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Abstract: Multiple advantages, such as good formability, high specific strength, excellent thermal
conductivity, and high corrosion resistance, enable aluminum alloy wide application in various
fields; however, low surface hardness and poor wear resistance limit its further development. In
this study, three surface modification coatings were successfully prepared on the surface of 7A04
aluminum alloy by microarc oxidation (MAO) and a combination of hard anodizing treatment (HA)
and physical vapor deposition (PVD), named MAO, HA+W+DLC, and HA+Ti+ta-C, respectively. The
microstructure, hardness, and tribological properties of the three coatings and the 7A04 aluminum
alloy substrate were studied. The results show that the surface quality and hardness of the coated
samples were higher than those of the 7A04 aluminum alloy and that the HA+Ti+ta-C coating
possessed the highest hardness of 34.23 GPa. Moreover, the wear resistance of the two multilayer
coatings was significantly improved during the ring-block wear tests under oil lubrication, exhibiting
a wear rate of 1.51 × 10−7 mm3/N·m for HA+W+DLC and 1.36 × 10−7 mm3/N·m for HA+Ti+ta-C.

Keywords: aluminum alloy; MAO coating; HA+W+DLC multilayer coating; HA+Ti+ta-C multilayer
coating; wear resistance

1. Introduction

Aluminum alloys are widely used in the aerospace industry, especially in commercial
transport aircraft and military fighter aircraft, owing to their excellent properties, such
as good formability, light weight, high specific strength, and low density (approximately
2.7 g/cm3) [1–5]. However, the low surface hardness and poor wear resistance of aluminum
alloys severely limit their application. 7A04 is a kind of superhard aluminum alloy, the
dosage of which is second only to steel in modern industry, and surface modification can
significantly improve its performance. In recent years, the surface modification of 7A04
aluminum alloy has become an active research subject owing to its potential to improve
the wear resistance of aerospace aluminum alloy parts to ensure a long service life, offer
good reliability and production quality, reduce production costs, and obtain good economic
benefits [6–9].

Hard oxidation is known as hard anodizing (HA) treatment, in which a metal is placed
in an electrolyte as the anode such that an oxide film of thickness ranging from tens to
hundreds of microns is formed on the metal surface. The formation of such an oxide
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layer film endows the metal with corrosion and wear-resistant properties, but it also has
the disadvantage of low hardness [10]. Microarc oxidation (MAO) is a surface treatment
technology developed from anodic oxidation. It increases the electrode voltage of common
anodic oxidation from the Faraday zone to the high voltage discharge zone, produces
microarc plasma spark discharge, and in situ forms a ceramic coating on the surface of
valve metals such as Al, Mg, Ti, and their alloys [11–13]. Diamond-like carbon coating is a
substable amorphous carbon film combining sp3-hybridized bonds (diamond structure)
and sp2-hybridized bonds (graphite structure), which is considered to be an ideal surface-
protective coating to improve the performance and life of aluminum alloys due to its high
hardness, excellent abrasion resistance, low coefficient of friction, high elastic modulus,
and good chemical inertness [14–21]. Depending on its structure, it can be divided into
hydrogen-containing DLC coatings and hydrogen-free tetrahedral amorphous carbon (ta-C)
coatings. Many researchers have studied these three coating preparation methods and
found that the hard anodic oxide layer has a significant influence on the wear behavior
of aluminum alloy. Soffritti et al. [22] prepared anodic aluminum oxide coatings with
different thicknesses by different hard oxidation methods and observed their microstructure
and mechanical properties. Through the wear test, it was concluded that the anodic
aluminum oxide coatings have a great influence on the wear performance of aluminum
alloys. P Kwolek et al. [23] prepared hard oxide coatings on 5005 and 6061 aluminum
alloys. The wear resistance of hard oxide coatings prepared on different aluminum alloys
was studied by a scratch test and a wear test. The results show that the wear resistance of
coated 6061 aluminum alloy is higher than that of 5005 aluminum alloy, which is mainly
related to the lower porosity and higher hardness of hard oxide coatings prepared on
6061 aluminum alloy. In addition, the wear resistance of MAO coatings has also been
studied. For example, J.J. Zhuang et al. [24] formed MAO coatings on aluminum alloys
and studied the effects of oxide films formed at different oxidation times on their wear
resistance. C. Yang et al. [25] prepared MAO coating on aluminum alloy by changing the
concentration of phosphate, which increased the hardness of the coating and reduced the
wear rate. Furthermore, some studies were carried out on the effects of DLC coatings on
the surface of aluminum alloys [26,27]. It was found that the hardness was significantly
higher than that of uncoated aluminum alloys, but there is a high residual stress and poor
adhesion between the DLC film and the substrate. The surface properties can be optimized
by doping elements. It has been reported that metal elements (such as Cr [28], Ti [29],
W [30], Zr [31], Ni [32], and Cu [33]) can effectively release residual stress by changing the
structure of the DLC film. Therefore, the above three surface modification coatings can
effectively improve the hardness and wear resistance of aluminum alloy, but comparisons
of these three types of coated aluminum alloy are scarce, so this aspect is worth studying.

In this study, three types of coatings, named MAO, HA+W+DLC, and HA+Ti+ta-C,
were deposited on 7A04 aluminum alloy and compared with an aluminum alloy substrate
without surface treatment. The microstructure, hardness, and wear behavior of these three
coatings were investigated.

2. Test Materials and Methods
2.1. Test Material

In this study, a 7A04 aluminum alloy cuboid sample with a size of 19 mm× 12 mm× 12 mm
was used as the test matrix material. A 25Cr3Mo3NiNbZr die steel ring with an inner
diameter of 42 mm, an outer diameter of 50 mm, and a width of 13 mm was used as the
grinding material. The nominal compositions of the materials are listed in Tables 1 and 2.

Table 1. Chemical composition of 7A04 aluminum alloy (wt.%).

Element Si Fe Cu Mn Mg Cr Zn Ti Al

content 0.5 0.5 1.4–2.0 0.2–0.6 1.8–2.8 0.1–0.25 5.0–7.0 0.1 Balance
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Table 2. Chemical composition of 25Cr3Mo3NiNbZr steel (wt.%).

Element C Si Mn Cr Mo Ni Nb Zr V

content 0.28 <0.1 0.18 3.03 2.94 0.55 0.14 0.0012 Balance

2.2. Test Method

Prior to coating deposition, the 7A04 aluminum alloy substrates were polished with
2000 mesh sandpaper. Microarc oxidation was carried out using an electrolyte containing
30 g/L (NaPO3)6, 3 g/L KOH, 8 g/L Na2B4O7, and 15 g/L glycerin for 35 min under
a current density of 10 A·dm−2. The temperature of the electrolyte was maintained at
303 K, while the sample was placed as an anode, and the stainless steel was used as the
cathode. When preparing multilayer diamond-like carbon coatings, the Cr/Ni-doped
oxide film transition layer was firstly coated on the surface of aluminum alloy by hard
oxidation, which was conducted using a 15 wt.% sulfuric acid electrolyte for 30 min under
a current density of 50 mA·cm−2, and then conducted by repetition of dipping in 3 M
Cr/Ni-containing electrolyte for 1 min and heat treatment in a 400 ◦C electric furnace
for 30 min. Secondly, the W/Ti transition layer was prepared using a nonequilibrium
magnetron sputtering system (UDP-650, Teer Coatings Co., Ltd., Droitwich, UK) with a
W/Ti target separately, under the conditions of a constant current of 1 A and a negative
bias voltage of −60 V for 5 min to enhance the bonding strength. Finally, the DLC layer
was prepared by magnetron sputtering under the conditions of a constant current of 3.5 A
and a negative bias voltage of −60 V for 150 min. The ta-C layer was prepared by arc ion
plating with optimized parameters of a current of 60 A, a bias voltage of −120 V, and a
depositing time of 60 min.

Friction and wear tests were carried out for 4000 cycles over 1200 s using a high-speed
ring-block friction meter (MRH-3, Jinan Shunmao Corporation Ltd., Jinan, China) under
oil lubrication with a load of 300 N and a speed of 200 rpm/min. The test was carried
out at room temperature and atmospheric pressure. Bulk samples were prepared from
uncoated and differently coated 7A04 aluminum alloys. The ring specimens were made of
DLC-coated 25Cr3Mo3NiNbZr mold steel. After the test, the samples were firstly shaken
ultrasonically for 10 min using petroleum ether, which acted as the organic solvent to
remove the surface lubricating oil, and then were ultrasonic cleaned in anhydrous ethanol
for 10 min and dried at 60 ◦C for 0.5 h. After drying, the samples were weighed immediately
(five times for each measurement). The maximum and minimum values were removed,
and the remaining average value was considered. The weighing method was the same as
that used after the testing.

The wear surface morphologies were analyzed by a laser confocal microscope (OLS5100,
Reco System Integration Ltd., Beijing, China). A field-emission scanning electron micro-
scope (JSM-IT800, JEOL Companies, Tokyo, Japan) was used to observe the surface and
cross-sectional morphology before and after wear and to analyze the characteristics of
friction wear and wear behavior. It was combined with an SEM-supporting energy spec-
trometer to perform energy spectral analysis. The X-ray diffractometer (Brux-D8, Bruker
AXS Companies, Karlsruhe, Germany) was used to analyze the phase composition of the
worn specimen surface using Cu-Kα radiation at 40 kV and 40 mA. Cu was used as the
target material for the tests, and the scanning range was set from 20◦ to 80◦ with a scanning
speed of 6◦/min. In these experiments, a nanoindentation tester (Keysight G200, Keysight
Technologies, Santa Rosa, CA, USA) was chosen to measure the coating hardness using the
continuous stiffness method and the 10% coating thickness method, with a point-to-point
spacing of 20 µm, a load setting of 50 mN, and a Poisson’s ratio of 0.26. The bonding states
of carbon atoms in two multilayer coatings were measured by Raman spectroscopy (InVia,
Renishaw, Lundon, UK).
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3. Results and Discussion
3.1. Pre-Wear Microscopic Morphology Analysis

The surface morphologies of different coatings before wear are shown in Figure 1.
As shown in Figure 1a,b, the MAO-coated specimens have an inhomogeneous surface
and are endowed with a typical “crater” porous structure constituting several micropores,
a few small particles, and microcracks. Micropores are formed by molten oxides and
bubbles discharged from the microarc discharge channels, through which molten alumina
flows out and solidifies rapidly. Small particles also solidify from these molten oxides.
Simultaneously, a large amount of the anionic component PO3

− and a small amount of
B4O7

2− in the electrolyte enter the channel, leaving a clear and distinct boundary. The
cracks are mainly caused by the different coefficients of phase expansion in the coatings and
thermal stresses [34]. As shown in Figure 1c–f, continuous dense diamond-like coatings
are successfully deposited on the surface of the aluminum alloy, and both coating surfaces
appear smooth and flat owing to the dense arrangement of small amorphous particles.
The HA+W+DLC coating has more cracks than the HA+Ti+ta-C coating, which has a
smoother surface topography. The surface morphologies of the substrate material shown in
Figure 1g,h are not flat and have stray scratches and cracks related to the preparation of the
specimens for machining. The cross-sectional morphologies of the investigated coatings
and the corresponding elemental line scans are shown in Figure 2. The thickness of the as-
deposited MAO coating, HA+W+DLC coating, and HA+Ti+ta-C coating is 37.1 µm, 9.8 µm,
and 3.2 µm, respectively. It can be seen that the three coatings are dense with no pores and
well bonded with the substrate, and the interfaces of each sublayer in the two multilayer
coatings are clear. Additionally, the distribution of Al and O elements is relatively uniform
in MAO, and the composition of HA+W+DLC and HA+Ti+ta-C conforms to the design,
which is conducive to binding with the substrate.

3.2. XRD Patterns

The X-ray diffraction patterns of the coating and substrate after abrasion are shown
in Figure 3. The 7A04 aluminum alloy substrate shows a strong aluminum peak, mainly
composed of the aluminum phase, while the MAO coating also shows an aluminum phase,
owing to the high porosity [35] and low thickness of the coating. The MAO coating is
mainly composed of α-Al2O3 and γ-Al2O3. The diffraction peak of γ-Al2O3 is stronger
than that of α-Al2O3, indicating that the oxide of the MAO coating is mainly composed
of γ-Al2O3. The HA+W+DLC and HA+Ti+ta-C coatings are very thin, and the rays can
penetrate the coating directly, showing the aluminum phase corresponding to the substrate.

3.3. Hardness Analysis

The hardness of the MAO, HA+W+DLC, HA+Ti+ta-C, and the substrate was measured
using a nanoindentation instrument. Using the continuous stiffness and 10% coating
thickness methods, five indents were created in each sample; the average value of the
maximum and minimum values of the five indentation removals was considered to be the
surface hardness of the specimen. Finally, the average hardness of each coating specimen
was calculated, as shown in Figure 4. The average hardness of the 7A04 aluminum alloy
substrate was 1.74 GPa, and the average hardness of the MAO coating was 7.33 GPa, which
was four times higher than that of the substrate. The average hardness of the HA+W+DLC
coating after hard anodizing treatment was 22.64 GPa, which was 13 times higher than that
of the substrate. The average hardness of the HA+Ti+ta-C coating after hard anodizing
treatment was 34.23 GPa, which was 19 times higher than that of the substrate. It was
found that the substrate and MAO coating had a better bonding force, which was beneficial
to the performance of coating hardness. The hardness of the HA+W+DLC and HA+Ti+ta-
C coatings after hard anodizing treatment considerably improved owing to the typical
diamond-like structure within the HA+W+DLC coating.
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Figure 1. Surface morphologies of (a) MAO coating (×200 times), (b) MAO coating (×800 times),
(c) HA+W+DLC coating (×200 times), (d) HA+W+DLC coating (×800 times), (e) HA+Ti+ta-C coating
(×200 times), (f) HA+Ti+ta-C coating (×800 times), (g) 7A04 substrate (×200 times), and (h) 7A04
substrate (×800 times).
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3.4. Wear Test
3.4.1. Friction Coefficient and Wear Rate

The coefficient of friction of different coatings against the substrate as a function
of the wear time is shown in Figure 5. The wear process is typically divided into three
stages—initial, break-in, and stable wear [36]. As shown in Figure 5a, in the initial stage
(0–10 s), due to its rough, porous structure, the tangential resistance is large during wear,
and the friction coefficient gradually increases. It can be preliminarily determined that
the coating begins to break, gradually peeling off. The loose, porous shape of the exterior
surface stores the abrasive particles generated by friction. Subsequently, the abrasive
particles form a relatively smooth protective coating on the surface, leading to a decrease
in the coefficient of friction, which stabilizes at 0.03 [37]. As evident in Figure 5b,c, for
the HA+W+DLC and HA+Ti+ta-C coatings, their average friction coefficients of 0.028 and
0.025, respectively, are very low after the break-in period. The average friction coefficients
of the HA+Ti+ta-C coatings are slightly less than those of the HA+W+DLC coatings. It
can be determined that the friction coefficient gradually fluctuates with an increase in
the wear time, but there is no obvious “transition point” in the three coatings, indicating
that the coating still exists [38,39]. In Figure 5d, the friction coefficient curves of the three
coatings are compared with those of the 7A04 aluminum alloy substrate. The friction
coefficient of the substrate is between 0.01 and 0.04, and it fluctuates considerably. In the
initial stage of wear, the coefficient first increases rapidly and then decreases, possibly
related to the accelerated oxidation of the frictional heat generated during the wear process.
For the untreated substrate material, there is no protective coating on the surface, and
the rapid fluctuation in the friction coefficient within 90 s indicates that the steel ring
undergoes serious wear on the surface of the aluminum alloy. The combined extent of
wear and wear rate are shown in Figure 5e,f. All three coatings reduce the mass loss
and wear rate compared to the 7A04 substrate. It can be seen that all three coatings
prepared on the 7A04 surface have a good anti-wear effect, resulting in an improved wear
resistance of the substrate. The lower mass loss and wear rate of the HA+W+DLC coating
and the HA+Ti+ta-C coating after hard anodizing treatment are 1.36 × 10−7 mm3/N·m
and 1.51 × 10−7 mm3/N·m, respectively. Mainly due to the typical amorphous material
after hard anodizing treatment [40], HA+W+DLC and HA+Ti+ta-C have both sp3- and
sp2-type bonding structures. The vibration mode of sp2 represents the characteristics of
graphite and hence has some characteristics of graphite, such as lubrication. Hence, the
MAO, HA+W+DLC, and HA+Ti+ta-C coatings are slightly abraded, and the wear rate of
HA+Ti+ta-C is lower than that of HA+W+DLC [41]. All coatings exhibit slight wear, with
HA+Ti+ta-C showing a lower wear rate than HA+W+DLC, followed by MAO.
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3.4.2. Three-Dimensional Morphology

The surface morphologies of the substrate and coating were observed using a three-
dimensional profiler. The three-dimensional morphology of the three coatings and their
surfaces are shown in Figure 6. It is evident that compared with the wear depth of 179.05 µm
of the substrate material (Figure 6d,d1), the wear trace of the HA+Ti+ta-C coating is the
shallowest, at 13.95 µm (Figure 6c,c1), followed by that of the HA+W+DLC coating after
hard anodizing treatment (18.55 µm, as shown in Figure 6b,b1), and the wear depth of
the MAO coating (35.33 µm, as shown in Figure 6a,a1). Combined with the adhesion
between the coating and substrate, the wear of the HA+W+DLC and HA+Ti+ta-C coatings
is the least, which is related to their having the lowest-roughness substrate, the preparation
method, and the thickness of the coating. The results show that compared with the wear
degree of the 7A04 aluminum alloy substrate, the wear resistance of the other three coated
aluminum alloys is improved. Among them, the wear depth of HA+Ti+ta-C is the shallow-
est, which is consistent with the law of the friction coefficient wear rate, indicating better
wear resistance.
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3.4.3. Wear Surface Morphology Analysis

The surface morphologies of the four kinds of samples with the worn part and the
unworn part are shown in Figure 7. It can be seen from Figure 7a that the wear mechanism
of the MAO coating is mainly abrasive wear. This is due to the friction between the
MAO coating and the friction pair after wear. The friction pair first contacts the convex
part of the MAO coating to form a nonuniform contact, and the actual contact occurs at
the contact point. Under a certain load and speed, some microprotrusions are worn off,
and wear debris is formed on the worn track. In the subsequent friction and wear test,
microcutting occurs to accelerate the wear of the MAO coating, indicating that the wear
mechanism is abrasive wear. After a period of wear, the surface of the microprotruding
becomes flat, which increases the contact area between the MAO surface and the friction
pair. When the load is greater than the strength of the microconvex part on the MAO
coating, the convex part cracks to form a large abrasive particle. Under the cyclic action of
the contact stress between the MAO and the friction pair, the crack propagates along the
pore edge of the MAO coating, resulting in the separation of the MAO through abrasive
wear. Combined with the EDS element distribution, it can be seen that the distribution of
O, Al, and P elements is relatively uniform, and there is no significant difference. It can
also be proved that the MAO coating is not completely destroyed. As shown in Figure 7b,c,
the HA+W+DLC and HA+Ti+ta-C coatings have flake morphology. It can be seen that
wear of the coating occurs on the surface of HA+W+DLC and HA+Ti+ta-C, accompanied
by abrasive wear on the substrate due to debris generated after wear. According to the
distribution of EDS elements, the surface of HA+W+DLC coating has Cr, W, C, O, and Al,
and the surface of HA+Ti+ta-C coating has Ti, Ni, C, O, and Al. Among them, Cr, W, Ti,
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and Ni are doped elements, which are used to reduce problems regarding the high internal
stress and poor thermal stability of the coating and substrate [42]. As shown in Figure 7d,
it can be seen that there are deep parallel furrows in the aluminum alloy matrix after the
wear test, and obvious abrasive wear can be seen.
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The SEM cross-sectional morphologies and element distributions of the different
samples are shown in Figure 8. It can be seen from Figure 8a that the thickness of the MAO
coating after wear is approximately 32 µm, and no connected pores are observed at the
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cross-section of the MAO coating. Furthermore, it does not extend to the substrate, which
indicates that the bonding strength between the MAO coating and the substrate is high [24].
The endpoint of the diffusion of electrolyte to the substrate is between the MAO coating
and substrate, which is the starting point of the microarc discharge channel [43]. The high
temperature and pressure induced by the microarc discharge can promote the diffusion of
O2− and Al3+ in the region to form molten Al-O compounds, simultaneously transferring
heat to the substrate to melt Al. The molten Al-O and Al undergo chemical microalloying
reactions under the effects of thermochemistry, electrochemistry, and plasma chemistry. As
shown in the line scan in Figure 8a1, P, O, and C diffuse from the electrolyte; Al and Mg
diffuse from the matrix; the concentrations of Al and O are the highest; and the transition
at the bonding interface is evident. This indicates that in the MAO reaction, aluminum
mainly diffuses from the inside to the outside, and the electrolyte may also provide a small
amount. This indirectly indicates that the MAO coating is generated in situ on the surface
of the 7A04 aluminum alloy. The bonding at the interface is based on the metallurgical
bonding of chemical bonding and diffusion, which prevent further separation of the coating
layer and effectively reduce wear. From Figure 8b,b1,c,c1, it is evident that the thickness of
the HA+W+DLC and HA+Ti+ta-C coatings after wear is approximately 9 µm and 3 µm,
respectively. In the HA+W+DLC coating, Cr and W are the doping elements, W forms a
transition layer, and Cr is hard-oxidized to oxide. Ti and Ni are the doping elements of
the HA+Ti+ta-C coating, Ti forms a transition layer, and Ni is hard oxidized to oxide. The
whole coating structure is dense and uniform without obvious pores or cracks, and there is
a clear boundary between the substrate, the transition layer, and the coating.
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3.4.4. Raman Spectroscopy

Raman spectroscopy is a reliable method of analyzing the microstructure of a DLC
coating and characterizing sp2 and sp3 C-C hetero-bonds [44,45]. The DLC coatings
demonstrated a broad diffuse peak at 1200–1700 cm−1 and a weak shoulder peak at
1300–1400 cm−1. Two Gauss peaks were obtained by fitting the ‘D’ peak near 1332 cm−1

(characterizing the sp3 C-C hetero-bonds) and the ‘G’ peak near 1575 cm−1 (characterizing
the sp2 C-C hetero-bonds) with the Gauss function. These represent the characteristic
Raman peaks of diamond and graphite, respectively.

The Raman spectra of the HA+W+DLC and HA+Ti+ta-C coatings are shown in
Figure 9. The laser wavelength was 532 nm, and the wavelength range was 200–2000 nm−1.
Figure 9a,b show the Raman spectra of two typical DLC coatings fitted using the original
software. The two DLC coatings prepared in this study exhibit typical Raman characteristics.
The intensity ratio of the D peak to the G peak, ID/IG, was proportional to the number
ratio of sp2/sp3 C-C bonds [46]. The ID/IG values of the HA+W+DLC and HA+Ti+ta-C
coatings after hard anodizing treatment, calculated using Origin software(2022), were 1.11
and 0.89, respectively. Thus, the highest content of sp3 C-C bonds was in the HA+Ti+ta-C
coating after hard anodizing treatment, followed by the HA+W+DLC coating. It is known
from the Raman spectrum that the D peak represents the mixed vibration mode of the
sp2, or sp2 and sp3, bond structure in the coating. The higher the content of the sp3 bond
structure in the system, the more prevalent the tetrahedral structure in the coating, the
more the structure is biased toward the diamond structure, and the greater the hardness
of the coating. A comparison of the Raman spectra of the two coatings shows that the
HA+Ti+ta-C coatings had a higher sp3 bond content, which is consistent with these results.
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4. Conclusions

(1) In this work, MAO, HA+W+DLC, and HA+Ti+ta-C coatings were successfully pre-
pared on a 7A04 aluminum alloy substrate. The surface hardness was significantly
improved after coating. The hardnesses of three coated samples were 7.33 GPa,
22.64 GPa, and 34.23 GPa, respectively. The highest hardness of the HA+Ti+ta-C
coatings resulted from the high sp3 C-C bond content.

(2) During the ring-block wear tests under oil lubrication, both multilayer coatings
exhibited excellent wear resistance. The average coefficient of friction and wear rate of
HA+W+DLC and HA+Ti+ta-C were, respectively, 0.028 and 1.51 × 10−7 mm3/N·m,
and 0.025 and 1.36 × 10−7 mm3/N·m. The higher surface hardness of the HA+Ti+ta-C
coating led to better wear resistance, which suggests that the coating can be applied
in the surface protection of aluminum alloys.
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