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Abstract

To address the challenge of long-term stiffness retention of subgrades in humid–hot cli-
mates, this study evaluates expansive soil stabilized with construction and demolition
waste (CDW), focusing on the resilient modulus (Mr) under coupled stress states and
wetting–drying histories. Basic physical and swelling tests identified an optimal CDW
incorporation of about 40%, which was then used to prepare specimens subjected to
controlled. Wetting–drying cycles (0, 1, 3, 6, 10) and multistage cyclic triaxial loading
across confining and deviatoric stress combinations. Mr increased monotonically with both
stresses, with stronger confinement hardening at higher deviatoric levels; with cycling,
Mr exhibited a rapid then gradual degradation, and for most stress combinations, the
ten-cycle loss was 20%–30%, slightly mitigated by higher confinement. Grey relational
analysis ranked influence as follows: the number of wetting–drying cycles > deviatoric
stress > confining pressure. A Lytton model, based on a modified prediction method,
accurately predicted Mr across conditions (R2 ≈ 0.95–0.98). These results integrate stress
dependence with environmental degradation, offering guidance on material selection (ap-
proximately 40% incorporation), construction (adequate compaction), and maintenance
(priority control of early moisture fluctuations), and provide theoretical support for durable
expansive soil subgrades in humid–hot regions.

Keywords: subgrade; construction and demolition waste; stabilized expansive soil;
wetting–drying cycles; resilient modulus

1. Introduction
The resilient modulus (Mr) is a primary indicator of subgrade stiffness and has long

been central in pavement engineering [1,2]. Mr directly informs fatigue cracking predictions
and structural layer thickness design [3], and insufficient Mr is a key contributor to rutting
distress [4]. In the humid and hot regions of southern China, for example Hunan and
Jiangxi, frequent rainfall and high climatic variability threaten subgrade stability, and accu-
mulating evidence shows that soil type and environmental exposure exert non-negligible
influences on stiffness performance [5]. From the perspectives of design, construction, and
maintenance, elucidating how subgrade stiffness evolves under wetting and drying cycles
is therefore of clear engineering significance.

Expansive soil is widely distributed across these regions [6,7] and is often used as
subgrade fill when conventional aggregates are scarce [8]. Yet its fissured fabric with
swelling and shrinkage, which is characterized by multiple crack networks, water-induced
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expansion, and drying contraction, renders subgrades vulnerable to stiffness deteriora-
tion under repeated traffic loading [9,10], thereby posing substantial risks to highway
performance [11]. Chemical stabilization using cement or quicklime is common practice to
ensure service stability and durability [12,13]; however, the efficacy of such treatments is
time-dependent and may impose environmental burdens.

Meanwhile, rapid urbanization has sharply increased construction and demolition
waste (CDW), and the challenges of CDW disposal and reuse are constraining sustainable
urban development [14]. Processing CDW into recycled aggregates through crushing,
screening, and impurity removal enables road engineering applications that consume
large volumes of waste and also mitigate the impacts associated with quarrying and
extensive earthwork, which in turn reduces costs, energy use, and emissions [15–19].
Recent studies further indicate that incorporating CDW can improve problematic soils
from hydromechanical and mechanical perspectives [20,21], thereby providing systematic
evidence for engineering application [22].

Against this backdrop, this study investigates expansive soil from a highway recon-
struction project in Hunan that is stabilized with locally sourced CDW. Distinct from prior
efforts that considered swelling reduction or strength gain in isolation, the present work
addresses the lack of an integrated framework that couples stress dependence with envi-
ronmental degradation for CDW-stabilized expansive soils. A laboratory program was
designed to identify the optimal replacement range using swelling and hydromechanical
indices, and to evaluate the combined influence of stress state and wetting and drying
cycles on the resilient modulus by means of multistage cyclic triaxial tests. Grey relational
analysis was then employed to rank factor sensitivity, thereby establishing a stress and
environmental degradation framework that advances both mechanistic understanding
and engineering.

2. Materials and Methods
2.1. Materials

Untreated soil was sampled from a first-class highway reconstruction project in south
central China. Basic physical properties and swelling characteristics were determined in
accordance with the Test Methods of Soils for Highway Engineering (JTG 3430–2020) [23]
and are summarized in Table 1. The soil is classified as weakly expansive and, in its native
state, is unsuitable for direct subgrade filling.

Table 1. Basic physical properties of expansive soil.

Specific
Gravity

Liquid
Limit (%)

Plastic
Limit (%)

Maximum
Dry

Density
(g/cm3)

Optimum
Moisture
Content

(%)

Free
Swell

Index (%)

Clay
Content

(%)

Silt
Content

(%)

Sand
Content

(%)

2.7 42.3 24.8 1.68 14.8 46.7 25.4 39.8 34.8

The CDW was obtained from residential demolitions along the project corridor, Table 2
shows the basic physical properties of CDW. The material, composed primarily of concrete
fragments, bricks, and mortar, was crushed, sieved, and cleaned to meet specimen size
and triaxial apparatus requirements, while removing visible contaminants (for example,
gypsum board and coated debris) to reduce the risk of excess chlorides, sulfates, and
heavy metals. X-ray diffraction (Bruker D8 Advance, Billerica, MA, USA) of the processed
CDW (Figure 1) identified quartz, calcite, illite, and potassium feldspar as the dominant
crystalline phases, consistent with masonry and concrete debris.
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Figure 1. Results of compositional analysis tests.

Leaching tests on the CDW (Figure 2) quantified Cd, Pb, and As. The maximum
concentrations (Cd 0.09 µg·L−1; Pb 2.8 µg·L−1; As 17 µg·L−1) were below the Class I
groundwater thresholds specified in GB/T 14848–2017 (Cd 1 µg·L−1; Pb 10 µg·L−1; As
50 µg·L−1) [24]. Where site conditions suggest possible exceedances, mitigation can include
selective source control (excluding gypsum, painted or coated debris, and treated timber),
enhanced pre-treatment such as washing and fine removal, and blending with binders or
additives that immobilize harmful ions.

 
(a) (b) 

 
(c) 

Figure 2. Leaching test results: (a) Cd; (b) Pb; (c) As.
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To minimize size effects and ensure gradation repeatability, the maximum particle size
was limited to ≤20 mm, i.e., less than one-fifth of the specimen diameter (150 mm) [25].

In addition, a 3D laser scanning test was performed on 200 randomly selected CDW
particles to obtain particle shape parameters, Figure 3 shows the experimental apparatus,
and the results are shown in Figure 4. The particle shape distribution was relatively
concentrated, with most particle sphericity values ranging from 0.67 to 1. The majority
of particles exhibited bulky shapes, while a smaller proportion were disc-shaped, and
elongated or flake particles were rare. Due to resource limitations, the influence of particle
shape on the test results was not considered in this study but will be investigated in
future research.

 

Figure 3. Apparatus for 3D laser scanning test.
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Figure 4. Classification results of CDW particle shapes.

Table 2. Basic physical properties of CDW.

Natural
Moisture

Content (%)

Specific
Gravity

Coefficient of
Uniformity

Coefficient of
Curvature

Fine Content
(%)

Sand Content
(%)

Gravel
Content

(<20 mm) (%)

13.5 2.26 2.45 0.79 8.5 31.8 59.7
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2.2. Determination of the Optimal Gradation of the Stabilized Soil
2.2.1. Influence of CDW Content on Swelling Behavior

Mixtures with CDW replacement levels of 0%, 20%, 30%, 40%, and 50% were prepared,
and the gradation curves of these mixtures are shown in Figure 5. The free swell ratio,
unconfined swell ratio, confined (loaded) swell ratio, and swelling pressure were measured
(Figure 6). With 50% CDW, the free swell ratio decreased from 45.7% to 18.79%, the
unconfined swell ratio decreased from 11.20% to 8.27%, the loaded swell ratio decreased
from 1.75% to 0.437%, and the swelling pressure decreased from 88.9 kPa to 26.00 kPa.
These results indicate a monotonic suppression of swelling with increasing CDW content.
Notably, for contents between 30% and 50%, the free swell ratio remained below 40%, which
satisfies the deformation control requirement for subgrade fill in JTG/T 3610–2019 [24].
The reduction mechanism has two main aspects: first, partial replacement of clay-sized
fractions lowers mineral specific surface area and the thickness of the adsorbed water film,
which weakens double-layer interactions; second, the coarse particle skeleton provides
interlocking and frictional restraint, so the loaded swelling shows higher sensitivity to
CDW content [25].
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Figure 5. Gradation curves of mixtures with different CDW replacement levels.

 
(a) (b) 

 
(c) (d) 

Figure 6. Swelling characteristics of CDW-stabilized expansive soil at different incorporation ratios:
(a) free swell index; (b) unconstrained swell ratio; (c) constrained swell ratio; (d) swelling pressure.
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2.2.2. Influence of CDW Content on Physical Properties

Atterberg limits, heavy compaction characteristics, and four-day soaked CBR were
determined in accordance with JTG 3430–2020 (Figure 7) [23].

i. Atterberg limits showed an overall decline. From 0% to 50% CDW, the liquid limit
decreased from 42.3% to 23.1%, the plastic limit decreased from 24.8% to 17.4%, and
the plasticity index decreased from 17.5 to 5.7, indicating reduced plasticity and
moisture sensitivity.

ii. Compaction characteristics first increased and then decreased. The maximum dry
density ranged from 1.68 to 1.77 g·cm−3 and reached a peak value of 1.77 g·cm−3

at 40% CDW, which is about 5.4% higher than that of untreated soil. The optimum
moisture content decreased from 14.8% to 8.8%, i.e., a reduction of 40.5%. This pattern
suggests that a moderate content promotes a dense coarse skeleton, whereas excessive
content leaves insufficient fines to fill voids, so the density declines.

iii. Bearing capacity improved markedly and exhibited an optimum. Soaked CBR in-
creased with content and then slightly decreased, reaching 25.1% at 40% CDW, which
is about 5.23 times that of untreated soil, and then slightly falling to 23.4% at 50%
CDW. The slight decrease can be inferred from existing studies to result from fine
deficiency and localized particle breakage [26]. Considering both swelling suppres-
sion and structural capacity, 40% CDW was adopted as the optimum content for
subsequent tests.

 
(a) 

 
(b) (c) 

 
(d) 

 
(e) (f) 

Figure 7. Physical properties of CDW-stabilized expansive soil at different incorporation ratios:
(a) liquid limit; (b) plastic limit; (c) plasticity index; (d) maximum dry density; (e) optimum moisture
content; (f) CBR.

2.3. Wetting and Drying Protocol and Resilient Modulus Testing

Based on Section 2.2, all subsequent tests used 40% CDW. Cylindrical specimens with
a diameter of 150 mm and a height of 300 mm were prepared via static compaction to a
target degree of compaction of 95% at the optimum moisture content corresponding to
the 40% mix. Layered compaction and checks of mass and volume were employed to
ensure uniformity, and deviations in the achieved compaction and moisture content were
controlled within ± 1%. After forming, specimens were sealed to allow internal moisture
to equilibrate.
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The numbers of wetting and drying cycles were set to Ndw = 0, 1, 3, 6, and 10. This
choice was made with reference to previous studies, which consistently report that the
mechanical properties of geomaterials tend to stabilize after about five cycles, and that
ten cycles are widely adopted in laboratory practice as a reasonable and conservative
approximation of long-term degradation trends [4,5,27–29]. Each cycle included three steps.

i. Humidification: the specimen was sealed in a controlled humidity environment until
its mass stabilized, which required about 48 h.

ii. Air drying: natural drying at 25 ◦C until the mass returned to the value measured
before humidification.

iii. Equalization: sealing for 24 h to equilibrate the internal moisture state.

After the prescribed cycles, resilient modulus testing was conducted.
The resilient modulus (Mr) was obtained using a Dynatriax 100/14 automated cyclic

triaxial system (Figure 8). A half sine pulse was applied at a frequency of 1 Hz with a load
duration of 0.2 s and a rest period of 0.8 s. Confining and deviatoric stress sequences are
shown in Table 3. In accordance with JTG 3430–2020, the stable response from cycle 96 to
cycle 100 in each stress state was used to compute the recoverable axial strain εR, and Mr

was then calculated by using Equation (1).

Mr =
σd
εr

, (1)

where Mr is the resilient modulus, σd is the peak cyclic deviator stress, and εr is the peak
resilient axial strain.

 

Figure 8. Schematic of triaxial apparatus.

Table 3. Resilient modulus loading sequence recommended by JTG 3430–2020.

Seq. No.
Confining
Pressure,
σ3 (kPa)

Contact Stress,
0.2σ3 (kPa)

Cyclic Deviator
Stress,

σd (kPa)

Principal Stress
Ratio,

r = σ1/σ3

No. of Cycles

0 (Preloading) 30 6 60 3 1000
1 15 3 8 1.5 100
2 30 6 15 1.5 100
3 45 9 23 1.5 100
4 60 12 30 1.5 100
5 80 16 40 1.5 100
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Table 3. Cont.

Seq. No.
Confining
Pressure,
σ3 (kPa)

Contact Stress,
0.2σ3 (kPa)

Cyclic Deviator
Stress,

σd (kPa)

Principal Stress
Ratio,

r = σ1/σ3

No. of Cycles

6 15 3 15 2 100
7 30 6 30 2 100
8 45 9 45 2 100
9 60 12 60 2 100

10 80 16 80 2 100
11 15 3 30 3 100
12 30 6 60 3 100
13 45 9 90 3 100
14 60 12 120 3 100
15 80 16 160 3 100

3. Results and Discussion
3.1. Effect of Stress State on Resilient Modulus

The resilient modulus (Mr) shows clear dependence on the stress state (Figure 9).
Using the case without wetting and drying cycles (Ndw = 0) as an example, when the
stress ratio r = σd/σ3 equals 0.5, increasing the confining pressure from 15 kPa to 80 kPa
raises Mr from 49.95 MPa to 126.54 MPa, an increase of about 153 percent. At r = 1.0, the
corresponding Mr increases from 54.87 MPa to 152.50 MPa, an increase of about 178 percent.
At r = 2.0, Mr increases from 60.23 MPa to 180.74 MPa, an increase of about 200 percent. This
monotonic rise persists at all levels of Ndw. Only minor fluctuations appear at low confining
pressure and intermediate cycle counts, which do not alter the overall trend. Across stress
ratios, confining pressure not only elevates Mr but also exhibits a stronger hardening effect
at higher deviatoric stress, indicating a coupling between confining pressure sensitivity
and the level of deviatoric stress [30].

At fixed confining pressure, Mr is also sensitive to deviatoric stress. At σ3 = 45 kPa,
when σd increases from 23 kPa to 45 kPa and then to 90 kPa, Mr equals 86.69, 98.96, and
119.77 MPa. Relative to the lower deviatoric stress case, Mr increases by about 14 percent
and then by about 38 percent. At σ3 = 80 kPa, Mr equals 126.54, 152.50, and 180.74 MPa
for the same sequence of σd, which corresponds to increases of about 21 percent and
about 43 percent. A larger deviatoric stress promotes greater tangential contact stiffness
and a larger effective load-bearing area; interlocking and resistance to rolling become
stronger [31], which reduces the recoverable strain per unit deviatoric stress and thus raises
Mr. The joint features of positive correlation with confining pressure and with deviatoric
stress, together with their coupling, agree with stress-dependent empirical forms widely
used for unbound layers. In the formulations associated with Hicks and Monismith and
with Uzan, Mr increases as a power of bulk or effective confining stress and shows positive
sensitivity to the level of shear stress [32].

3.2. Effect of Environmental History on Resilient Modulus

In a given stress state, Mr declines with an increasing number of wetting and drying
cycles (Figure 10). The decline is faster at the beginning and becomes slower later. Under a
high-stress combination (σ3 = 80 kPa, σd = 160 kPa), when Ndw increases from 0 to 10, Mr

decreases from 180.74 MPa to 151.16, 141.00, 135.29, and 129.06 MPa. The overall reduction
is about 29 percent. Under a low-stress combination (σ3 = 15 kPa, σd = 8 kPa), Mr decreases
from 49.95 MPa to 36.25 MPa as Ndw increases from 0 to 10, a reduction of about 27 percent.
For most stress combinations, the total reduction falls between 20 percent and 30 percent,
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with the initial drop from Ndw = 0 to Ndw = 1 being the most prominent. For example, at
σ3 = 80 kPa and σd = 40 kPa, Mr decreases from 126.54 MPa to 107.35 MPa, a reduction
of about 15 percent. From Ndw = 3 to Ndw = 10, it decreases slowly from 95.98 MPa to
89.64 MPa. In general, combinations with higher confining pressure show a slightly smaller
reduction, which indicates that confining pressure can delay the stiffness loss induced by
wetting and drying.
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Figure 9. Resilient modulus of each specimen group under different stress states: (a) Ndw = 0;
(b) Ndw = 1; (c) Ndw = 3; (d) Ndw = 6; (e) Ndw = 10.
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Figure 10. Resilient modulus of each specimen group under different wetting and drying cycles:
(a) σ3 = 80 kPa, σd = 160 kPa; (b) σ3 = 15 kPa, σd = 8 kPa.

Mechanistically, the influence of wetting and drying can be plausibly interpreted
through three pathways, as supported by previous studies on expansive soils and similar
geomaterials. First, repeated humidification and drying reduce matric suction and alter
the relation between suction and water content, which lowers the effective stiffness [33,34].
Second, swelling and shrinkage produce microcracks and reconfigured pores that disrupt
the continuity of force chains and lower effective contact stiffness. Under higher confining
pressure, the force chains become more continuous and are more readily compacted, which
leads to a slower rate of degradation [35,36]. Third, edge rounding and localized micro-
crushing reduce interlocking and frictional restraint and thereby increase the recoverable
strain [37,38]. Prior studies have shown that Mr is highly sensitive to moisture and suction,
that wetting and drying cycles cause cumulative degradation, and that a suitable level of
confining pressure can delay this process [39]. The present data reproduce these behaviors
across different confining pressures, which supports the development of a degradation
model that incorporates both the stress state and the environmental history.

In addition, Abbey et al. investigated expansive soils stabilized with sustainable
cementitious waste materials for use as subgrade fill. Their results showed that after ten
wetting–drying cycles, Mr decreased by approximately 50% [40]. This comparison indicates
that using CDW as a stabilizer offers a relative advantage, as the modulus reduction
observed is less severe, thereby supporting the suitability of CDW-stabilized expansive soil
for subgrade applications.

3.3. Sensitivity of Dynamic Resilient Modulus to Influencing Factors

To compare how confining pressure, deviatoric stress, and the number of wetting
and drying cycles affect the Mr of CDW-stabilized expansive soil, a grey relational anal-
ysis is conducted to rank factor importance [41]. The goal is to identify which factor
primarily weakens stiffness in humid and hot regions and to provide guidance for durable
subgrade design.

The procedure follows four steps. First, the Mr measured under each working con-
dition is taken as the reference sequence X0 = {x0(k), k = 1, 2, . . . n}. Each influencing
factor—confining pressure, deviatoric stress, and the number of wetting and drying cycles—
is taken as a comparison sequence Xi = {xi(k), k = 1, 2, . . . n}.

X̃i(k) =
xi(k)
xi(1)

; X̃0(k) =
x0(k)
x0(1)

, (2)

where X̃i(k) is the comparison sequence normalized to a dimensionless form by initial
value processing, X̃0(k) is the reference sequence normalized to a dimensionless form
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by standardization, k is the index of the working condition, and i is the index of the
influencing factor.

Second, we apply Equation (3) to obtain the proximity measure between each factor’s
initial value-normalized sequence and the corresponding test results:

∆i(k) =
∣∣∣X̃i(k)− X̃0(k)

∣∣∣, (3)

Third, we apply Equation (4) to obtain the grey relational coefficient:

ξi(k) =
∆min + ρ∆max

∆i(k) + ρ∆max
, (4)

where ξi (k) is the grey relational coefficient between factor i and the test result under
working condition k; ∆min and ∆max are, respectively, the minimum and the maximum of
all proximity values obtained in Equation (3); ρ is the distinguishing coefficient, taken as
between 0.5 and 0.6 (here a value of 0.6 is adopted to balance resolution and numerical
stability) [41].

Finally, we apply Equation (5) to obtain the grey relational degree for each factor
relative to the test results:

γi =
1
n

n

∑
k=1

ξi(k), (5)

where γi denotes the grey relational degree of factor i, and n is the total number of work-
ing conditions.

Applying this procedure yields the following ranking of influence: the number of
wetting and drying cycles (γ = 0.931) greater than deviatoric stress (γ = 0.907) greater than
confining pressure (γ = 0.885). This resembles what Figure 11 shows. Thus, environmental
history exerts the strongest weakening effect on the resilient response, while the stress state
also plays an important and positive role. The difference between deviatoric stress and
confining pressure is small in a statistical sense, indicating comparable contributions to
stiffness enhancement when moisture history is fixed.
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Figure 11. Grey relational degree of each factor.

These results suggest that models and engineering design for CDW-stabilized sub-
grades in humid and hot regions should explicitly account for the cumulative degradation
caused by wetting and drying cycles and the combined effect of confining pressure and
deviatoric stress. Doing so will help maintain stiffness and stability during service.

3.4. Model Analysis

Based on the resilient modulus test results and the outcomes of the grey relational
analysis, the Lytton model recommended by JTG 3430–2020 [23] was used for fitting. The
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fitted model enables the prediction of the resilient modulus of CDW-stabilized expansive
soil under varying numbers of wetting–drying cycles, deviatoric stresses, and confining
pressures. The model parameters are presented in Table 4, and the robustness of the model
is validated in Figure 12.

Table 4. Model parameters.

Ndw k1 k2 k3 R2 RMSE Correlation

0 0.66 0.58 0.34 0.98 3.12 Excellent
1 0.53 0.50 0.65 0.95 4.98 Excellent
3 0.46 0.49 0.76 0.96 4.22 Excellent
6 0.45 0.52 0.64 0.96 4.22 Excellent

10 0.43 0.52 0.65 0.95 4.98 Excellent
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Figure 12. Robustness verification.

The Lytton model is given by the following:

Mr = k1Pa

(
θ

Pa

)k2
(

τoct

Pa
+ 1

)k3

, (6)

where Mr is the resilient modulus; θ is the bulk stress; τoct is the octahedral shear stress;
k1, k2, and k3 are regression coefficients, with k1 ≥ 0, k2 ≥ 0, and k3 ≤ 0; and Pa is the
reference atmospheric pressure, taken as 100 kPa. The expressions for θ and τoct are given
in Equations (7) and (8).

θ = 3σ3 + σd, (7)

τoct =

√
(σ1 − σ2)

2 + (σ1 − σ3)
2 + (σ2 − σ3)

2/3 =
(√

2/3
)

σd, (8)

It can be observed that the experimental measurements and the model predictions
presented in this section exhibit strong correlation. To further validate the robustness of
the model, a scatter plot was constructed based on the measured and predicted resilient
modulus values (Figure 12). In the figure, the measured resilient modulus is plotted on the
horizontal axis and the predicted values on the vertical axis, with the scatter distribution
providing a direct visualization of the model’s predictive performance. As shown in
Figure 12, most data points are closely clustered around the line y = x, indicating that the
model provides a good fit to the experimental data. In summary, the fitting analysis and
robustness verification demonstrate that the resilient modulus prediction model adopted
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in this study not only exhibits strong representativeness but also achieves accuracy and
stability sufficient for general engineering applications.

4. Conclusions
In summary, this study systematically evaluated the mechanical performance of ex-

pansive soil stabilized with construction and demolition waste under combined stress
and environmental actions. Through swelling tests, hydromechanical characterization,
multistage cyclic triaxial testing, and model analysis, the effects of CDW content, stress
state, and wetting–drying cycles on stiffness evolution were clarified. The results not only
identified the optimal replacement range but also established a stress and environmental
degradation framework and a predictive model that provide both mechanistic insight and
practical guidance for the design and long-term maintenance of CDW-stabilized subgrades.

(1) An optimal CDW content of about 40% was identified, effectively reducing swelling
potential while improving compaction and bearing capacity. This mix proportion
provides a practical guideline for material selection in subgrade construction.

(2) The resilient modulus exhibited typical stress dependence: it increased monotonically
with confining pressure and deviatoric stress, with stronger hardening observed under
higher deviatoric stress. These findings confirm that appropriate stress conditions can
be used to enhance the stiffness performance of stabilized subgrades.

(3) Wetting–drying cycles induced stiffness degradation, with a rapid initial drop fol-
lowed by a gradual decline. Higher confining pressure delayed this deterioration,
suggesting that adequate overburden or compaction control in the field could mitigate
stiffness loss.

(4) Grey relational analysis identified the number of wetting–drying cycles as the dominant
factor, followed by deviatoric stress and confining pressure. This ranking underscores
the importance of moisture management over purely mechanical considerations.

(5) By incorporating the experimental results into the Lytton model, a modified prediction
framework was established. The fitted parameters achieved a high degree of accuracy
(R2 ≥ 0.95) across all conditions, and robustness verification demonstrated strong
agreement between predicted and measured resilient modulus values. This indicates
that the model is reliable and suitable for engineering applications.

(6) For long-term pavement service, CDW-stabilized subgrades should be constructed
at the optimal content with strict control of moisture and compaction. Maintenance
strategies should focus on early cycle moisture fluctuations, which exert the greatest
impact on stiffness, and apply predictive models that couple stress dependence with
cyclic degradation for reliable service life evaluation.

Despite the valuable findings obtained in this study, certain limitations remained.
Due to equipment and funding constraints, direct microstructural observations such as
SEM and micro-CT were not conducted. As a result, the mechanistic explanations of pore
reconfiguration, microcrack development, and particle breakage were still partly qualitative
and literature-based, lacking comprehensive direct evidence. Future work will incorporate
chemical and microstructural characterization to verify these mechanisms and will extend
environmental risk assessments to ensure the long-term durability and safety of CDW-
stabilized soils. In addition, the scope of investigation will be broadened from wetting–
drying cycles to other environmental actions such as freeze–thaw and chemical attack,
thereby establishing a more complete framework for evaluating the service performance of
CDW-stabilized expansive soils.
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The following abbreviations are used in this manuscript:

Mr Resilient Modulus
CDW Construction and Demolition Waste
CBR California Bearing Ratio
Ndw Number of Wetting and Drying Cycles
σd Peak Cyclic Deviator Stress
εr Peak Resilient Axial Strain
σ3 Confining pressure
r Principal Stress Ratio
γ Grey Relational Degree
X̃i(k) The Comparison Sequence Normalized to a Dimensionless Form by Initial Value Processing
X̃0(k) The Reference Sequence Normalized to a Dimensionless Form by Standardization
k Index of the Working Condition
i Index of the Influencing Factor
ξi (k) Grey Relational Coefficient
∆min Minimum of all Proximity Values
∆max Maximum of all Proximity Values
ρ Distinguishing Coefficient
n Total Number of Working Conditions
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