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Abstract

Biofouling is the colonization and attachment of sessile organisms on submerged surfaces,
whether natural or artificial. The presence of these communities compromises the structural
integrity, operational efficiency, and durability of coastal structures, resulting in high
economic and environmental costs, especially when conventional removal methods involve
the use of toxic biocides. In this context, this article aimed to evaluate the scientific
productivity of the literature related to sustainable antifouling strategies, with an emphasis
on technologically and environmentally sustainable solutions, through a bibliometric
analysis. We analyzed 160 research articles and 90 patents published between 2004 and 2024.
It was observed that, since 2019, there has been an increase in publications about biofouling
solutions, with a notable emphasis on China’s leadership in both scientific production and
patent filings. This topic has also attracted extensive international collaboration. The most
promising strategies for controlling marine biofouling involve a combination of physical,
chemical, and biological methods, integrated with sustainable coatings. The growing
demand for low-environmental-impact solutions has driven the development of safer, more
effective, and economically viable antifouling technologies. Therefore, the integration
of traditional techniques with advances in biotechnology represents a strategic path to
mitigating the impacts of biofouling in marine environments.

Keywords: sustainable antifouling; fouling-release technologies; patent analysis; marine
biofilm; marine biotechnology

1. Introduction

Biofouling is a complex community characterized by the accumulation and adhesion
of organisms on submerged surfaces—especially on artificial substrata [1], where they
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find nutrients as well as protection against predators and adverse conditions [2]. This
process occurs when bacteria and microalgae form a biofilm [3,4], which facilitates the
recruitment of other organisms (e.g., barnacles, ascidians, mollusks, polychaetes, and
bryozoans) [5]. Through this ecological process, a highly structured community emerges,
creating a dynamic and diverse ecosystem [6].

The formation of biofouling is influenced by several environmental factors (e.g., tem-
perature, salinity, nutrient availability, and hydrodynamics) [7,8]. In tropical zones, where
biological growth rates are higher, biofouling tends to occur more intensely and rapidly
compared to in colder regions, where growth is slower and less vigorous [9]. Also, the
properties of the substrata surface (e.g., roughness, size, and even electrostatic charge) are
important in the initial adhesion of organisms [10-12]. Additionally, pioneer organisms
can influence recruitment through the release of chemical signals, attracting or repelling
subsequent species [13-15].

Man-made structures in marine areas, such as ship hulls, harbors, water inlet systems,
and oil platforms are highly susceptible to biofouling. Because of that, numerous efforts
have been made to solve this problem, but control with antifouling paints is the most
common [16] because it is very effective in managing biofouling. However, since they
are toxic to non-target organisms and can affect biodiversity [17,18], their use could bring
significant ecological costs. Various toxic substances, including copper, lead, mercury,
and arsenic, were historically used as biocides in antifouling paints to control fouling
organisms [19,20].

Many organisms, particularly benthic ones, are vulnerable to these toxic effects. As
a result, environmental regulations are becoming increasingly stringent worldwide, en-
couraging research and development for substances capable of inhibiting the fouling
community without causing environmental harm [6]. Some of these bioactive compounds
can be extracted from marine animals and algae and included in paints or other substances
for antifouling purposes (e.g., [21-24]). Moreover, natural products are becoming more
attractive to industries due to greater environmental awareness [25-27].

Thus, this paper sought to assess the productivity and scientific impact of the literature
on antifouling techniques in marine applications, particularly those employing modern
and environmentally sustainable methods, using bibliometric analysis. Furthermore, this
paper provides some discussions on the group of foulants and possible solutions to address
the problems arising from biofouling on artificial surfaces, despite the limitations and
shortcomings of current research and applications.

Given environmental constraints and the increasing interest in sustainable antifouling
strategies, a key question emerges: which environmentally friendly antifouling meth-
ods show the greatest potential for effective biofouling control while reducing ecological
impacts, and how has the scientific community examined these solutions in recent studies?

2. Integrative Bibliometric Review

In this study, an integrative bibliometric review was conducted using the SCOPUS
database, renowned for its comprehensive coverage of peer-reviewed studies. Selecting it as
the primary research platform ensured access to the most relevant and up-to-date academic
articles aligned with the focus of this study. To refine the search and increase the precision
of results, Boolean operators were employed. Specifically, the keywords (“marine” AND
“fouling” AND “control” AND “strategies” AND “innovative”) were combined using the
AND operator, which retrieves only those studies that include all the specified terms. This
strategy allowed for a more targeted and comprehensive identification of literature related
to innovative approaches in marine fouling control. To obtain a more up-to-date sample,
only articles from the last twenty years were included. In addition, only articles written
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in English were included. After that, 183 documents were selected, but only the research
and review papers were analyzed, for a total of 160 documents. To unravel the patterns
within this extensive dataset, the tools of SCOPUS and VOSviewer software (version 1.6.20)
were used for analysis, bibliometric mapping, and visualization. The SCOPUS database
was selected for bibliometric analysis because of its extensive multidisciplinary coverage,
which includes applied, technological, and environmental fields essential for research on
biofouling and antifouling. Additionally, it offers robust tools for extracting indicators and
developing knowledge networks.

Also, for the patent documents a systematic search was made in major national and
international databases—the Brazilian National Institute of Industrial Property (INPI), the
European Patent Office (EPO) and the World Intellectual Property Organization (WIPO)—
aiming to identify documents related to the solutions for preventing or solving fouling
recruitment in artificial structures. The Boolean operators used were “marine” AND
“’biofouling”, considering publications from the last twenty years. Filters were applied
based on the International Patent Classification (IPC), followed by manual screening of
abstracts and claims to select the most relevant patents. The analysis of the selected
documents allowed us to identify the state of the art and the technological applications for
the prevention and control of marine biofouling.

Data Analysis and Visualization

The results provide a comprehensive overview of bibliographic statistics related to
fouling strategies and control (Table 1). A total of 183 documents were found during the
period of 2004 to 2024, which suggests a highly collaborative research community with
a focus on review articles, synthesizing knowledge across multiple studies. Also, the
open access rate (almost 33%) suggests the need for more publications to become openly
accessible. Only 160 (reviews and research articles) were used in this study.

Table 1. Overview of statistics from bibliometric search.

Metrics Results
Total number of publications 183
e  Review articles 129
e  Research articles 31
e  Other documents * 23
Number of contributing authors 161
Number of open access publications 61
Sole-authored publications 4
Co-authored publications 179
Total number of citations 5981
Average citations per document 37

* Not used for further analysis.

Over the sampled period, there were annual trends in research output (Figure 1), and
there was evolving interest and activity levels of researchers and academics on this topic.
It is possible to see the growth of academic output on the topic, with a slight decrease in
the year 2023 (14 publications) compared to the previous years (2020 = 17 publications;
2021 = 25 publications; 2022 = 25 publications). One of the main reasons for this decrease is
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likely to have been the slowdown in scientific research, in general, due to the COVID-19
pandemic. Also, the high number of review articles and citation impact (Table 1) align
with this growth trend. A greater number of research fields often produce more reviews
and gain traction in the academic community. Furthermore, the growing interest and
research on the topic is related to the urgency of addressing environmental challenges
and the global commitment to sustainable maritime practices, especially when it comes to
antifouling solutions.

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Years
Figure 1. Yearly output of publications related to the selected keywords.

The evaluation of countries’ productivities based on the quantity of academic papers
provides a nuanced perspective on the global view of antifouling. China is the country with
the most number of research papers published, totaling almost 28.9% of all publications
(53 articles) in the period (Figure 2), followed by the United States (9.83%), the United
Kingdom (8.74%), Portugal (8.19%), and India (7.65%). Furthermore, even though the vast
scientific output was concentrated in a few countries, there was international collaboration
in many regions of the world, which contributed to collective knowledge in the field. This
shows the collaborative nature of research efforts to advance understanding and solutions
in antifouling practices.

Additionally, Table 2 lists the 20 most-highly cited documents on fouling strategies
and control, offering a comprehensive view of authors, titles, years of publication, source
titles, document types, and total citations. It is important to say that recent research did not
have enough time to accumulate citations and great impact [28]. The top-cited document
was “The impact and control of biofouling in marine aquaculture: A review” [3], published in
Biofouling, totaling 598 citations. This review paper discusses the impacts of biofouling on
marine aquaculture, the costs and damages on infrastructure, and the best control methods
and innovative eco-friendly strategies to mitigate its effects. Being a fairly comprehensive
review, it has probably been used more in other research and studies.
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Figure 2. Number of publications by country.

In an overview of the 10 areas with the highest publications on fouling strategies and
control, “Environmental science” tops the list with 54 publications (Figure 3), followed
by “Chemistry” (53), “Biochemistry, Genetics and Molecular Biology” (45), “Materials Science”
(45), “Chemical Engineering” (35), “Agricultural and Biological Sciences” (30), “Engineering’
(25), “Immunology and Microbiology” (25), “Physics and Astronomy” (24), and “Pharmacology,
Toxicology and Pharmaceutics” (17). It is worth noting that one article can be published in
journals covering more than one area.

7

Chemistry Biochemistry, Maternials Chemical Agncuolturaland  Engineering  Immunology and  Physics and ~ Pharmacology,
Genetics and Science Engineering Biological Microbiology Astronomy  Toxicology and
Molecular Sciences Pharmaceutics
Biology
Areas

Figure 3. List of the 10 areas of study with the greatest number of publications.
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Table 2. The 20 most-highly cited documents on fouling strategies and control according to SCOPUS

Platform.
Title Article Type Total Citations Reference
The impact and control of blofqullng in marine Research article * 508 3]
aquaculture: A review
Preventing mussel adhesmr'l using lubricant-infused Research article * 407 [29]
materials
Slippery 11qu1d—1nf1.15§d porous surfacgs showing marine Research article 274 130]
antibiofouling properties
Biofouling in marine aquaculture: a review of recent Research article * 206 [31]
research and developments
Bacterial Biofilm Inhibition: A Focused Review on Recent
Therapeutic Strategies for Combating the Biofilm Review * 194 [32]
Mediated Infections
The influence of natural surface microtopographies on Research article 185 1]
fouling
Research strateg1e§ to deYelop env1ror.1mentally friendly Review * 165 [27]
marine antifouling coatings
Marine biofouling on fish farms and its remediation Research article 163 [33]
Fabrication of slippery lubricant-infused porous surface
with high underwater transparency for the control of Research article 160 [34]
marine biofouling
Biomimetic surface coatings for marine antifouling:
Natural antifoulants, synthetic polymers and surface Review 152 [35]
microtopography
Current and emerging er.1V1ronmen.tally-fr1.endly systems Review 151 [25]
for fouling control in the marine environment
Polymer-based marine antifouling and fouling release .
surfaces: Strategies for synthesis and modification Review 147 (361
Superhydrophobic surfaces for applications in seawater Review 137 [37]
Mini-review: The role of redo>.< in Dopa-mediated marine Research article * 117 [38]
adhesion
Eco-friendly non.—b10c1.de—release coatings for marine Research article 105 [26]
biofouling prevention
Antifouling strategies for marine and riverine sensors Review 103 [39]
Superhydrophilicity and strong salt-affinity: Zwitterionic
polymer grafted surfaces with significant potentials Review 95 [40]
particularly in biological systems
Advanced nanostructures for the control of biofouling: Review * 76 [41]
The FP6 EU integrated project AMBIO
Marine invasive macroalgae: Turning a real threat into a
major opportunity—the biotechnological potential of Review 69 [42]
Sargassum muticum and Asparagopsis armata
Amidoxime Group-Anchored Single Cobalt Atoms for
Anti-Biofouling during Uranium Extraction from Research article * 65 [43]

Seawater

* Open access publications.

Biofouling, a specific journal on fouling covering studies, methods, and solutions for
fouling in marine activities, has the highest rate of citations (Table 2). When analyzed by
VOSviewer, it seems to be a central source with an emerging role in research related to
fouling, biomaterials, and environmental impact (Figure 4). Also, according to the same
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acs sustainabl@ichemistry and

6% VOSviewer

tool, the red cluster also includes journals like ACS Applied Materials & Interfaces, indicating
strong relationships with materials science and surface interactions related to biofouling
studies. The green cluster includes journals such as Marine Drugs and International Biodeteri-
oration & Biodegradation, suggesting an integration of research on marine biotechnology and
degradation. The blue cluster, including Marine Pollution Bulletin, covers studies on marine
pollution, marine ecology, and sustainable chemistry. And finally, the yellow cluster is
centered around Advance of Colloid and Interface Science, which focuses on colloid chemistry,
surface science, and material interfaces.

bioinspiration @nd biomimetics
international j@urnal of molec

advances in calloid and interf

langmuir

acs applied materials andiinte

biowmg applied surface science
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environmeniial pollution
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accounts of chi@mical research

marine bigfechnology

Figure 4. Cluster visualization obtained by VOSviewer representing the network of journals related
to studies on the topic of biofouling.

When analyzed by keywords coupling, the publications” network map formed three
groups (Figure 5): a red cluster, focused on materials and technologies used to prevent
biofouling; a green cluster, related to a microbiological and ecological perspective; and a
blue cluster, which connects with practical applications and industry-related discussions
on antifouling. It is possible to notice highly connected terms from different groups, like
“ Antifouling performance” (red), “Biofilm” (green), and “Marine Research” (blue), whose
studies are mainly focused on evaluating the effectiveness of antifouling strategies, with a
strong connection with biological aspects and fouling formation in a maritime context.

The network view map of authors and co-citations (Figure 6) shows three larger groups
(red, green, and blue) and two smaller ones (yellow and purple). The red group represents
pioneers in the study of antifouling strategies and coatings with frequent co-citations, which
include European researchers such as Callow M.E., Clare A.S., Rosenhahn A., Rittschof D.,
and Dobretsov S. The green cluster is dominated by Chinese researchers, such as Wang Y.,
Liu Y., Zhang Y., and Wang J., whose research is focused on materials science and biofilm
control. The blue cluster, which has as its central figures the authors Qian P.Y., Hellio C.,
and Xu Y. from different countries, seems to be focused on marine biofouling and biological
antifouling methods, sharing strong connections to the red cluster. The smaller yellow
and purple clusters, less prominent and with less connections, gather contributions in



Coatings 2025, 15, 1185 8 of 35

antifouling research. Also, the high number of co-authored publications (179 of 183; Table 1)

here shows a highly collaborative research field.

ant‘ fo%rformance

biofilm

gg, VOSviewer

Figure 5. Network map of publications obtained through keyword coupling analysis, highlighting
three main groups (“Antifouling performance” (red), “Biofilm” (green), and “Marine Research”
(blue)), generated by VOSviewer.

“pinteuss.
bourgougnon n.
““marechal ;,

& VOSviewer

Figure 6. Author and co-citation network map, highlighting five clusters on the topic of biofouling,
generated from VOSviewer analyses.
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Notably, China emerges as a prominent player (green group; Figure 6) with a substan-
tial contribution to research in this area. The size of each circle correlates with the number
of publications originating from each country, providing a visual representation of scientific
production in antifouling solutions with an emphasis on larval attachment and interaction
with different substrates. This visualization highlights the global distribution of research
efforts and reveals the networks of scientific collaboration that have been consolidating
around addressing the challenges of biofouling.

The prominence of Chinese researchers in the scientific literature on biofouling control
is driven by a combination of strategic, economic, and scientific factors. China’s vast
coastline, along with its rapidly growing shipbuilding and aquaculture industries, under-
scores the critical importance of biofouling management for both operational efficiency
and environmental sustainability [44]. He et al. [45] highlight the pressing need for bio-
fouling mitigation in marine aquaculture, calling attention to the demand for effective and
environmentally friendly solutions. Concurrently, significant government investments in
research and development have established a solid foundation for innovation in antifouling
technologies. This is exemplified by Wang et al. [46], who detail advancements in the use
of antifouling biocoatings.

Collaboration among universities, research centers, and industry has further accel-
erated progress, resulting in integrated strategies to control biofouling in marine and
freshwater systems [6]. Zhang et al. [47], for example, review approaches to managing
Limnoperna fortunei, highlighting research advances and emphasizing the importance of
interdisciplinary and applied perspectives. These efforts have led to concrete innovations,
such as silicone-based antifouling coatings, which show superior performance in marine
conditions. Tian et al. [48] note that these initiatives collectively demonstrate how indus-
trial demand, government incentives, and coordinated research agendas come together to
position China as a global leader in biofouling control technologies.

At the same time, national strategies, including Made in China 2025, prioritize sectors
affected by biofouling, while vertically integrated financing structures ensure that academic
research rapidly converts into industrial applications [49]. This synergy contrasts with
situations where fragmented financing and slower commercialization processes hinder the
pace of innovation [50]. However, China’s trajectory also reflects the global challenges in
this field, especially the difficulty of balancing industrial efficiency with ecological safety
under the regulatory frameworks set by the International Maritime Organization [51].

Furthermore, new technologies like artificial intelligence (AI) are being explored
as potential accelerators for progress in antifouling research. This includes predictive
modeling that incorporates hydrodynamic and ecological variables, as well as identifying
combinations of material properties and toxin-release mechanisms that would be difficult
to discover through traditional experiments [44]. However, these advances face ongoing
challenges such as the limited availability of large, reliable datasets, difficulties in obtaining
real-time environmental data, and regulatory hurdles [52]. Therefore, although Al shows
promise, its effective use still needs proper evaluation.

The concentration of academic publications in East Asian countries like China reflects
their leadership in knowledge production and correlation with technological innovation.
This phenomenon is evident in the significant increase in the volume of publications in this
region of the world, surpassing traditional leaders like the United States [53]. Moreover,
the relationship between scientific research and patent applications serves as a strategic
indicator of how academic advances translate into practical applications, particularly in the
development of technologies to prevent biofouling on submerged surfaces [54,55].
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3. The Most Common Organisms on Marine Structures and Their Effects

Materials submerged in seawater typically develop various layers before fouling
formation, some of which are abiotic (i.e., detritus, organic secretions, etc.) and some biotic,
such as fouling communities. Knowing the organisms that are part of these communities
is important in the management process, as they may require specific solutions. This
is especially because the composition of fouling communities and their interactions and
effects on marine artificial surfaces are the key for understanding protection and control
of biofouling [3,31,56]. Fouling biological communities are commonly classified into two
groups: microfouling and macrofouling [57].

Microfouling, also known as biofilm, is the result of the growth of initial colonizers
such as bacteria and microalgae, which can occur within a few hours after the submersion
of hard substrata in the sea and prepare surfaces for macrofouling [58-62]. Its development
occurs in at least four stages [63,64] (Figure 7). Although the attachment of initial micro-
fouling organisms is often relatively fast, the development and evolution of the microbial
biofilm is a much slower process and may take hours or even days [65].

a \ 4 3\
l. I
Accumul;a aan Qf. Attraction of early microorganisms
polysaccharides, lipias, q (e.g., bacteria, cyanobacteria
proteins, glycoproteins, and diatc'm'w,s rotozéa and rotifers),to
various organic molecules to fhes c;rpanic mo,lecular —_—
form the biofilm 9 y
v .
4 \ -
V. "
Release of substances to Setl § o '" | K i
stimulate recruitment and h © temen_ 0 dunlce uarel? a;tyo es,
settlement of macrofouling occurnrtm)gt atys. erweqss allar
organisms substrate immersion
- _J . W

Figure 7. Steps of microfouling development [53].

Microfouling development generally consists of the formation of a conditioning film
and the settlement of simple microorganisms and phytoplankton [63,66]. This conditioning
film is composed mainly of dissolved organic environmental materials, such as proteins and
carbohydrates, and enables the attachment of other microorganisms (i.e., bacteria, protozoa,
and even microalgae; Figure 8) [66]. Its formation also allows the creation of specific
conditions (e.g., pH, humidity, temperature, and substrate chemical composition) for the
development of microfouling community [67]. Also, during their growth, microorganisms
produce extracellular polymeric substances, which are inserted into the biofilm and act
as a glue for firm attachment on surfaces [68]. Thereafter, photosynthetic organisms,
particularly diatoms, which are the secondary colonizers on surfaces in the sea [69,70], are
considered the earliest photoautotrophs to, along with cyanobacteria, provide energy to
biofilms [71-73].
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Figure 8. Common microbial groups found in marine microfouling: diatoms (I), cyanobacteria (II),
bacteria (III), and protozoa (IV).

The formation of biofilms on hard marine substrata, including natural or artificial sur-
faces, holds great ecological importance because they can play multiple roles in coastal ecosys-
tems [74]. Among these, their contribution to the recruitment of benthic organisms is particu-
larly important, since they facilitate larval settlement and metamorphosis (e.g., [60,61,75,76]).
Biofilms are also a key source of primary production and play an essential role in delivering
ecosystem services such as nutrient recycling and pollutant degradation [77,78]. Their devel-
opment can be influenced by physical, chemical, and biotic factors in the aquatic environment,
with nutrient availability being considered one of the most important [79-81]. Therefore,
biofouling-management measures could be more successful if focused on this stage.

This stimulation by microfouling starts macrofouling recruitment, a relatively rapid
and dynamic biological fouling process that occurs over various scales of time and size,
forming a complex system [56,63,82,83]. The term macrofouling is applied to multicellular
sessile organisms attached to hard substrata and visible to the naked eye [84-86]. For
the macrofouling colonization process, secretions through chemical bonding, electrostatic
interactions, and other comprehensive effects ensure the adhesion of organisms, especially
those represented by calcareous-shell species [87-89].

Fouling microorganisms are highly successful in colonizing substrata, especially the
artificial ones, due to favorable conditions such as adequate oxygen and nutrient availability,
protection of hydrodynamics, and absence of light and predators [57,90]. This process leads
to the formation of an “enclosed layer” of macrofouling that can cause significant damage
and accelerate corrosion, posing serious challenges to artificial structures (e.g., [91-95]).
Studies have demonstrated that macrofouling organisms are responsible for substantial
losses in operational efficiency, particularly on ship hulls, offshore platforms, subsea
equipment, piping systems, and port structures (e.g., [96-101]). Therefore, the economic
implications of marine biofouling are considerable, severely impacting various maritime
industries and activities.

Macrofouling composition and growth is heavily influenced by environmental fac-
tors, but macroalgae and larger invertebrates dominate the settlement on hard substrata.
Commonly, macrofouling (Figure 9) comprises soft-fouling noncalcareous organisms and
hard-fouling organisms, which have a more rigid or calcareous body [102-104]. Soft-fouling
organisms comprise macroalgae (e.g., algae species introduced by ship hulls; [105] and a
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few invertebrates, such as soft corals and anemones (e.g., [106,107]), sponges (e.g., on arti-
ficial structures or being the substrata; [108,109]), ascidians (commonly found in artificial
substrata, especially in mussel farms; [110,111]), and hydroids (e.g., especially on artificial
structures; [112-114]). On the other hand, hard-fouling organisms comprise invertebrates such
as barnacles (e.g., Amphibalanus amphitrite, prevalent in artificial environments along the South
Atlantic coasts; [104,115]), mollusks (e.g., Crassostrea gigas and Limnoperna fortunei, which dom-
inate natural reefs and artificial structures in South Atlantic coastal regions; [114-117]), and
tubeworms (e.g., Hydroides elegans, a common species on fouling; [118,119]). Also, bryozoans
can be part of soft- or hard-fouling and are commonly found on both natural and artificial
substrata, especially plastic debris (e.g., [12,57,120]).

Figure 9. Illustrations of common groups of species found in marine macrofouling: sponges (I),
mollusks (II), barnacles (III), ascidians (IV), polychaetes (V), and bryozoans (VI).

Colonization of different substrata by micro- and macro-fouling communities occurs
during larval propagation phases, where organisms settle, grow, compete for space, and
reproduce [121,122]. This process is influenced by the physical properties (i.e., marine flow,
pressure, light, roughness, form, and even color) and chemical composition (i.e., substances
secreted by microfouling) [12,123-126].

Fouling communities have widespread impacts on artificial structures and surround-
ing environments. Various industrial sectors are affected by the economic costs associated
with the accumulation of organisms on submerged or water-contact surfaces [127,128].
Commonly observed on vessels, oil platforms, pipelines, and other artificial structures,
fouling results in increased weight and friction, structural corrosion, high fuel consumption,
and reduced operational efficiency [129-132]. These impacts necessitate frequent cleaning
and application of antifouling coatings [133].

Another significant negative impact of biofouling is the alteration of local biological
communities, potentially leading to competition for space and resources and causing sub-
stantial biodiversity loss [134,135]. This phenomenon, known as bioinvasion, is a global
problem linked to fouling communities (e.g., [136,137]). Organisms are often transported—
intentionally or accidentally—from one environment to another via ship hulls, oil plat-
forms, and even marine debris [138]. On the other hand, while fouling organisms can
disrupt ecosystems, they may also increase habitat complexity, potentially benefiting certain
native species.
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4. Effective Strategies and Methods for Managing Biofouling

The development of innovative solutions for biofouling control and mitigation has
established itself as a strategic area within applied research, which is strongly associated
with patent protection [139]. Several countries, through specialized institutions such as
the INPI, the EPO, and the WIPO, have registered a growing number of patents related
to antifouling technologies. These innovations range from new functional coatings and
surfaces with micro-textures inspired by marine biology to sustainable, low-environmental-
impact control strategies and automated cleaning systems (Tables 3 and S1).

The integration of bibliometric data with patent analysis is a strategic approach to
guide both public policy and the development of industrial innovation. While bibliometric
studies help map the scientific state of the art, identify emerging trends, knowledge gaps,
and collaboration networks between researchers and institutions, patent analysis offers a
complementary perspective focused on the practical application and intellectual property
protection of technologies. It reveals the pace of innovation, the most dynamic sectors, and
potential commercial opportunities [140].

Patent protection is an institutional instrument for fostering technological innovation
by guaranteeing the intellectual property rights necessary to enable investment in research
and development [141]. In this context, the results of the systematic search for patent
documents are presented in Table 3 and in Table S1. Although the search covered the last
20 years, for the purposes of analysis and synthesis of the information in the main body of
this work, only patents filed in the last five years were considered, as they more accurately
reflect the current state of technology. The complete table, with all results referring to the
last two decades, is available for consultation as Table S1.

Table 3. Patents involving strategies for preventing marine biofouling filed in the last 5 years.

Patent Title Patent Number Locality Reference
System and method for cleaning of biofouling and pathogens WO2024151170 NO * [142]
and use of the system
Membrane treatment method and biofouling suppression WO2024128050 P [143]
method

Biofouling prevention system for vessel W02024117880 KR* [144]

Reduction of biofouling on watercraft W0O2024094622 SE * [145]

Mixed metal oxide coatlngslfor protecting titanium alloys from WO2024079222 ES* [146]

biofouling

Photocatalytic surfaces for anti-biofouling W02024044665 USA * [147]

Roof coating resistant to biofouling EP4519372 EP* [148]

Controlling biofouling in water purification W02023028503 USA * [149]

Biofouling preventing dev1ce' for ships and method for WO2022255578 KR * [150]

manufacturing same

Unde.rwate? robqt for removing marine biofouling frOI.n hulls of WO2022140831 BR * [151]
floating units, with system for containing and capturing waste

A marine system comprising an antl-lf)lf)fouhng light EP4103468 EP * [152]

arrangement that includes a polarizing device

Anti-biofouling in marine applications using uv light source W02021055500 USA * [153]

Marine biofouling prevention apparatus for seawater battery W02020013378 KR * [154]

Compositions for antifouling protection JP2023126913 Jp* [155]

Stainless steel coating with marine organism fouling resistance CN114150306 CN * [156]

function and preparation method thereof
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Patent Title Patent Number Locality Reference
Env1ronment—fr1endl¥ marine antifouling coating and CN112876984 CN * [157]
preparation method thereof
Integrated system for removing and treating marine biofouling NZ802311 NZ * [158]
on submerged metal surfaces
High-transmittance ultraviolet antifouling coating system with
embedded ultraviolet led lamp beads and preparation method CN111117477 CN* [159]
thereof
Modular system for treating efﬂue.nt from cleaning hulls of CA3203772 CA* [160]
floating units
Transparent nanowire architectures for marine anti-fouling US20210262089 USA * [161]
Env1ronment—fr1endly antifouling slow—r.elea.se material as well CN118085433 CN * [162]
as preparation method and application thereof
Device and method for preventing biofouling of marine CN111498071 CN * [163]
propellers
Stratified poly dimethyl siloxane-epoxy coating possessing
anticorrosive & foul release properties in a single coat and their IN202111011420 IN* [164]
method of preparation thereof
Antibacterial polytltanlllazane coating composition and CN115558323 CN * [165]
preparation method thereof
Light emitting unit Conﬁgure.:d to l?e applied to surface area of CN112771309 CN * [166]
marine object
Apparatus and methods to prevent biofouling US20210138519 USA * [167]
Process for biofouling cohibition in marine environments US20210395900 USA * [168]
Biofouling prevention device for marine instrument CN210146517 CN * [169]
Ocean system comprising device f(?r .prevent'mg biofouling light CN115087592 CN * [170]
comprising polarizing device
Marine plastic pipeline with high impact resistance, high
biofouling resistance and high wear resistance and preparation CN112480520 CN* [171]
method thereof
Biofouling prevention device JP2024121088 Jp* [172]
Sensor device WO /2024 /09499 EP * [173]
Method for producing a coating w.1th low surface energy RU0002760600 RU * [174]
against biofouling
Biofouling prevention film structure formed on surface of ship KR1020230066865 KR * [175]
structure
A system for mitigating biofouling SE2350663 SE * [176]
Biological fouling prevention cc.)atlr}g as well as preparation CN115521709 CN * [177]
method and application thereof
Anti-fouling robot WO/2022 /268300 WO * [178]
960 mpa gra'de ultrahigh-strength st.eel plate with marine WO /2023240850 WO * [18]
fouling resistance and manufacturing method therefor
An apparatus for vessel drag reduction and planetary cooling AU2023204574 AU* [179]
Prepargtlon method of phptocgtalytlc material composite CN114985937 CN * [180]
micro-texture anti-microbial attachment surface
Antifouling polymer and composition, polymerizable
monomer, article, method for producing a medetomidine BR1120230074541 A2 BR * [181]

monomer and an antifouling polymer
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Table 3. Cont.

Patent Title Patent Number Locality Reference

Wet and dry synthesis process of lysoglycerophosphocholine
compounds and their o-alkylated derivatives as biocidal BR1020200200453 A2 BR * [182]
additives in antifouling coatings

Antifouling composition and its use, antifouling paint and
method for inhibiting marine biofouling

BR112021009728 7 A2 BR* [183]

* Localities: USA—United States of America; NO—Norway; JP—Japan; KR—Republic of Korea; RU—Russia;
IN—India; EP—European Union; CN—China; AU—Australia; NZ—New Zealand; CA—Canada; SE—Sweden;
ES—Spain; BR—Brazil; WO—International patent.

As observed in Tables 3 and S1, China has gained prominence as the leading patent
filer in the biofouling field. This can be attributed to the country’s significant investments in
research and development focused on marine biotechnology [184], especially in technologi-
cal strategies for the industrial sector, which leads to discoveries of sustainable antifouling
tactics [24,185], corroborating the cloud of co-citations and authors presented in Figure 6.
Furthermore, national incentive policies contribute to the high number of patent filings in
the country, as they reward researchers and companies for registering new technologies,
regardless of their actual technical impact [185,186]. This scenario is reinforced by stud-
ies [186] which highlight that certification as a high-tech company stimulates innovation,
especially in small companies, even though the quality of the resulting innovations can be
quite variable.

Although China has stood out, other countries have also demonstrated significant
advances, especially in research into alternative methods and materials. The United
States, Spain, and global publications follow China in the spotlight [187,188] (Table 3).
This competitive landscape has the potential to foster innovation and influence global
trends in the development of new technologies and patents [31]. Fewer registrations are
noted for South Korea, Russia, and Brazil, with similar levels of activity in these areas.
These data reveal a series of structural, economic, and institutional factors that directly
influence the dynamics of technological innovation and intellectual property protection in
these countries.

In Brazil, although there is a consolidated scientific base, bottlenecks related to con-
tinuous investment in Research, Development, and Innovation (RDé&I), as well as limited
technology transfer infrastructure, still represent obstacles to the conversion of scientific
knowledge into intellectual property assets [181-189]. In addition, the patenting process in
the country is bureaucratic and costly, which can discourage the national and international
registration of innovations [190-192].

Russia has a strong scientific tradition, especially in areas such as advanced materials
and naval engineering [193]. However, the focus of its applied research is often directed
towards strategic defense and energy sectors, which may reduce the number of filings
specifically focused on biofouling control in the civil sector [194]. Furthermore, economic
sanctions and restrictions on access to international markets may limit the incentive for the
global patenting of its technologies [195].

South Korea, while highly developed technologically, may have a lower specific repre-
sentation in the field of antifouling solutions due to the direction of its innovation invest-
ments toward priority sectors such as semiconductors, electronics, information technology,
and urban mobility [196]. Nevertheless, its presence in Table 3 indicates the potential for
expanding maritime and naval applications within the context of its industrialized and
highly export-oriented economy. Therefore, the limited number of patent applications
filed by this country, as well as others, does not necessarily reflect a lack of innovative
capacity, but rather differences in investment priorities, mechanisms for encouraging intel-
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lectual property protection, and the structure of collaboration between universities, research
institutions, and productive sectors.

Many recent effective and promising strategies and methods to address fouling
aim to be low-cost and non-toxic [25-27], as noted in patents EP-4519372 [148] and CN-
112876984 [131]. However, fouling treatment methods can be divided into physical, chemi-
cal, and biological approaches, with the first category including mechanical processes such
as brushing and sandblasting. Other methods are the development of robotic equipment
used in the removal of marine biofouling, described in patents CA 3203772 [160] and
WO/2022/268300 [178], as well as thermal methods that use temperature variations to
remove deposits [197,198].

Other physical-mechanical techniques, such as brushing, high-pressure water jets, and
abrasive blasting, are commonly used to remove surface deposits (e.g., [199-202]), and
are particularly effective in removing all fouling. Mechanical cleaning is widely used due
to its simplicity and efficiency, while thermal cleaning is particularly used for removing
biofilms and scale formed by soluble salts, reducing the need for aggressive chemical
agents [40,199].

Another type of cleaning that can be mentioned uses lasers that deliver radiation to render
biological and/or pathogen fouling harmless, as described in patent WO 2024151170 [142].
Furthermore, high-frequency vibrations or UV-based treatment has been shown to be another
effective method in preventing particle adhesion to surfaces (e.g., [203—207]), which can
prevent fouling. This treatment is described in patent WO 2024044665 [147], in which the
authors address the plurality of photocatalytic particles, where the UV-ray source activates
this plurality to prevent biofouling of plates on maritime vessels.

Chemical methods involve the use of various agents to dissolve or disperse deposited
contaminants, which are commonly applied in the cleaning of membranes and heat ex-
changers [202]. Acids, such as citric and sulfuric acids, are effective in dissolving carbonates
and metal oxides, while surfactants and dispersants are used to remove biofilms and or-
ganic materials [35,197,208-210], as described in the patent US 20170275473 [200]. To reduce
particle adhesion or larval attachment, fouling inhibitors can be introduced into the process
fluid [29,30,32,38,41], as well as pharmacological substances that counteract dopamine
and prevent biofilm release and the attachment of fouling larvae, as described in patent
US 20060045864 [211]. Other chemical methods involve the use of chemical agents to
dissolve or disperse deposited contaminants, which are widely applied in the cleaning of
membranes and heat exchangers [199]. Additionally, Surfactants, as described in the patent
US 20170275473 [200], and other components, such as medetomidine, can also be used as
antifouling agents, as described by [212] in patent WO 2015011178.

Furthermore, biocides such as chlorine and glutaraldehyde are widely used in water
treatment industries to control biofilms, particularly in membranes and cooling systems,
inhibiting microbial growth and reducing biofouling [43,201,213-215]. These chemical
approaches offer versatile solutions for managing inorganic fouling and biofilm forma-
tion. However, traditional biocides contained in antifouling paints, although effective, are
sources of persistent marine pollution, as the accumulation of heavy metals, such as copper,
zinc, and lead, and toxic compounds such as diuron, igarol, chlorothalonil, tributyltin
(TBT), etc., can negatively affect entire ecosystems [216-218].

Biological treatment methods, including the use of enzymes and microorganisms,
have also been explored as alternatives for the degradation of organic deposits, particularly
biofilms. These methods are considered environmentally friendly and have potential for
low-impact applications [42,197,207]. These methods can be observed in the research of
patent 101564050 [219], regarding the preparation of a biofouling inhibitor from an extract
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of the species Ulva pertusa, as well as the composition of an antibacterial polytitanazane
coating, considered in the research of Tang et al. [165] under patent 115558323.

Specific enzymes, as observed by Characklis [220] long ago, can degrade biofilms
and organic deposits without damaging surfaces. Furthermore, competitive microor-
ganisms [221-223] and some substances of microbial origin [21] have been proposed as
strategies to inhibit the growth of unwanted biofilms. These biological approaches offer a
promising and environmentally friendly solution for the management of biofouling and
organic contaminants.

The combined application of different methods has proven to be an effective approach
for fouling control. Studies indicate that the integration of chemical and mechanical clean-
ing can optimize scale removal and increase operational efficiency [224-226]. Furthermore,
modifying surfaces with antifouling coatings is a promising strategy for preventing scale
formation [35,36,227]. An electrochemical approach used low-dose antibiotics combined
with a weak electric field to disrupt the formation of biofilms or mature biofilms [32]. Other
innovative solutions, such as hydrophobic and infused porous surfaces and the use of
nanoparticles and superhydrophobic coatings have also demonstrated efficiency in reduc-
ing fouling formation [34,37,228,229]. In a method mentioned in patent US8309625 [230],
nanoparticles are provided in a water-soluble polymer to prevent the accumulation of
marine organisms.

Another crucial aspect of fouling mitigation is optimizing the operating conditions of
industrial processes. Controlling the temperature, fluid velocity, and chemical composition
of processed media can significantly reduce contaminant deposition rates [231-233]. Tech-
nological advances, such as smart sensors and real-time monitoring systems, enable early
detection of fouling and efficient application of preventive measures [39]. This technology
is described in patent W(02022255578 [150], which refers to an electrode placed on the
surface area of a ship’s hull, where it receives a trigger signal, delivering an electromagnetic
wave to prevent biofouling.

The integration of science and technology in biofouling control needs stronger part-
nerships among research institutions, the production sector, and regulatory agencies to
develop innovative and sustainable solutions. In applied research, it is important to invest
in studies that include field testing in real conditions, material durability modeling, and
life cycle assessment. This approach speeds up the transfer of promising technologies
to industrial scales and helps meet new regulatory requirements [234]. Running pilot
projects at an industrial scale to test solutions in real environments, and creating protocols
for scaling up the production of new materials or coatings is also key to proving feasi-
bility [235]. Modeling studies show the potential of these technologies by emphasizing
economic and operational benefits, such as lower fuel use and greenhouse gas emissions on
ships, longer service life for aquaculture equipment, heat exchangers, and piping, and less
frequent cleaning and maintenance. These advantages make investing in new solutions
more appealing to the industrial sector [6].

Studies [236,237] demonstrated that the use of artificial intelligence to predict de-
posit formation has great potential for reducing costs and extending equipment lifespan;
therefore, it could be the next step in management. Moreover, integrating monitoring and
modeling is important to reducing biofouling management costs and increase the effective-
ness of control measures [27,31,33]. The most effective approaches combine prevention and
treatment strategies.

5. Sustainable Approaches to Biofouling Control

The composition of antifouling paints has historically been based on the use of toxic
chemical biocides, which has raised growing concerns about their environmental impacts.
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TBT, or tributyltin, an organic compound used as a biocide in antifouling coatings since
the 20th century, emerged as one of the most effective compounds for controlling biofoul-
ing in submerged structures due to its excellent antifouling properties [238]. However,
subsequent studies classified it as the most harmful anthropogenic contaminant among
those intentionally introduced into aquatic environments, due to its high toxicity compared
to other chemicals used at that time [239]. This compound accumulates in the tissues of
aquatic organisms, compromises the immune systems of marine mammals, and alters the
balance of coastal ecosystems [20,240,241].

As a result, its use was progressively restricted until it was formally banned in 2008
by the International Marine Organization (IMO) [238]. Following this ban, there was an
increase in the use of alternatives based on metal oxides, such as compounds containing
copper, zinc, and other heavy metals [231]. Although they have lower toxicity compared
to TBT, these substances still pose a risk to environmental quality as the accumulation of
heavy metals in sediments and chronic exposure of aquatic species to them can generate
sublethal effects, behavioral changes, bioaccumulation, and potential adverse effects on
human health [231].

Research has been conducted in a wide range of fields to assess the impact of toxic
biocides from antifouling paints. Most of these studies involve chemical determinations to
quantify the presence of these biocides in water, sediments, and biota [242-244]. Research
conducted to assess their toxicity on various marine organisms demonstrated that many of
them affect non-target species [245].

Therefore, growing concern about the contamination of aquatic ecosystems has driven
the strengthening of regulatory policies at the international level. Since the United Na-
tions Conference on Environment and Development (Rio-92), measures to protect ma-
rine and coastal environments have been taken, and the IMO has instituted resolutions
A.774(18) [246] and A.868(20) [247], which seek to control and manage ballast water to
minimize the transfer of harmful aquatic fouling organisms. In addition, international
legislation, such as the International Convention for the Prevention of Pollution from Ships
(MARPOL), has progressively restricted the use and discharge of biocidal substances in
the marine environment [248]. For example, the updated guidelines of the International
Convention on the Control of Harmful Anti-fouling Systems on Ships (AFS Convention)
also prohibit the application of antifouling systems that release toxic compounds above
internationally established limits [249].

In this context, several types of coatings have been developed as sustainable alterna-
tives for biofouling control. Polymeric coatings emerge as alternatives because they are
affordable, non-toxic, biocompatible, and easy to produce [250]. Among them, amphiphilic
coatings stand out because they combine hydrophobic and hydrophilic domains, which
reduce the likelihood of bacterial biofilm formation through surface heterogeneity and
microphase segregation [251,252]. Coatings based on polydimethylsiloxane (PDMS) modi-
fied with polyethylene glycol (PEG) or polyglycerol, as well as amphiphilic copolymers
obtained by Reversible Addition-Fragmentation Chain Transfer (RAFT), also demonstrated
high antifouling efficacy [253-255].

Some approaches include hydrolyzable coatings, which are degraded in seawater,
promoting continuous self-cleaning, and the use of nanomaterials with reduced graphene
oxide/silver nanoparticles (rGO/AgNPs) and 3 wt% poly(N-isopropyl acrylamide)-thiol
(PNIPAM-SH) in an epoxy-silicon resin matrix with rGO/AgNPs, with antimicrobial and
anticorrosive action [256]. Photocatalysis with graphitic carbon nitride (g-C3Ny) has also
been shown to be efficient in destroying microorganisms under visible light without toxic
effects [257]. Furthermore, zwitterionic polymers, PEG, or peptoid coatings, which form
hydration layers that hinder the initial adhesion of organisms [250], and self-repairing
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systems based on PU-silicon have been shown to increase the durability and resistance of
materials in aggressive marine environments [258].

Another sustainable solution aimed at reducing hydrodynamic drag and biofouling
on vessels was the development of a spontaneous and fast-acting air film based on su-
perhydrophobic surfaces with a serial brachistochrone pattern [259], which enables the
formation of a stable film that reduces frictional resistance by up to 27% and achieves up to
80% antifouling efficiency. Furthermore, this solution can serve as a tool for minimizing
energy consumption and carbon emissions, standing out as a promising alternative for
advancing sustainable navigation on a global scale [260,261].

The search for more sustainable antifouling strategies has also shifted towards
biomimetic solutions, which replicate mechanisms found in nature to prevent biofoul-
ing without relying on biocides. These approaches are mainly based on two principles:
creating low-adhesion surfaces inspired by the microstructure of shark skin that prevents
organism attachment [262,263], and developing dynamic, self-cleaning materials such as
lubricated impregnated porous surfaces (SLIPS) [257,264,265]. The effectiveness of these
strategies stems from their non-biocidal physicochemical actions, replacing toxicity with
surfaces designed with intelligent properties [228,266].

Lichens and their symbiotic microorganisms have emerged as sources of bioactive
compounds with potential application in biofouling control. These symbionts produce
compounds capable of inhibiting the formation and growth of biofilms, enabling their
use in the development of antifouling coatings [267]. Among these compounds, natural
phenols, which contain hydroxyl groups and aromatic rings, exhibit antibacterial activity,
acting as free radical scavengers and hydrogen donors, characteristics that contribute to
the inhibition of microbial colonization on submerged surfaces [268].

In addition to chemical compounds, enzymes produced by bacteria and fungi act by
degrading the natural adhesives produced by fouling organisms, hindering their attach-
ment to submerged surfaces [250]. These include proteases, lipases, cellulases, amylases,
oxidoreductases, hydrolases, and AHL-acylases, the last being involved in the degrada-
tion of N-acyl homoserine lactones, which are signaling molecules essential for microbial
communication and biofilm formation. Proteases, in particular, have been identified as
the main active agents in enzymatic formulations due to their high efficacy in breaking
down protein adhesion structures. Studies on serine proteases, such as Alcalase®, have
demonstrated significant inhibition of Ulva sp. spore adhesion and of Balanus amphitrite
larvae attachment both in laboratory and field tests, thereby demonstrating its practical
potential as a component in antifouling coatings [267,269-271].

Another approach involves using nanotechnology to create coatings with antifouling
properties. Nanomaterials can be designed with hydrophobic surfaces able to prevent
microorganisms from adhering, or with nanobiocides capable of eliminating organisms on
contact [272]. Materials such as silicone nanocomposites with graphene oxide or zinc oxide
(Zn0O) form effective physical barriers and simultaneously exhibit antimicrobial properties,
expanding their applicability in marine environments [273,274].

Among the most promising strategies is the use of secondary metabolites produced by
terrestrial or marine organisms [275,276]. These metabolites, although not essential for the
survival of organisms, confer adaptive advantages and act through natural mechanisms
to inhibit the attachment of encrusting microorganisms and larvae [185]. Compounds
such as triterpene glycosides, halogenated furanones, low-molecular-weight brominated
molecules, proteins, and polysaccharides with antiadhesive properties have been identified
in different groups, including bacteria, algae, sponges, cnidarians, echinoderms, tunicates,
and bryozoans [277].
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An example of these strategies is the use of microorganisms of the genus Pseudoal-
teromonas, which produce a wide range of compounds with antibiofilm and antifouling
activity, including protein antibiotics, pigments, small brominated compounds, and toxins
such as neurotoxins and tetratoxins, which have been shown to be specific targets of bio-
fouling groups [278-280]. These bacteria synthesize high-molecular-weight (100-200 kDa)
proteins, bioactive polysaccharides, and thermostable and thermosensitive compounds
with molecular weights ranging from <500 Da to 10 kDa. Such compounds have demon-
strated efficacy in inhibiting the adhesion of bacteria, algal spores, and barnacle larvae such
as those of B. amphitrite, both in laboratory and field tests, especially when incorporated
into paint matrices or hydrogels [281].

The use of secondary metabolites produced by the species Azadirachta indica (Neem)
and Pongamia pinnata (Karanjin) has demonstrated antifouling potential with lower envi-
ronmental toxicity and favorable biodegradability [217,282]. These compounds represent a
promising line of research for the development of more sustainable antifouling coatings,
aligned with international environmental protection guidelines and the transition to a
low-environmental-impact economy [276].

Additionally, the development of natural coatings and green paints is gaining ground,
combining natural compounds with less toxic metals. One example is the combination of
quebracho tannins with copper, which reduces the copper concentration in formulations by
up to 40 times while maintaining antifouling efficacy and reducing environmental impacts.
These coatings also explore the controlled release of bioactive compounds and the use of
polymeric matrices to immobilize natural ingredients [185,267].

The role of biotechnology and combinatorial chemistry has become increasingly rel-
evant in expanding the use of natural product antifoulants (NPAs). By characterizing
the structure of natural compounds, it is possible to synthesize more stable and potent
analogs, as well as express genes responsible for the production of antifouling metabolites
in heterologous organisms. This advance contributes to scaled production, with economic
viability and reduced environmental impact, consolidating the microbial approach as a
sustainable and promising solution for marine fouling control [185].

Recent studies show that coatings based on copper selenide (CuSe) nanoparticles,
embedded into polymer matrices, can release ions in a controlled manner for up to 80 days,
providing sustainable antifouling properties [283]. However, large-scale production of
these materials requires carefully controlled manufacturing processes to ensure uniformity
and long-lasting antifouling effects. Additionally, economic viability depends on optimiz-
ing these processes, lowering raw material costs, and developing application methods
suitable for various substrate types and the shapes of offshore structures like ship hulls
and platforms [275].

From a regulatory perspective, replacing traditional biocidal coatings faces challenges
related to the approval process for new materials, especially regarding environmental
impacts and toxicity. Environmental agencies require thorough data on the ecotoxico-
logical effects of nanomaterials or functionalized surfaces, which involves standardized
short- and long-term testing, as well as the monitoring of secondary effects on non-target
organisms [284,285]. Additionally, international standards for navigation and maritime
structures establish performance criteria that must be met, potentially delaying the com-
mercial deployment of innovative technologies [44,286].

Advancement in this field requires an interdisciplinary approach that combines micro-
biology, materials science, surface engineering, computational modeling, and data science.
Microbiology is key to understanding initial microbial colonization and how biofilm com-
munities interact with different textures or chemical compositions [287,288]. Materials
science helps design surfaces with mechanical and chemical properties suitable for real-
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world applications. Data science and predictive modeling enable the analysis of large
amounts of performance data under various environmental conditions, forecast durabil-
ity, and guide modifications to coating designs [289]. This interdisciplinary approach is
vital for creating effective, safe, economically feasible, and scalable antifouling solutions,
supporting a gradual shift from traditional technologies to sustainable, high-performance
alternatives [289-292].

In this scenario, there is a clear need for closer collaboration among academia, industry,
and regulatory agencies to accelerate technology transfer and ensure that these scientific
advances turn into practical and environmentally competitive solutions [293]. Therefore, the
convergence of science and industrial innovation points to a future where biofouling control
not only cuts operational costs and emissions related to maritime transport but also helps
protect biodiversity and supports the shift toward sustainable maritime practices [275].

6. Conclusions

This study highlighted a rise in scientific production on marine biofouling control
strategies since 2019, with China leading in publications and patent filings. However,
the concentration of patents and publications in just a few countries underscores global
disparities in investment, innovation policies, and technology transfer. Despite the progress,
many solutions still lack full-scale validation and comparative analyses of durability and
long-term ecological effects.

Given the complexity of fouling processes, most research still concentrates on
laboratory-scale studies, and there is a lack of comparative analyses on the durability,
long-term effectiveness, and ecological impacts of new materials such as nanostructured
coatings, biomimetic surfaces, and natural composites. The complexity of biofilm—substrate
interactions and the effects of environmental variables like temperature, salinity, and hy-
drological dynamics are also insufficiently studied. This calls for ongoing research and
innovation efforts focused both on a deeper understanding of fouling mechanisms and on
developing new materials and technologies with reduced environmental impact.

In the future, it is important to prioritize long-term field studies, systematically eval-
uate environmental impacts, and incorporate hybrid technologies, such as antifouling
surfaces combined with controlled enzyme release. Using artificial intelligence for predic-
tive modeling and encouraging multidisciplinary international collaborations are crucial for
developing effective, scalable solutions that meet regulatory and sustainability standards
for marine ecosystems.
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