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Abstract: This work presents the densification of Co-based alloy powders by a spark plasma sintering
process. The densification process was carried out at a temperature range of 800 ◦C to 1100 ◦C in
order to obtain sintered coupons and study their microstructure and mechanical properties. The
shrinkage behaviour of the sintered coupons was studied, and an optimal densification temperature
was defined. The microstructural analysis showed a reduction in porosity with temperature increment
along with the development of a fine microstructure comprised of cobalt-molybdenum-chromium-
silicon-based intermetallic laves phases, which are dispersed in a softer cobalt-based alloy matrix. X-
diffraction analysis showed that these crystalline phases were well-dispersed, with a lattice parameter
corresponding to a hexagonal system. The obtained high Vickers hardness values were attributed
to the preservation of a fine microstructure and to the precipitation of Co-Mo phases. Three-point
bending tests were performed in order to identify the strain path concerning the densification of the
sintered coupons.

Keywords: spark plasma sintering; co-based alloy; densification; shrinkage

1. Introduction

Co-based alloys have a unique resistance to corrosion and oxidation, excellent abrasive
wear resistance properties, high temperature service, good hot hardness, and resistance
to most harsh acidic and saline environments [1,2]. The above shows that cobalt alloys’
characteristics can be beneficial to manufacturing of structural components for system
aeronautics, prosthetic dentistry, and subsea production systems technologies, which are
exposed to accelerated damage and subsequent failure of mechanical components [3–7].

The sintering spark plasma (SPS) process has extensively been used to densify metal
powders placed in an electrically conducting die and sintered under a uniaxial load by heat
produced using an electricity current arch [8,9]. Rapid heating by the Joule effect allows
for short densification times, resulting in very efficient preservation of fine homogeneous
microstructures. Moreover, the design of metastable or equilibrium microstructures can
be performed or even controlled depending on the alloy and on the processing conditions.
In the SPS process, the heat can increase from 100 ◦C to 240 ◦C in milliseconds, and rapid
cooling/quenching rates of 200 ◦C/min can also be obtained, which are beneficial for
densification processes [10]. Nonetheless, the densification process itself can modify the
composition and structure of the material with some variations in the microstructure and
mechanical properties.
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The above shows that SPS is a process for manufacturing innovative materials with
improved microstructures [11–15]. In this sense, the SPS process has demonstrated ef-
ficiency for shaping; nonetheless, it is empathized that the progress of shaping by SPS
is complex. The full-scale parts and near-net shaping complex have been successfully
proven, allowing for a wide range of possibilities, especially for materials that are difficult
to obtain by conventional manufacturing processes [16]. However, it is worth noting that
an understanding of the physical phenomena of the SPS process has been essential for the
development of simulations of the kinetic densification, which has proven to be significant
for optimizing the processing of complicated parts [17,18].

Thus, several research works have been performed to date by employing Co-based
alloy powders and other cobalt alloys in SPS processes [19–21]. However, to our knowledge,
there are no sintering studies concerning the composition of commercial Diamalloy powder,
which consists of a cobalt-based alloy containing molybdenum, chromium, and silicon,
where the higher molybdenum content in the powders increases its resistance, which is
desirable in the development of metallic coatings [22,23]. Thus, it is expected that the SPS
process improves the solubility of some chemical elements in the matrix by the formation
of new phases.

Therefore, the aim of the present work was to study the sintering behaviour of a
Co-based Diamalloy powder. Special attention was focused on the shrinkage rate and
microstructural evolution of the mentioned powders in SPS conditions. Both Vickers hard-
ness and three-point bending tests were performed in order to show how the sintering
temperature variable plays an important role in the microstructure and mechanical prop-
erties. To determinate the microstructure, a JEOL-7800 high-resolution scanning electron
microscope (Tokyo, Japan) with XL-EDAX Ametek-Apolo detector, windows of 30 mm,
voltage of 10 Kv, and WD of 10–12 mm was used to characterize the sintered coupon. An
X-ray diffraction (XRD) analysis of the sintered coupons was carried out with an X-ray
diffractometer (Bruker D8-ECO Advance) with a Bragg–Brentano setup equipped with
an X’Celeratrimina 2θ range of 20◦–80◦ using a 0.021 step size, 2 s per step, and Cu-Ka
radiation with l ¼ of 1.541 to determinate the crystalline structure.

2. Materials and Methods

Diamalloy 3001 commercial powders (SULZER Metco LT, Winterthur, Switzerland)
comprised of a cobalt base with additions of Mo 28.5, Cr 17.5 and Si 3.4 wt.%, were used to
manufacture shape coupons with a diameter of 20 mm and a thickness of 5 mm. A Dr Sinter
Sumitomo 1050 apparatus (Sumitomo Coal Ming Co., Tokyo, Japan) was used to sinter 5 g
of powder placed in a 20 mm diameter graphite die with thin graphite foil as an electric
conductive support. Afterward, a load of 9 kN was applied at the beginning of the heating
cycle, then a heating rate in the sintering temperature range of 100 ◦C/min was imposed. In
order to avoid grain coarsening of the microstructure of the sintered specimen, the process
was conducted below the γ prime temperature, which is about 1140 ◦C (1413 K) [24–26].
After 10 min of dwell time at the sintering temperature, the ram pressure was released,
and the specimen was allowed to cool in the furnace. A set of 7 coupons were obtained
at a temperature range of 800 ◦C to 1100 ◦C. In turn, each sintered coupon was polished
with 1000-grade SiC paper to analyse the microstructure and mechanical properties of the
developed coupons. Table 1 summarises the conditions of the performed SPS processes to
obtain the set of sintered coupons (named: A, B, C, D, E, F, and G). Archimedes’ principle
was used to assess the porosity of each sintered coupon. To analyse possible transformation
phases of the as-received Diamalloy powders, a differential scanning calorimetry apparatus
(DSC) SDT Q600 V20.9 Build 20 was employed with the following conditions: 1 Ramp
50.00 ◦C/min to 600.00 ◦C and 2 Ramp 10.00 ◦C/min to 1300.00 ◦C, atmosphere air, and
alumina crucible. Vickers hardness measures were carried out using a Mitutoyo AVK-C2
Akashi apparatus. In addition, three-point bending tests were performed following the
ASTM E-290-22 [27] standard test method at 23 ◦C using a computer-controlled mechanical
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tester and UH-30A Shimadzu machine (Kyoto, Japan, 100 kN to 1000 kN) to provide a
cross-sectional coupon surface analysis.

Table 1. Temperature and load applied in each SPS process.

Sample Temperature (◦C) Heating Rate (◦C/min) Axial Load (GPa)

A 800 50 9
B 850 100 9
C 900 50 9
D 950 100 9
E 1000 100 9
F 1050 100 9
G 1100 100 9

3. Results and Discussion
3.1. Densification

Figure 1 shows the features of the Diamalloy 3001 powders from the SULZER man-
ufacturer (Winterthur, Switzerland). Figure 1a shows that the powder is composed of
a spheric morphology with a distribution size in the range of 10 µm to 40 µm, which is
also shown in the plot in Figure 1b. Figure 1c shows a higher magnification image of the
spherical powders. Figure 1d shows an image of the microstructural characteristics of the
Diamalloy 3001 powder, which is comprised of a smooth surface with dendritic growth
observed on the surface.
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Figure 1. (a) Diamalloy Co-based alloy powder as received from the SULZER manufacturer, (b) plot
of the size distribution of the powder, (c) close-up view of the spherical morphology of the powder,
and (d) powder microstructure composes of dendritic growths of a size around 4 µm.
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The spark plasma sintering behaviour of the Co-based alloy powder is shown in
Figure 2. The set of different temperatures applied in the SPS process, which is a function of
the time employed for the densification of powders, is shown in Figure 2a. As is observed
in the plot, the temperature increased linearly as a function of time to reach the desired
temperature for each different sample, as described in Table 1.
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Figure 2b shows the shrinkage behaviour as a function of time for each sample and
defined temperature. From this plot, it can be observed that shrinkage values varied with
the time increment. Thus, at the beginning of sintering, the shrinkage values decreased
until a minimum value of around −0.6 mm for sample C and a maximum value of 0.4 mm
for sample D were reached. In the literature, many research works have reported graphs of
the shrinkage behaviour for different ceramics and alloys [21,28,29]. In such works, it was
observed that the work temperature significantly influenced the shrinkage, which had a
relationship with the degree of densification [21]. Figure 2c shows a plot of the shrinkage for
each sample as a function of the applied temperature; it was observed that shrinkage values
presented a slight variation for each sintering temperature, and a minimum shrinkage
value was identified (blue dotted circle).

Thus, the minimum shrinkage value was found at a temperature of 800 ◦C, which
would correspond to each sintered coupon. This last condition suggests that the parameter
that controls the sintering is the maximum temperature applied during the SPS process.
In the same sense, for samples A and C, where the lowest heating rate (50 ◦C/min) was
applied to reach the designated temperature, the minimum shrinkage value was similar to
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that of highest heating rate (100 ◦C/min), as observed in Figure 2c. Therefore, the heating
rate did not influence the densification of the powder. To elucidate the dwell time effect
during the sintering process in isotherm conditions, the shrinkage rate (densification rate)
is plotted as a function of the sintering temperature in Figure 2d. Again, it was observed
that the shrinkage rate incremented with the increase in the sintering temperature; thus,
with an increment of 50 ◦C from 1050 to 1100 ◦C, the shrinkage rate reached a maximum
value (sample G, depicted by blue arrow) of around 7 µm/s. This value would signify a
higher densification stage accomplished for the Co-based alloy powder. In other words,
this high shrinkage rate value for sample G was achieved in about 10 min; afterward, the
shrinkage rate value decreased dramatically to 0.2 µm/s in about 20 min, and then it finally
dropped. Therefore, this higher shrinkage rate was associated with reaching the maximum
densification during SPS conditions for the powder. It was observed that only at 1100 ◦C
was a maximum shrinkage value reached, which mains the microstructural evolutionary
end for the sintering of the powders, and the existence of a sintering main mechanism, is
possibly evidenced by this behaviour.

The DCS analysis of the as-received Diamalloy powder evidences the existence of
possible transformation phases at temperatures of 592, 890, and 1030 ◦C as indicated
by arrows in Figure 3. However, only the last two temperatures showed a relationship
with both the minimum shrinkage and maximum shrinkage rates previously identified in
Figure 2c,d, respectively.
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3.2. Microstructure

Several mechanisms can be induced by the high-intensity electrical current during
the SPS process: (i) arcs and plasma generation between powder particles, (ii) dielectric
breakdown of the oxide layers at the surface of the powder particles, (iii) local overheating
due to a current density increase at the contact between powder particles, and (iv) activation
of electromigration and electroplasticity [11–18].

In order to evaluate the densification quality and the chemical composition of the
sintered coupons manufactured by the SPS process, in this section, the effect of temperature
on the microstructure during the sintering process of Co-based alloy powders is analyzed.
Figure 4 shows micrographs of the microstructure of the coupons sintered in the following
temperature range: from 800 ◦C to 1000 ◦C. A poor-quality densification for coupon A
is shown in Figure 4a; here, the microstructure was composed of a morphology likes to
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that of the as-received powders, which was preserved. Figure 4b shows a micrograph of
the sintered coupon B, which clearly shows better densification; thus, the porosity was
decreased, as observed by the dark regions in the figure. The spheroidal morphology of the
large powders seemed to be properly maintained. The quantitative EDS analysis clearly
shows that a high Cobalt base element was predominant in the material matrix of the
sintered sample. Figure 4c shows a micrograph of coupon C sintered at a temperature of
900 ◦C; the microstructure was formed with a relatively low porosity. It is worth noting
that an increment in the heating ramp did not promote a change in the development of
the microstructure, as was shown by the shrinkage rate value (Figure 4d). Moreover, it is
possible to observe the development of small zones marked by a grey colour. Figure 4d
shows a micrograph of coupon D sintered at a temperature of 950 ◦C, where an increment
of 50 ◦C of temperature improved the densification. Nonetheless, the microstructure still
appears to have formed by morphology like-spherical powder, though an increase in the
size of the light grey zones was observed, which was possibly caused by the sintering of
the small powder with a high surface energy.
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Figure 4. Micrographs of sintered coupons for samples A to E: (a) 800 ◦C, (b) 850 ◦C, (c) 900 ◦C,
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Figure 4 also shows a micrograph of the microstructure of the coupon sintered at
a temperature of 1000 ◦C. The microstructure is comprised of zones marked by a light
grey and grey colour. Once again, the initial features seem to still be preserved, though
the diminution of small pores in the sintered matrix was noted, as observed in Figure 4e.
Accordingly, Figure 4f shows a plot of the relative density reached for each sintered coupon
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as a function of the temperature in a range of 800 ◦C to 1100 ◦C. This plot clearly shows
an increment in the relative density when an increment in the sintering temperature was
applied. Accordingly, a relative density of 95 percent was achieved for the coupon sintered
at 1100 ◦C.

Figure 5a shows micrographs of the microstructure of the coupon sintered at a temper-
ature of 1050 ◦C. The presence of small or even no porosity can be observed in the sintered
coupon. The microstructure was constituted by a fine morphology as depicted by zones in
light grey and white colours. An EDS mapping analysis of the sintered coupon shows that
rich zones are comprised of Co, Mo, Si, and Cr elements (Figure 5b). In this condition, the
microstructure is comprised of fine phases distributed homogeneously in the Co matrix;
they could be Co-Cr, Mo-Si, and rich Mo, as shown in Figure 5a. The development of a
fine microstructure suggests the presence of a stage promoted by simple surface diffusion,
which in turn proves the volume reduction by the reduction in the porosity. Moreover, this
indicates the presence of a main sintering mechanism caused by surface diffusion when a
sintering temperature of 1050 ◦C is imposed.Coatings 2024, 14, 479 8 of 15 
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Lastly, Figure 6 shows the developed microstructure of the coupon sintered at a
temperature of 1100 ◦C. The microstructure is clearly constituted by the formation of zones
well-identified by grey and white colours, as seen in Figure 6a,b, respectively. Moreover,
the presence of porosity was not observed, and plaques-like morphologies ranging from 2
to 4 µm were distributed homogeneously in the sintered matrix. To elucidate the chemical
composition of such morphologies, Figure 6 shows the EDS maps of the sintered G coupon,
where zones rich in Mo-Si, Co, and Cr elements were identified.
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Therefore, at this temperature, the microstructure was comprised of a rich Mo-Si phase
homogeneously dispersed in the Co matrix. Hence, the controlled temperature condition
during the sintering process allowed for densified coupons comprised of Mo6Co6 and
Mo-Si phases with a plaque-like morphology of 4 µm in size. These last phases have been
crystallography reported in the literature [24–26].

XRD analysis was carried out to identify the crystalline structure of the sintered
coupons in order to show cobalt phases in the material matrix sintered at a temperature
range of 800 to 1100 ◦C, as observed in Figure 7.
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The experimental diffractograms for coupons A–F corresponded to ISCD patterns
indexed with a hexagonal structure, as follows: Co7Mo6 phase 2310288, Co3Mo2Si 030-0449,
and Co3Mo 2310283 with parameters a: 4.7 (Å) and c: 7.67 (Å). It worth noting that these
last laves phases have been reported in the literature for the Co-Cr-Mo-Si system [25],
though they used a mixture melted in an arc furnace under a high-purity argon atmosphere
for the synthesis of that matrix. It was observed that these phases were clearly preserved
during sintering at a temperature range of 800 ◦C to 1050 ◦C, as seen in Figure 7. Moreover,
these phases corresponded to the as-received Co-based alloy powder. Therefore, the SPS
process did not modify the crystalline structure of the sintered coupons in the whole
temperature range; moreover, SPS conditions preserved the fine microstructure of the
as-received powder.

However, at a sintering temperature of 1100 ◦C, the XRD analysis shows the presence
of phases that correspond to indexed ICSD patterns: Co3Mo 2310283 and Mo6Co6C 03-065-
8115. The presence of these phases implies the transformation of the phases under SPS
conditions; moreover, it suggests the development of a second stage of sintering by simple
volume diffusion. It worth noting the formation of a phase rich in the C element, which
would imply a reaction with the Cobalt matrix by the formation of carbides. Several works
have reported the presence of adsorption or reaction due to the C evaporation from the
graphite die when sintering reaches up the 700 ◦C [30–32]. Hence, it can be observed that
the formation of the last phases is associated with an important increment in the hardness
values of the sintered coupons.

In summary, the results show that the applied temperature and the dwell time in the
SPS conditions allowed for the improved densification of the Diamalloy 3001 alloy powder.
Therefore, it can be concluded that the temperature parameter played a vital role in the
development of the microstructure.

3.3. Mechanical Properties

In this section, micro-hardness tests were carried out to measure the hardness proper-
ties of all coupons sintered through the SPS process of Co-based Diamalloy 3001 powders.
It is important to mention that before performing the tests, the microhardness test machine
was verified to be recently calibrated according to ISO-6507 Standards [33].

In order to perform the Vickers hardness tests, five testing points were defined on
each sample. Then, the standard deviation of the obtained Vickers hardness values was
determined. In the Vickers micro hardness testing, a mass of two kilograms was applied to
create the diamond mark characteristic. The tests were carried out following the recommen-
dations reported in the literature [33,34]. Figure 8a shows a plot of the measured Vickers
hardness values obtained from coupons A to G; thus, hardness values increased with the
increment in the sintering temperature. However, it was observed that sample G presented
higher Vickers hardness values compared to the other SPS sintering temperatures. This
last Vicker hardness value of 14 GPa is quasi similar to that reported in the literature [3–7];
here, the last values were attributed to the presence of a Co6Mo6C phase formed at a
temperature of 1100 ◦C, as was previously indicated by the XRD results. Figure 8b,c shows
the Vickers diamond indentation marks from sample G. These marks present features of
a slight strained structure, which can be attributed to the brittle mechanical behaviour of
the material.
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Three-point bending tests were carried out in order to provide cross-sectional sintered
coupon surface analysis. Figure 9 shows the resultant fracture surface of the sintered
coupons after the bending test. Figure 9a shows a cross-section of sintered coupon B, where
powder–powder bonding was clearly observed; moreover, a spalling surface powder
caused by bending test was observed. Figure 9b also shows sintered coupon C after the
bending test. Here, better powder–powder bonding was observed. It is worth noting
that the fine powder microstructure was still preserved after a sintering temperature of
900 ◦C. Figure 9c shows the fracture surface of sintered coupon G. From this, densification
of the whole powder was observed; moreover, the microstructure shows a fracture surface
correlated with the degree of densification of the coupon sintered at 1100 ◦C. In summary,
the micrographs show a fracture surface typical of brittle materials with morphologies like
a flat face.
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Figure 9. Surface fracture resultant of sintered coupons after bending test: (a) B sample powder-
powder bonding (yellow arrow), (b) C sample, dendritic microstructure (yellow arrow), and (c) G
sample densified microstructure (yellow arrow), respectively.

4. Conclusions

The purpose of the present work was to study the sintering of Diamalloy Co-based
alloy powders by the SPS process. The obtained shrinkage data were plotted to show
the dependence with the sintering temperature in the range of 800 ◦C to 1100 ◦C. The
resultant maximum shrinkage rate corresponded to an obtained microstructure by gradual
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increments of 50 ◦C of the sintering temperature. The densified microstructure sintered at
a temperature of 1100 ◦C constituted the presence of plaque-like morphologies and was
comprised of laves phases rich in the Co element. High hardness values in the range of
12 to 14 GPa were attributed to the development of the Co6Mo6C lave phase, which was
homogeneously distributed in the matrix of the alloy. The controlled increment of 50 ◦C
of the sintering temperature allowed for the microstructural evolution of the Co-based
alloy powders. An increase in the temperature allowed the powder particle bonding, as
was observed in the micrographs. Also, the implication of two sintering mechanisms
was proposed for the densification of the Co alloy powder. Thus, at the beginning of
sintering, a surface diffusion mechanism was present at the temperature range of 800 to
1050 ◦C; afterward, the volume diffusion mechanism was present up to 1100 ◦C. The above
data of the densification kinetic provide information for the designing of full parts and of
complicated shapes using cobalt alloys.
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