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Abstract: It remains a popular question whether rare earth oxides encourage reinforcing phases to
the uniform distribution in cermet coating to improve the mechanical properties. This study applied
laser cladding to prepare the TiAl/WC/CeO2 MMC cermet coatings on the TC21 alloy substrate. The
effects of CeO2 content on the phase composition, microstructure formation, evolution mechanism,
and properties of cermet coatings were investigated. Results show that the incorporation of CeO2

did not change the phase of composite coating, but the shape of the TiC phase has a close relation
to the CeO2 content. CeO2 enhanced the fluidity of the molten pool, which further encouraged the
TiC/Ti2AlC core-shell reinforcement phase. With the increase in CeO2 content, the optimized coating
contributed to homogenous microstructure distribution and fine grain size. Owing to the hard phases
strengthening and dispersion strengthening effects of CeO2, the microhardness of the composite
coatings was all significantly higher (almost 1.6 times) than that of the substrate. Importantly,
the addition of CeO2 significantly improved the wear resistance of the composite coating. This
work provides a certain reference value for the study of surface strengthening of key parts in the
aerospace field.

Keywords: TiAl/WC coating; CeO2; microstructure; microhardness; wear

1. Introduction

The development of novel aviation materials with high comprehensive performance
and exceptional competitive advantages is a significant challenge in the field of functional
materials. The properties of low density, high specific strength, outstanding corrosion
resistance, and stable temperature strength of titanium alloy allow them to be superior
application prospects in the high-tech aerospace field [1–4]. Nevertheless, due to the limita-
tion of the service environments, higher requirements are put forward for the hardness and
wear resistance of titanium alloys [5,6]. In order to overcome their inherent insufficiencies,
multitudinous successful studies involving surface modification technologies have been
investigated to effectively enhance the surface properties of titanium alloys and meet the
lightweight structure requirements [7,8]. At present, due to the limitations of physical prop-
erties and chemical stability of titanium alloy, the modification means of direct irradiation
have no predominance, such as electron beam and ion beam [9–11]. In contrast, fabri-
cating metal protective coatings on the surface can be an effective strengthening method,
including chemical/physical vapor deposition [12,13], plasma spraying [14,15], and laser
cladding [16,17]. Of these advanced techniques, laser cladding (LC) stands out, owing to
its rapid heating and cooling rate (104~106 K/s), controlled heat input, extreme cooling
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speed, high processing efficiency, strong metallurgical bonding, and extensive applied
range [18–21]. It is evident that LC is a promising approach for preparing wear-resistant
coatings on metal substrates to enhance their mechanical properties.

Cermet coatings are advanced composite coatings with good comprehensive proper-
ties that combine ceramics and metals [22]. Cermet coatings are not only substrates made of
metal base alloys, but they also have reinforcement phases such as intermetallic compounds
and hard carbides. TiAl alloy is not only adjacent in composition to titanium alloy but
also exhibits a comparable coefficient of thermal expansion [23]. This inherent similarity
ensures good compatibility with each other, effectively preventing issues such as cracks and
delamination. Therefore, TiAl alloy in the turbine blades of jet engines has irreplaceable
advantages as a lightweight and high-temperature coating material [24,25]. Although
Ti-based alloys with the generation of TiAl intermetallic compounds by in situ reaction
exhibit excellent compatibility, the preferment of the hardness and wear resistance of the
coatings has been limited. Tungsten carbide (WC) is well known for improving the mechan-
ical properties of composite coating [26,27]. The reason lies in its high level of hardness,
exceptional wear resistance, and superior strength, which can be comprehensively used as
a coating material to improve the wear resistance of final products [28]. In particular, WC is
thermally decomposed at high temperatures, and the free carbon further reacts with other
elements to form new phases [29]. Hence, the composite coating, consisting of metal matrix
and hard ceramic particles, effectively enhances wear resistance. However, in practical
applications, issues like inhomogeneous coating hardness distribution, micro-defects, and
low bonding strength between reinforcement phases and metal matrices are commonly
encountered in composite coatings.

In recent years, many studies have demonstrated that incorporating specific rare earth
oxides such as CeO2 [30,31], Y2O3 [32,33], Sm2O3 [34], and La2O3 [35,36] into coating
powders can significantly promote grain refinement, grain boundary purification, and
the formation of a homogeneous structure, which can play a positive role in improving
the mechanical properties of the coatings and suppressing the occurrence of porosity and
cracks because of the pinning effect. Notably, it is CeO2 that exerts the most pronounced
modification effect [37]. As a widely used rare earth oxide in ceramic material, the ap-
propriate addition of CeO2 can play a certain stirring role in promoting the diffusion of
particles in the molten pool and grain refinement [38]. He et al. [38] successfully fabricated
nano-CeO2/FeCrNiMnAl composite coatings with low dilution and that are crack-free. The
effect of different CeO2 contents on the microstructure and properties of composite coatings
were studied. The results indicated that the grain size was refined, and the mechanical
properties of the composite coating have been greatly improved after the modification
of nano-CeO2. Zheng et al. [39] employed Al2O3/SiC as reinforcement particles in the
development of Ni62 composite coatings with various mass fractions of CeO2 on 65 Mn
steel by laser cladding. Their study demonstrates that incorporating an appropriate amount
of CeO2 can significantly improve the surface quality and wear resistance of the coating.
CeO2 enhances the hard ceramic particle dispersion in the cladding layer, resulting in a
more homogeneous distribution of Cr and Ni. Li et al. [40] prepared the Ni62/WC/TiC
composite coatings on 65 Mn surfaces by laser cladding to enhance the wear resistance. The
addition of CeO2 can encourage a significant reduction in the surface and cross-sectional
defects and greater density of the cladding layer. Compared with substrate, the microhard-
ness and wear resistance of the coatings were better. To date, many studies had shown
that adding earth oxide into the coating could inhibit the formation of defects, improve
the microstructure of the coating, and induce fine-grained strengthening and dispersion
strengthening [41–43]. However, the underlying mechanisms of CeO2 incorporation on
TiAl/WC coating wear resistance remain incompletely elucidated.

In this work, the TiAl/WC/CeO2 cermet composite coatings with 0~2.0 wt.% CeO2
content were laser cladded on the TC21 titanium substrate. The phase composition, mi-
crostructure, evolution process, and performance response of the composite coatings were
taken as the focus to assess their microhardness and wear resistance. We delved into a
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comprehensive analysis of the growth mechanism and the evolution law of reinforcing
phases influenced by the different contents of CeO2 additive on the composite coatings.
The findings of this study provide insights for producing hard cermet composite coatings
on titanium alloy.

2. Materials and Experiment
2.1. Raw Powders and Preparation of Mixed Powder

TC21 titanium alloy (6.10 wt.% Al, 2.60 wt.% Mo, 1.60 wt.% Cr, 1.70 wt.% Zr,
1.93 wt.% Sn, 1.96 wt.% Nb, 0.13 wt.% Si, 0.09 wt.% O, Ti in balance) was adopted as
the substrate metal. Each substrate with dimensions of 30 mm × 15 mm × 8 mm was
cleaned with a metal brush to avoid the impact of impurities on the quality of the coat-
ings before laser processing. They were polished to remove the oxide and accelerate the
later laser absorption before their surface was rinsed with alcohol in the beaker for ul-
trasonic cleaning for five minutes and then dried. For ease of identification, Ti powders
(≥99.9% purity, ≥300 mesh) and Al powders (≥99.9% purity, 200~300 mesh) were mixed
with atomic ratio 1:1, 20 wt.% WC powders (≥99.9% purity, the particle size < 10 µm), and
CeO2 powders (≥99.9% purity) of different contents (0.2 wt.%, 0.4 wt.%, 0.6 wt.%, 0.8 wt.%,
1.0 wt.%, 2.0 wt.%) and were respectively added into the resulting mixture as cladding
materials to improve the properties of the coating, as listed in Table 1. These blended
alloy powders were evenly mixed in an agate mortar by mechanical stirring for 30 min.
Before the laser cladding process, the specimens were dried in a vacuum drying oven at a
temperature of 50 ◦C for 24 h, aiming to eliminate moisture present in the cladding powders
and effectively prevent oxidation. For the accuracy of the mixed powder composition, the
coatings were uniformly fabricated on the test piece using the preplaced powders method.
After the mixed powders was compacted on the surface of the TC21 substrate by a special
mold, the powders path length was 30 mm, the width was 3 mm, and the thickness was
roughly 1 mm.

Table 1. Chemical composition of the powder precursor (wt.%).

Specimen Ti-Al WC CeO2

No.1 79.8 20 0.2
No.2 79.6 20 0.4
No.3 79.4 20 0.6
No.4 79.2 20 0.8
No.5 79.0 20 1.0
No.6 78.0 20 2.0

2.2. Microstructure Characterization

A schematic diagram of the laser cladding process is summarized in Figure 1. Laser
cladding coatings were prepared using a LDF 4000-100 fiber laser apparatus (Laserline
Company, Koblenz, Germany) (maximum laser power of 6000 W), a defocus amount of
20 mm, and a wavelength of 1070 nm operating in continuous mode. Meanwhile, high-
purity argon gas was introduced into the protecting box at a rate of 15 L/min during the
cladding process to prevent oxidation of the coating. The laser power was 1000 W, the
scanning speed was 3 mm/s, and the spot diameter was 3 mm.

After the laser cladding, the specimens were cut off perpendicular to the cladding
direction using a wire electrical discharge machining machine. Thereafter, the specimens
underwent standard mechanical polishing followed by etching with a mixture of deionized
HF, HNO3, and H2O in a volume ratio of 1:2:30 for approximately 10 s at room temperature.
X-ray diffractometer (XRD) (XRD-6000, PANalytical Empyrean, Dordrecht, The Nether-
lands) with continuous scanning in the range of 20◦ to 90◦ was performed to identify the
phase constituents of the prepared coatings. The XRD utilized a Cu-Kα irradiation source
at a tube voltage and current of 45 kV and 40 mA at room temperature, respectively. Surface
morphology and microstructure of the coating were characterized using a scanning electron
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microscope (SEM) (JSM-7900F, JEOL, Tokyo, Japan) combined with energy dispersive spec-
trometry (EDS). The electron probe microanalysis (EPMA) (JXA-8530F Plus, JEOL, Japan)
approach was employed to reveal the element distribution of the No.6 sample coating.
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Figure 1. Schematic diagram of the laser cladding process.

Microhardness value along the direction of coating depth was measured using a digital
micro-Vickers hardness tester (DHV-1000, China) machine with a pressure of 200 gf and
a residence time of 15 s. The sample was tested at 100 µm spacing between two points
along the depth direction. To reduce the test errors, the hardness value was the average of
three test results with the same depth (a 50 µm lateral distance interval). Additionally, the
frictional wear tests were conducted at room temperature using a CFT-I surface synthesis
tester with a normal applied load of 9.8 N, a sliding speed of 100 mm/s, a sliding distance
of 5 mm, a loading time of 30 min, and Si3N4 balls with a diameter of 3 mm as the friction
pair. In the interim, a total of 3 repetitions were conducted for each test to guarantee the
accuracy of the outcomes, and the average values were considered as the final test results.

3. Results and Discussion
3.1. Phase Constitution

Figure 2 shows the XRD spectrums of the composite coatings with varying CeO2
contents, which presented that the phase compositions of the composite coatings are
Ti2AlC, α2-Ti3Al, γ-TiAl, TiC, and CeO2 phases, along with a minor amount of β-Ti and
W2C. The absence of WC diffraction peaks in all composite coatings could denote that
a significant portion of the WC particles decomposed during the laser cladding process.
Owing to the strong chemical affinity between dissociative liquid Ti and the surrounding
C, they easily formed the TiC phase in the molten pool through a chemical reaction. The
presence of peaks corresponding to TiC in the XRD spectrum of the coatings confirms
this transformation.
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At the same time, the undissolved WC particles preferred to appear in the middle and
bottom of the molten pool under gravity factors [44,45]. As is well-known, the density of
WC is much larger than that of TiC and molten Titanium. Simultaneously, the addition
of a tiny amount of CeO2 results in a relatively weak diffraction peak strength of CeO2 in
cladding coatings. As the amount of CeO2 increases, the relative intensity of the diffraction
peaks of TiC, α2-Ti3Al, γ-TiAl, and β-Ti and W2C decrease, while the intensity of the Ti2AlC
diffraction peak at 39.2◦ [46] significantly strengthens, indicating a corresponding increased
proportion of the Ti2AlC MAX phase in the coatings. When the additional amount of CeO2
reaches 1.0 wt.%, the intensity of the Ti2AlC diffraction peak is the highest. Moreover, the
diffraction peak at 62◦ for No.1 coating is the W2C phase. For No.2–No.6 coatings, the
energy absorption efficiency of laser is improved due to the increase in CeO2 content, and
the further decomposition of W2C is promoted. As shown in Figure 2, the coating phase
formation indicates that the addition of CeO2 has no significant influence on the phase
composition of the cladding coatings.

3.2. Microstructure

Figure 3 reflects the backscattered electron (BSE) images of the TiAl/WC cladding
coatings with different CeO2 additions. It can be discovered that the cladding layer is
predominantly composed of a greyish-white block phase, a grey phase, white granular
phase, and a large number of black phases. The black phases include the dendritic phase
(Point 5), petal-like phase, thin strip phase, short rod-like phase, and granular phase. EDS
analysis results of these phases are shown in Table 2. It can be determined that the white
granular phase (Points 1 and 6) mainly contained Ce and O elements with an atomic ratio
close to 1:2, which was expressed as rare earth oxide CeO2. We can clearly observe that the
greyish-white block phase (Point 4) mainly contained Ti and Al elements with an atomic
ratio close to 3:2, which was expressed as the intermetallic compound (α2 + γ) TiAl. The
grey phase (Point 2) mainly contained Ti and Al elements with an atomic ratio close to 1:1,
indicating it can be regarded as the intermetallic compound γ-TiAl. EDS results for Points
3 and 5 indicated that the black phase mainly contained Ti and C, which were speculatively
considered to be TiC ceramic-reinforced phases combined with their SEM images.
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Table 2. The corresponding EDS results marked in Figure 3 (atomic fraction %).

Zones Ti Al C W Ce O Possible
Phase

Point 1 16.46 16.48 39.11 0.50 5.41 22.04 CeO2
Point 2 28.89 19.71 50.39 1.01 - - γ-TiAl
Point 3 26.08 10.44 51.52 0.64 0.07 11.25 TiC
Point 4 30.43 20.23 47.98 1.36 - - (α2 + γ)
Point 5 37.54 9.79 51.95 0.72 - - TiC
Point 6 11.66 13.39 42.69 0.74 8.02 23.51 CeO2

With the continuous increase in CeO2 content, the morphology of TiC has a great
influence. It can be clearly seen from Figure 3(a1–d2) that TiC mainly exists in the composite
coatings in the form of the black granular phase, dendritic phase, and petal-like phase
when CeO2 content is low. Meanwhile, with the continuous increase in CeO2 content,
the intergranular structure and the size of the massive structure gradually decrease while
refining the structure of the cladding layer. At 1.0 wt.% and 2.0 wt.%, a notable change
in the morphology of TiC occurs, with the disappearance of the petal-like phase or coarse
dendrite structures and the transformation into numerous finer thin strip phase or short
rod-like phase, as depicted in Figure 3(e1–f2). This new form of TiC is uniformly distributed
within the crystal structure. Concurrently, the microstructure of the cladding layer becomes
obviously refined, with a more uniform distribution of tissues. It is observed that fine CeO2
particles tend to segregate at the grain boundaries, impeding the movement between the
phase interface and the grains. Such effective pinning action limits the growth of grains
and further refines the grain size.

As shown in Figure 4a–f, it is observed from the interface position between the coatings
and the TC21 substrate that there is good metallurgical bonding between the coating and the
substrate. Under the action of a laser beam, the substrate is initially slightly melted and then
metallurgically bonded with the cladding layer to form a bonding zone of high bonding
strength. Massive reinforcing TiC phases in the No.1 to No.4 coatings occupied the bottom
of the cladding layer, while the reinforcing phases in the No.5 and No.6 coatings formed
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the finer thin strip phase, short rod-like phase, and CeO2 white granular to penetrate into
the substrate. In Figure 4f, it is evident that at a CeO2 content of 1.0 wt.%, the boundary of
the bonding zone in the cladding layer is no longer distinct, with no discernible transition
layer. The substrate embedded reinforcing phases, which improved the interface adhesion.
However, with the CeO2 content reaching 2.0 wt.% (Figure 4f), although the high content
of CeO2 is conducive to tissue refinement, it also increases the dilution rate of the cladding
layer and weakens the effect of the reinforcing phase such as TiC. Table 3 illustrates that as
the amount of CeO2 increases, the cladding height demonstrates a slight increase, while
the cladding width gradually decreases. Moreover, the melting depth and dilution rate of
the substrate also gradually increased, especially the melting depth. Previous research [47]
has indicated that incorporating an optimal amount of CeO2 into the coating can enhance
the energy absorption efficiency of cladding coating for the laser, which promotes more Ti
in the substrate to participate in melting and enter the melt pool.
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Table 3. Technological parameters of composite coatings.

Specimen Coating Width
W1/µm

Coating Height
H/µm

TC21 Substrate
Melting Depth

D/µm

Dilution Rate
η/%

No.1 4743.81 661.16 183.88 21.76
No.2 4440.07 606.74 239.70 28.32
No.3 4296.48 801.51 326.63 28.95
No.4 4268.29 902.44 480.49 34.74
No.5 3784.31 791.67 779.41 49.61
No.6 3699.47 944.15 1164.89 55.23

In order to further determine the phase distributions and their relationship with the
microstructures, Figure 5 shows the different elements distribution mapping in the No.6
TiAl/WC-CeO2 microregion coating by EPMA. As can be observed from Figure 5c,f, the
distribution areas of W and C elements did not coincide. The W elemental maps illustrated
that W atoms were dissolved into the (α2 + γ) matrix. On the contrary, the C element was
predominantly distributed in numerous TiC-dominated thin strip phases or short rod-like
phases, with higher C content in regions with lower W content, which indicated that the
WC powders underwent thermal decomposition under the high-energy laser beam action.
Figure 5d reveals that the Al atoms mainly existed in the coating matrix and the edge region
of TiC reinforcement phases. As can be seen from Figure 5e, the matrix and reinforcement
phases were abundant in Ti with a content of more than 95 at.%. Thus, the combination of
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Figure 5c–e and XRD revealed that the cladding layer contained the TiC/Ti2AlC core-shell
reinforcement phase with TiC as the core and Ti2AlC as the shell [48]. The edge region of
TiC reinforcement phases was mainly composed of Ti2AlC, and the coating matrix consisted
of (α2 + γ) intermetallic compounds. A mixture of α2-Ti3Al and γ-TiAl phase constitutes
the (α2 + γ) matrix. On the basis of the above analysis, the introduction of CeO2 promoted
the fluidity of the molten pool and further encouraged the diffusion of Ti and Al atoms,
resulting in a more uniform distribution of the coating microstructure, which contributed
to combine with Al and C elements to form Ti2AlC MAX phase.
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To further understand the mechanism of microstructure formation in the coatings,
the reaction model between CeO2 and Ti-Al/WC is illustrated in Figure 6. As depicted
in Figure 6a,d, pure Ti, Al, WC, and CeO2 are represented as spherical particles, and
the WC and CeO2 particles are uniformly mixed by the binder TiAl. The temperature
of the molten pool can exceed 2700 K during laser cladding, with transient maximum
overheating temperatures reaching up to about 3500 K [49,50]. Not only that, the cooling
rate is approximately 6 × 105 K/s, which demonstrates that laser cladding is a typical
non-equilibrium solidification process [51]. Therefore, under the Gaussian laser beam
irradiation, the precursor powders and partial TC21 substrate are melted immediately.
When the temperature exceeds 3000 K, the CeO2 and WC particles are decomposed in the
molten pool, creating a high-temperature molten mixture of Ti, Al, W, C, Ce, and O atoms,
as shown in Figure 6b,e. Simultaneously, all atoms evenly diffuse and react with each other
due to the stirring effect of the laser beam and convection in the molten pool.

In order to comprehend the formation mechanism of the phases, it is essential to
initially consider the Gibbs free energy of the phase in the molten pool. The reaction
equations involving TiAl/WC/CeO2 composite coatings during the reactions in the molten
pool are as follows:

WC → W + C (1)

CeO2 ⇋ Ce + 2O (2)

Ti + C → TiC (3)

Ti + Al → TiAl (4)
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3Ti + Al → Ti3Al (5)

TiAl + TiC→Ti2AlC (6)
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In fact, as shown in Equation (1), WC will occur in decarburization and dissolution, so
that there is a large amount of C element in the molten pool [52]. Compared with that of
other compounds, the Gibbs free energy of the TiC compounds is extremely low [53], while
the melting point is high. According to the phase diagram of Ti-C, when the C content
is about 3 at.% and the temperature drops below 1653 ◦C, TiC and β-Ti are precipitated
in the form of eutectic. When the content of C is high, TiC will consume C of the molten
pool from primary TiC to eventually dendritic. Therefore, with the departure of the laser
energy, the surrounding C element will be consumed, and TiC phases as coarse dendrites
precipitated preferentially from the molten liquid owing to the high affinity between Ti and
C atoms. The TiC reinforcing phase is first generated in the reaction. Figure 7 shows the
Ti-Al binary phase diagram. In this diagram, Ti reacts with Al to form four intermetallic
compounds: Ti3Al, TiAl, TiAl2, and TiAl3. According to the XRD analysis results, only the
Ti3Al and TiAl were detected in the coatings. It is mainly attributed that the atom ratio of
Ti and Al is 1:1, so the main product should be γ-TiAl [54]. Meanwhile, due to the TC21
substrate melting in the laser cladding process, a large number of Ti elements rush into
the molten pool, resulting in the solidification path moving to the left. It can be seen from
Figure 7 that when the content of Ti is high, the generated product is mainly Ti3Al [55]. In
addition, due to the high chemical activity of Ce element, it is difficult for CeO to exist in
the molten pool as single substance, so it will recombine with O to form CeO2 distributed
between the grain boundaries.
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With the continuous cooling of the molten pool, a portion of the in situ precipitated
TiC will react with uncoagulated Ti-A1 melts to form the ternary compound Ti2AlC MAX
phase around the edge region of TiC in combination with the aforementioned XRD and
EPMA analysis results. As shown in Figure 6c,f, the microstructure of the obtained coating
became significantly denser and more uniform as the CeO2 content increased to 1.0 wt.%.
The distribution of the Ti2AlC MAX phase tended to increase, while the TiC thin strip
tissue gradually intensified, and the massive shape γ-TiAl became finer. The Ti2AlC MAX
phase and TiC reinforced phase were evenly distributed on the refined (α2 + γ) matrix.
This is attributed to the doped-CeO2 in the liquid pool which could absorb more laser
beam energy, forming a more uniform microstructure and facilitating the emergence and
transformation of the MAX phase. During the laser cladding process, the increase in
heat input energy leads to a greater undercooling of the coating. On the one hand, due
to the high nucleation rate, the growth of the grain is blocked; therefore, the thin strip
short rod-like TiC reinforcement phases could be acquired because of the large component
undercooling and the extremely fast solidification rate. On the other hand, the CeO2 in the
liquid pool acts like a diluter. A large amount of Ti elements from the substrate entered
the reaction of the cladding layer, which caused a deficiency in the C atoms needed for
the TiC phase formation in the coating, thereby reducing the growth driving force of TiC.
Eventually, the dendritic structures are not preserved in the coating and the majority of the
coating matrix is covered by the refined reinforcing phases.

3.3. Microhardness

Figure 8a illustrates the distribution of microhardness along the depth direction from
the coating surface to the substrate, showcasing the microhardness values of coatings
with distinct CeO2 content. Overall, from the composite coatings to the substrate, the
microhardness distribution curves demonstrate a progressive declining tendency. The
fluctuation of the microhardness value is relatively stable in the cladding zone, whereas
it decreases rapidly in the bonding zone. Additionally, the microhardness decreases
slowly from the heat-affected zone to the substrate. As depicted in Figure 8b, the average
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microhardness of the No.1~No.6 coatings were approximately 626.7 HV0.2, 607.1 HV0.2,
630.8 HV0.2, 599.2 HV0.2, 596.4 HV0.2, and 584.1 HV0.2, respectively. A notable feature
observation is that the average microhardness of the TiAl/WC coatings with different
CeO2 content is considerably higher than that of the TC21 alloy, due to the addition
of WC powder, which can be decomposed into free C atoms and W atoms under the
high energy of laser cladding [56]. The generated intermetallic compounds and carbides
act as a reinforcing machine, which is made of dispersion strengthening and refinement
strengthening (such as TiC, Ti2AlC, Ti-Al, and CeO2). However, it is evident that as
the CeO2 content increased, the overall microhardness of the cladding zone showed a
decreasing trend, albeit not significantly, i.e., by only less than 8%. On the one hand,
the main reason for this phenomenon is that the TiC morphology gradually changes from
dendritic or petal shaped to thin strip phase and short rod-like phase, resulting in a decrease
in the overall content of the TiC reinforcing phase. On the other hand, the Ti2AlC MAX
phase structure with a lower hardness (in comparison to the TiC reinforcing phase) became
predominant, owing to a progressive rise in the MAX phase content, which in turn impacts
the enhancement effect of coating average microhardness. Moreover, the addition of
CeO2 effectively improved the uniformity of the distribution of elements and the relative
compactness of the microstructure and decreased the fluctuation range of hardness to a
certain extent.
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3.4. Wear Behavior Analysis

Figure 9a depicts the tribological properties of coatings and substrate on the Si3N4
sphere in a dry sliding wear test conducted at room temperature. It can be seen that
the friction coefficient of the No.1 coating presents noticeable fluctuations. At the onset
of the wear period, the friction coefficient of the No.1 coating is low, but it gradually
increases over time and eventually stabilizes between 0.45 and 0.55. This can be explained
by the fact that during the initial wear stage, point contact occurs between the smooth
sample surface and the Si3N4 ball [45]. As the friction wear test progressed, the friction
surface produced abrasive particles. The accumulation of these abrasive particles leads to
an increase in the surface contact area and friction resistance, which is expressed as the
increase in friction coefficient. The friction coefficient of the No.2 coating is generally stable,
but its value is the highest. As the amount of CeO2 increases, the friction coefficient of
the No.3 coating and No.4 coating gradually decreases, reaching the lowest value at the
No.4 coating. In combination with Figure 3(a1–d2), it can be seen that the distribution of
the TiC reinforcing phase on the surface of the No.1 coating is relatively uneven, resulting
in a certain fluctuation of friction coefficient. The microstructure of the No.4 coating is
relatively denser and uniform, with the TiC phase predominantly present in petal-like and
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dendritic structures. Throughout the wear test, the dispersed and reinforced TiC phases
in situ formed within the coating played a “skeleton” role, which bears the main load
and effectively prevents further wear [41]. This strengthens the anti-wear performance
of the coatings and results in a low friction coefficient. However, as the amount of CeO2
continued to increase, the friction coefficient of the No.5~6 coating increased more than
that of the No.4 coating, and its fluctuation is not obvious. The TiC morphology underwent
significant changes in the cladding layer structure, appearing as thin strips or short rod-like
phases, which reduced the support provided by the cladding layer during friction pair
interaction simultaneously, due to the predominant Ti2AlC MAX phase structure with
lower hardness. Low hardness is not conducive to an improvement in wear resistance.
Furthermore, combined with Figure 5e,f, it can be seen that the rise in the friction coefficient
is primarily attributed to the fact that under the stirring action of CeO2, the TiC reinforced
phase is more evenly distributed throughout the cladding layer without an obvious binding
zone. The reinforced phase is embedded in the substrate, and therefore, the interface
adhesion is improved. Nevertheless, when the coating surface is rubbed, it also weakens the
enhancement effect of the TiC phase, which may be related to the high friction coefficients
of No.5 and No.6.
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Figure 9b shows the wear weight loss of the TiAl/WC coatings with different CeO2
content. The average wear weight loss of the No.1~No.6 coatings was approximately 1.4 mg,
2.3 mg, 2.1 mg, 1.2 mg, 3.5 mg, and 4.7 mg, respectively. The decrease in wear weight loss
signifies the enhancement in wear resistance. Aforementioned results demonstrated that
the wear weight loss is the lowest among the series of specimens when the additive amount
of CeO2 was 0.8 wt.%. On the whole, with the increase in CeO2 content, the wear weight
loss of each coating is consistent with the change law of the friction coefficient.

4. Conclusions

In this paper, the TiAl/WC/CeO2 cermet composite coatings were prepared on TC21
titanium alloy substrate using laser cladding technology. The influences of CeO2 content
on composite coatings on the phase distribution, microstructure evolution, formation
mechanisms, and microhardness were comprehensively investigated. Accordingly, the
primary conclusions are as follows:

(1) The addition of CeO2 content has no influential change on the phase composition
structure of composite coatings, which were composed of Ti2AlC, α2-Ti3Al, γ-TiAl,
TiC, and CeO2 phases, along with a minor amount of β-Ti.
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(2) The TiC/Ti2AlC core-shell reinforcement phase can be in situ synthesized in the
coating, and the addition of CeO2 content significantly influences the morphology, size,
and distribution of the TiC reinforcing phase in the composite coatings. Furthermore,
with the addition of CeO2, the fluidity of the molten pool is enhanced, and the
microstructure refinement of composite coatings is improved.

(3) While the content of CeO2 is 0.6 wt.%, the microhardness reaches a maximum value of
about 700 HV0.2. Compared with substrate, the average microhardness 630.8 HV0.2 has
increased almost 1.6 times. When the addition of CeO2 is 0.8 wt.%, the comprehensive
mechanical property is the best. The wear resistance of the TiAl/WC/CeO2 composite
coatings is dramatically enhanced due to the reinforcing phases of homogeneous
distribution and the fine grain strengthening and dispersion strengthening effects of
CeO2, contributing directly to generate a lower friction coefficient with a small range
of fluctuation.
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