoporous silica nanoparticles and bioactive glass incorporated into
the electrospun nanofibers [137]. This composite configuration improved both corrosion
resistance and antibacterial properties, making it suitable for implant applications.

In addition to the composite of Ca-P coatings and organic coatings, inorganic oxides
and inorganic element particles are also combined with the organic coating. Bakhsheshi-
Rad et al. [139] prepared Si/PCL composite coatings using physical vapor deposition
(PVD) and dip coating on a Mg-Ca-Bi alloy. The underlayer consisted of 1.2 µm thick
Si composed of spherical nanoparticles, which provided a dense barrier layer for the
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substrate, while the overlayer consisted of 75.2 µm thick PCL with a pore network. The
corrosion-induced reduction in compressive strength and bonding strength of the Si/PCL-
coated Mg-Ca-Bi alloy was greater than that of the uncoated or Si layer-coated alloys.
Ren et al. [140] fabricated a coating composed of nano-amorphous magnesium phosphate
(nAMP) and poly (lactic acid) (PLA) on an AZ31 alloy. The coating was smooth, crack-free,
and the nAMP particles were uniformly distributed within the PLA matrix. The composite
coating also exhibited excellent corrosion resistance and biomineralization ability, with
massive apatite precipitation, similar to bone components, forming on the surface of the
sample. Silane/Mg(OH)2 composite coating was prepared on the surface of an AZ31 alloy
by Wang et al. [141] using the sol-gel method, which significantly enhanced corrosion
resistance and slowed the degradation rate. The coating exhibited good bioactivity and
promoted cell proliferation and differentiation. Córdoba et al. [142] deposited a silane-
TiO2/biopolymer coating on AZ31 and ZE41 alloys. Silane-TiO2 served as the inner coating,
while the outer layer consisted of collagen and chitosan. Carbonate phases, such as MgCO3

and CaCO3, formed as corrosion products, providing additional corrosion protection to
the Mg alloys at longer immersion times when collagen or chitosan were present. The
outer layer of collagen and chitosan had no adverse effect on the barrier properties of the
silane-TiO2 coating and also prevented the escape of H2, thereby avoiding its release into
the solution during the initial stage of immersion.
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Figure 8. Schematic representation of the preparation of polymer coatings on MAO layer:
(a) schematic diagram illustrating the reparation of PTMC-MAO composite coatings [135],
(b) schematic diagram of the fabrication process of Mg/MAO/PCL-PPy composite coating [136],
(c) schematic diagram illustrating the fabrication process of Mg/MAO/mesoporous silica-PLA
composite coatings [137], and (d) schematic representation of the preparation of PMTMS/HA coat-
ing [138].

Chen et al. [143] prepared a Zr-containing micro-arc oxidation-polylactic acid (MAO-
PLA) composite, where the micropores and cracks on the surface of the MAO coating
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were sealed by PLA, thereby minimizing the corrosion rate of the sealed sample. The PLA
coating played a critical role in protecting the substrate. A uniform coating composed
of polyvinyl alcohol (PVA), bioactive glass (BG), and natural chitosan (CH) was applied
to AZ91D magnesium using the electrophoretic deposition method [144]. The corrosion
current density of the coated sample was significantly reduced by three orders of magnitude
lower than that of the untreated Mg alloy. Immersion testing revealed that the coating
consistently protected the substrate. The hydrogen evolution rate of the optimally coated
sample was only one-ninth that of the Mg alloy, indicating excellent corrosion resistance.
Furthermore, the coating demonstrated robust biomineralization capabilities. Cell viability
tests on the coated samples also indicated good biocompatibility, with cell viability rates
exceeding 116.5%. Figure 9 shows several typical method to form polymer coating on
Ca-P films.
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Figure 9. Schematic representation of the preparation of Ca-P coating and polymer composite coatings:
(a) the proposed mechanism of the post-treated HA coating by chitosan film [145], (b) schematic
illustration of PCL/HA hybrid coating process [146], (c) schematic diagram of the preparation process
of composite coated samples [147], and (d) experimental flow and film layer formation flow [148].

A composite coating of PCL/HA was applied to a Mg-Zn-Ca alloy sample using
a combination of electrodeposition and dip-coating methods [146]. This hybrid coating
significantly slowed the degradation process when immersed in simulated body fluid
(SBF). Furthermore, in-vitro electrochemical studies confirmed that the PCL/HA coating
substantially enhanced corrosion resistance, reducing the corrosion rate by approximately
tenfold compared with the HA coating alone, and by about 900 times in comparison with
the untreated Mg-Zn-Ca alloy. Additionally, cytotoxicity evaluations demonstrated that
the PCL/HA hybrid coating enhanced biocompatibility and bioactivity, which can be at-
tributed to the effective use of interfacial engineering techniques. A double-layer dicalcium
phosphate dihydrate (DCPD) sandwiched siloxane composite coating was successfully
applied to the Mg alloy through chemical conversion, immersion treatment, and biomimetic
deposition methods. Electrochemical testing revealed that the corrosion current density of
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the coated sample was significantly lower than that of the uncoated Mg alloy. Immersion
experiments demonstrated that the coating provided continuous protective coverage to the
sample. The hydrogen evolution rate for the optimal coating was only one-ninth that of the
Mg alloy, and the coated sample exhibited excellent bio-mineralization capability. Addition-
ally, cell viability assays showed that the coated samples displayed strong biocompatibility
(cell viability ≥ 116.5%). This study presents a novel approach for the development of
surface coatings on biomedical Mg alloys, offering potential applications in bone tissue
engineering [147]. The schematic representation of vitro corrosion and cytocompatibility of
MAO and polymer composite coatings are exhibited in Figure 10.

Coatings 2025, 15, x FOR PEER REVIEW 20 of 29 
 

 

substantially enhanced corrosion resistance, reducing the corrosion rate by approximately 
tenfold compared with the HA coating alone, and by about 900 times in comparison with 
the untreated Mg-Zn-Ca alloy. Additionally, cytotoxicity evaluations demonstrated that 
the PCL/HA hybrid coating enhanced biocompatibility and bioactivity, which can be at-
tributed to the effective use of interfacial engineering techniques. A double-layer dical-
cium phosphate dihydrate (DCPD) sandwiched siloxane composite coating was success-
fully applied to the Mg alloy through chemical conversion, immersion treatment, and bi-
omimetic deposition methods. Electrochemical testing revealed that the corrosion current 
density of the coated sample was significantly lower than that of the uncoated Mg alloy. 
Immersion experiments demonstrated that the coating provided continuous protective 
coverage to the sample. The hydrogen evolution rate for the optimal coating was only 
one-ninth that of the Mg alloy, and the coated sample exhibited excellent bio-mineraliza-
tion capability. Additionally, cell viability assays showed that the coated samples dis-
played strong biocompatibility (cell viability ≥ 116.5%). This study presents a novel ap-
proach for the development of surface coatings on biomedical Mg alloys, offering poten-
tial applications in bone tissue engineering [147]. The schematic representation of vitro 
corrosion and cytocompatibility of MAO and polymer composite coatings are exhibited 
in Figure 10. 

 

Figure 10. Schematic representation of in vitro corrosion and cytocompatibility of MAO and poly-
mer composite coatings: (a) a microarc oxidation coating and poly (l-lactic acid) composite coating 
on Mg-1Li-1Ca alloy for orthopedic implants [149], and (b) micro-CT images and corrosion mecha-
nism diagram of PLGA + MAO screws [150]. 

Several studies have also been conducted to enhance the biocompatibility and corro-
sion resistance of the substrate by depositing an inorganic–organic composite coating 
layer-by-layer (LBL) on the surface of the magnesium substrate. A biodegradable compo-
site coating containing nano-hydroxyapatite (nHA) particles and polylactic acid (PLA) 
nanofibers was applied layer-by-layer (LBL) on a AM50 magnesium alloy by Abdal-Hay 
and co-workers [151]. The presence of nHA particles enhanced the bonding strength be-
tween the coating and the substrate, resulting in a more uniform coating. Compared with 
the AM50 matrix, the composite coating containing a small amount of nHA (3%) exhibited 
higher corrosion resistance and cell compatibility and effectively reduced the initial deg-
radation rate. 

Heparin was covalently immobilized onto the surface of graphene oxide (GO) to pre-
pare heparinized graphene oxide (HGO). Following alkali heat treatment of the magne-
sium alloy substrate, the Chi/HGO composite coating was prepared via layer-by-layer 
(LBL) assembly by F. Gao and co-workers [152]. The Chi/HGO composite coating on the 
magnesium alloy surface degraded slowly in simulated body fluid (SBF), effectively iso-
lating the corrosive medium from the magnesium alloy matrix over an extended period. 
Moreover, the electronegativity of the outermost layer of HGO inhibits the erosion of an-
ions, significantly enhancing the corrosion resistance of the magnesium alloy. 

Figure 10. Schematic representation of in vitro corrosion and cytocompatibility of MAO and polymer
composite coatings: (a) a microarc oxidation coating and poly (l-lactic acid) composite coating on
Mg-1Li-1Ca alloy for orthopedic implants [149], and (b) micro-CT images and corrosion mechanism
diagram of PLGA + MAO screws [150].

Several studies have also been conducted to enhance the biocompatibility and cor-
rosion resistance of the substrate by depositing an inorganic–organic composite coating
layer-by-layer (LBL) on the surface of the magnesium substrate. A biodegradable com-
posite coating containing nano-hydroxyapatite (nHA) particles and polylactic acid (PLA)
nanofibers was applied layer-by-layer (LBL) on a AM50 magnesium alloy by Abdal-Hay
and co-workers [151]. The presence of nHA particles enhanced the bonding strength
between the coating and the substrate, resulting in a more uniform coating. Compared
with the AM50 matrix, the composite coating containing a small amount of nHA (3%)
exhibited higher corrosion resistance and cell compatibility and effectively reduced the
initial degradation rate.

Heparin was covalently immobilized onto the surface of graphene oxide (GO) to
prepare heparinized graphene oxide (HGO). Following alkali heat treatment of the mag-
nesium alloy substrate, the Chi/HGO composite coating was prepared via layer-by-layer
(LBL) assembly by F. Gao and co-workers [152]. The Chi/HGO composite coating on
the magnesium alloy surface degraded slowly in simulated body fluid (SBF), effectively
isolating the corrosive medium from the magnesium alloy matrix over an extended period.
Moreover, the electronegativity of the outermost layer of HGO inhibits the erosion of anions,
significantly enhancing the corrosion resistance of the magnesium alloy. Additionally, it
exhibited good biocompatibility, reducing the hemolysis rate and platelet adhesion, while
significantly promoting the adhesion and proliferation of endothelial cells.

5. Conclusions
This article presents a comprehensive overview of recent advancements in the en-

gineering of biocompatible coatings for magnesium and its alloys, with a focus on their
potential use in biomedical applications. It thoroughly examines the key design criteria
and advanced coating technologies for magnesium alloys, which are engineered to mitigate
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degradation while enhancing bioactivity. The article classifies coatings for magnesium-
based implant materials into three categories: inorganic, polymer, and composite coatings.
Each type of coating presents distinct benefits and limitations in addressing the rapid
biodegradation of magnesium alloys, considering factors such as ease of application, cost-
effectiveness, biocompatibility, and the provision of necessary biological functions.

To date, considerable progress has been made in developing coatings to protect magne-
sium substrates; however, substantial challenges remain in advancing coatings for biomed-
ical magnesium alloys. The ideal coatings for clinical use on biodegradable magnesium
alloys should be corrosion-resistant, capable of self-degradation, and biocompatible. How-
ever, the development of coatings that incorporate all these properties remains a challenging
goal. Specifically, controlling the corrosion rate remains a significant challenge for mag-
nesium alloys intended for degradable biomedical implants. Composite coatings, which
combine inorganic and polymer layers, could be a promising approach for magnesium-
based implants. These coatings exhibit strong adhesion to the magnesium substrate through
chemical modification, facilitated by the formation of chemical bonds with the substrate.
The polymer layer is engineered to degrade in a controlled manner, ensuring the preser-
vation of the underlying alloy and maintaining the structural integrity and mechanical
properties of the implant. Despite the potential, research in this field is still in its early
stages, and further work is required to fully realize these advanced coating systems.
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