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Abstract: Cylinder liners, which are an vital part of marine diesel engines, are prone to damage
owing to the pool working conditions of reciprocating friction and electrochemical corrosion. As
a burgeoning manufacturing technology, laser cladding has a prospective application on repairing
and performance enhancement of cylinder liners. The performance of cladding layers on cylinder
liners reported by current studies is not satisfactory. The laser cladding, assisted by the steady
state magnetic field on the cylinder liner, is an effectual method to cover the shortage. However,
there are few studies about that. In this study, single-track Inconel 625 cladding layers were carried
out on a cylinder liner, assisted by a steady-state magnetic field. The effects of the magnetic field
intensity and direction on the geometrical characteristics (width, height, penetration, and dilution
ratio), microstructure, phase composition, microhardness, wear resistance, and corrosion resistance
were investigated. According to the results obtained, adding a magnetic field with a small magnetic
field intensity can significantly enhance the flatness, hardness, friction, wear resistance, and corrosion
resistance of the cladding layer. Applying a magnetic field in the horizontal direction was conducive
to improving the corrosion resistance of the sample. With the application of a vertical magnetic
field, the microhardness increased, and wear resistance, as well as the flatness of the cladding layer,
were improved.

Keywords: cylinder liner; laser cladding; steady-state magnetic field; geometrical characteristics;
mechanical properties

1. Introduction

The cylinder liner is a vital part of the diesel engine, which is an important piece of
power equipment, but its working environment is very harsh [1–3]. The common failure
forms of cylinder liners include wear and corrosion. The wear of the cylinder liner is
caused by a combination of physical, chemical, and mechanical factors, and can be divided
into abrasive wear, corrosion wear, and adhesive corrosion [4,5]. The corrosion forms of
cylinder liners mainly include oxygen absorption corrosion, hydrogen evolution corrosion,
and oxygen concentration corrosion [6–8]. Premature damage and scrapping of cylinder
liners will lead to a waste of resources, so repairing cylinder liners is significant. Common
repairing methods of cylinder liners include welding, plating, thermal spray, laser cladding
technology, etc. However, parts repaired by welding technology are prone to thermal stress
and deformation, with low bonding strength and limited coating thickness [9,10]. For the
plating technology, the pretreatment process of workpiece surface is complex, tedious,
and has a high cost. In addition, insufficient pretreatment or mistakes during operation
may lead to rapid loss of coating and short service life after repairing. Thermal spraying
technology makes the workpiece prone to porosity and oxide inclusion. Sometimes, the
hardness and impact performance are unsatisfactory, which means the coating is easy to
peel off [11]. Compared to the traditional repairing technology, laser cladding technology
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is a cost-effective way to significantly improve the surface properties of materials, such as
wear, corrosion, heat, oxidation, and fatigue resistance. During the laser cladding process,
a laser beam is used to melt a powder material onto a thin layer of the substrate surface.
The melted powder material then quickly solidifies to form a surface cladding layer. This
process results in a layer with a low dilution rate and excellent bonding properties with
the substrate. [12]. Therefore, the use of laser cladding to repair cylinder liner has become
more popular lately. This method has gained attention due to its effectiveness.

The laser cladding processing is highly affected by the technological conditions. The
thermal stress and phase transition stress caused by the large temperature gradient easily
cause cracks. Cracks not only reduce coating’s performance, but also shorten its service
life, which is one of the important reasons hindering the popularization of laser cladding
technology. Additionally, the coating’s surface is uneven and fluctuates after laser cladding,
which needs machining treatment. To solve the problems existing during laser processing,
auxiliary treatment by external fields, such as the thermal, electromagnetic, and vibration
fields, is a promising method [13–15]. The external energy field is combined with a thermal
energy field provided by a laser to realize the regulation of heat transfer or mass transfer
behavior of the molten pool. In particular, laser cladding with steady-state magnetic field
assistance has the advantages of simple equipment, multiple control methods, and good
control effects. The solidification of the molten pool and grain growth can be controlled,
owing to the existence of the electromagnetic braking effect and thermo-magnetofluid effect.
Some scholars have studied the steady-state magnetic field-assisted laser cladding, mainly
focusing on the flow of the molten pool, composition distribution, and microstructure. M.
Bachmann et al. discovered that the steady-state magnetic field can be used to generate
induced a Lorentz force to change the shape of the coating in the laser manufacturing
process [16,17]. O. Velde et al. used numerical simulation methods to study the effects of
static magnetic fields on convection during metal surface growth, and found that static
magnetic fields can control eddy currents and improve crystal quality [18]. C. Lee et al.
used static stabilizing magnetic fields to suppress the flow on the upper surface of the
pool during laser cladding, thus slowing the flow of molten pool, effectively reducing
splashing and improving the surface quality of the cladding layer [19]. Q. Kang et al.
found that magnetic fields have a significant influence on the defects and properties of laser
cladding layers, which could improve element distribution and reduce crack sensitivity [20].
They also found the magnetic field generated a magnetostriction that reduces the elastic
modulus, which can improve the cracking and wear resistance [21]. L. Wang et al. focused
on the influence of a static magnetic field on the molten pool surface and carried out the
cladding experiment, The result pointed out that the resistance generated by a Lorentz
force slowed down the flow velocity of the fluid, thus making the molten pool surface
smoother due to the effect of magnetic field [22]. T. Hu et al. established a two-dimensional
transient cladding model using numerical simulation. It has been found that adding a
stable magnetic field in the molten pool can effectively suppress its internal convection [23].
J. Yao et al. conducted a preliminary study using a numerical simulation method, but
the mechanism of how a steady-state magnetic field suppressed the surface ripple was
not clear. Therefore, they established a two-dimensional transient model of steady-state
magnetic field-assisted laser cladding for simulation. It turned out that the steady-state
magnetic field intensity interacted with the internal temperature field, flow field, and
cladding surface topography and then reduced the dragging force of the WC particles [24].

Therefore, during the laser cladding process, the occurrence of defects such as cracks,
pores, and segregation can be reduced by assisting a steady-state magnetic field, which
changes the convective state and crystallization characteristics of the molten pool, which
promotes the forming quality of the cladding layer. Until now, few studies have been
conducted on the auxiliary effects of stable magnetic fields on the distribution of elements
in Inconel 625 cladding layers on cylinder liners, and a large number of experiments guided
by theoretical models are lacking. In this paper, a steady-state magnetic field was used to
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reduce the cracks, smooth the surface, and improve the quality of the cladding layer to
improve the surface quality of the cylinder liner.

2. Materials and Methods
2.1. Materials and Experimental Set-Up

Inconel 625 powder, which was produced by Hoganas (Ath, Belgium), was selected
as the cladding powder, aiming to strengthen the damaged parts of cylinder liner with its
high temperature corrosion, oxidation, and excellent wear resistance [25]. It has a particle
size range of 45–150 µm. Grey cast iron HT300, which is a commonly used material for
the cylinder liners of marine diesel engines, was used for the substrate with a size of
100 mm × 50 mm × 5 mm and surface roughness of 3.6 µm. Table 1 displays the chemical
compositions of both the cladding powder and the substrate materials.

Table 1. Chemical composition of Inconel625 and HT300.

Materials Element Content (wt.%)

Inconel625
Ni Cr Mo Fe Nb Al C

61.37 21.41 8.9 4.04 3.44 0.2 0.061

HT300
Fe C Si Mn S P

93.84 2.9 1.8 1.2 0.12 0.15

As shown in Figure 1, a laser cladding system was used in this study, including a laser
generator (LDF 4000–100, Laserline, Mulheim-Karlich, Germany), a coaxial laser cladding
head (YC52, Precitec, Rotenfels, Germany), a six-axis industrial robot (ZH 30/60III, Kuka,
Augsburg, Germany), and a gas coaxial powder feeder (RC-PGF-D, Raycham, Anshan,
China), as well as a water cooler, air compressor, and other auxiliary equipment.
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2.2. Design of Steady-State Magnetic Field and Parameters

The steady-state magnetic field of this experiment was provided by an NdFeb per-
manent magnet with a size of 100 mm × 100 mm × 50 mm. Magnetic field intensity and
direction were used as experimental factors. The magnetic field intensity was adjusted
by changing the distance between the magnets. As displayed in Figure 2, the magnetic
field directions, including the horizontal left (L), horizontal right (R), vertical upward (U),
and vertical down (D), were determined by the relative location between the magnets and
molten pool. The laser cladding parameters, which can create the laser cladding layer
with a uniform surface morphology and strong matrix bonding, were determined after
long-term research and experimental comparison. The specific experimental parameters
are shown in Table 2. In the laser cladding process, 99.99% pure Argon gas was used as
both the carrier and shielding gas with flow rates of 400 L/h and 600 L/h, respectively.
Under the conditions of different magnetic field intensity and direction, the single-track
layers were deposited by laser cladding with the mentioned process parameters.
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Table 2. Experimental parameters.

Laser Power
(W)

Scan Speed
(mm/s)

Powder Feed Rate
(g/s)

Magnetic Field Intensity
(mT) Field Direction

F1

1200 5 20

0

L
F2 50
F3 100
F4 150
F5 200

F6 150 R

F7 150 U

F8 150 D
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2.3. Characterization Techniques

The test specimens were obtained by wire spark erosion, and then mechanically
ground and polished. The surfaces were then etched in the saturated oxalic acid solution
at 5 V DC. The geometric characteristics of the cladding layer (width, depth, height,
and dilution) were obtained. The microstructure of the samples were observed using a
metallographic microscope (Leica-DMi8, Leica, Wetzlar, Germany). The dilution adopted
in this paper was calculated as the ratio of height to depth of cladding layer. The phase
composition of cladding layer was analyzed by Empyrean X-ray diffractometer (Empyrean,
Panaco, Malvern, The Netherlands), in which the voltage was 40 kV, the current was 40 mA,
the Cu target was used as a cathode in the X-ray diffractometer, and the diffraction angle
was 20◦–100◦. The Vickers microhardness tester (HV-1000, Fangyuan, Jinan, China) was
used for measuring the microhardness along the depth direction at the top, middle, and
bottom region of the cladding layer, as well as the substrate. As shown in Figure 3, the
interval between the measured points of microhardness was 0.1 mm, the load was 1 kg,
and the loading time was 15 s. The friction wear testing machine (CETR-UMT, Bruker,
Billerica, America) was used to conduct friction wear tests on the substrate and cladding
samples, respectively. A tungsten steel ball was used for wear test, the loading force was
50 N, the sliding distance was 15 mm, and the sliding frequency was 1 Hz. Single samples
were rubbed at 23 ◦C for 20 min. The samples were weighed and recorded before and after
wear tests using electronic balance (FA1004N, Qinghai, Shanghai, China) to calculate the
abrasion loss. A three-electrode electrochemical corrosion system (CHR6601, Huachen,
Shanghai, China) was used for electrochemical corrosion test where the solvent was NaCl
solution with a mass fraction of 3.5%. The measurement range was −0.9 V~0.2 V. The
sampling rate was 0.01 V/s. Corrosion and abrasion tests were performed multiple times
to ensure the credibility of the test results.
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3. Results and Discussion
3.1. Geometrical Characteristics

As displayed in Figure 4 and Table 3, from the perspective of the macro profile, the
molten pool without the addition of a steady-state magnetic field presented a plump oval
shape, and the molten pool contained many round pores. The macromorphology of the
molten pool changed obviously when a higher intensity steady-state magnetic field was
applied. Put another way, the overall macro profile of the cladding layer will be gradually
flattened when a higher steady-state magnetic field is applied. This is the result of the
interactions between hydrodynamics and electrodynamics. Figure 5 shows the mechanism
of the inhibiting effect for the convection of the molten pool during the laser cladding
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assisted by the steady-state magnetic field process, where the circle line represents the
convection of molten pool, which is determined by the temperature field and v is the flow
velocity of the molten pool.
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Table 3. The cross-sectional size and dilution rate data of single-channel cladding layer under various
applied steady-state magnetic field strengths.

No. Melting Width/µm Melting Hight
/µm Melting Depth/µm Dilution Ratio

%

F1 2595.80 704.72 511.83 42.07%
F2 2637.81 652.21 391.44 37.51%
F3 2666.55 602.39 228.23 27.48%
F4 2745.41 586.41 221.3 27.40%
F5 2855.73 537.32 197.97 26.92%

When the molten metal moves in the molten pool along the vertical direction of the
magnetic field, an induced current will be generated. Such a moving material with an
electric charge will experience the opposite Lorentz force (FM) in a magnetic field. Therefore,
when there is a magnetic field perpendicular to the laser cladding direction, a Lorentz
force component, which is offset with the original molten pool motion direction, will
appear, which results in a reduction in the convection velocity and the generation of the
electromagnetic braking effect [26–29]. Under the condition of the steady-state magnetic
field, the induced current (Jw) can be expressed as σv × B, where v is the velocity of fluid
and σ is the conductivity of the solution. The expression of the induced Lorenn magnetic
force is Jw × B, where the induced electromagnetic force is proportional to the square of the
intensity of the magnetic induction, and it can be judged that the direction of the induced
electromagnetic force is in the opposite direction to the flow direction of the melt, which
has the effect of inhibiting the convection of the molten pool.



Coatings 2024, 14, 438 7 of 21
Coatings 2024, 14, x FOR PEER REVIEW 7 of 21 
 

 

Flow velocity

Va

Vb

Va

Vb

（a） （b）

（c） （d）

Magnetic field

Induced current

Lorentz 
force Lorentz 

force

Lorentz 
force

Lorentz 
force

Magnetic field

Magnetic field

Magnetic field

Flow velocity

Flow velocity

Flow velocity

Induced current

Induced current
Induced current

 
Figure 5. Schematic diagram of the mechanism of magnetic field inhibiting convection: (a) B ⟂ V, (b) 
θ < 90°, (c) B ⟂ V, (d) θ > 90°. 

Due to the weakened convection, the high-temperature melt in the upper part of the 
molten pool cannot flow down to the bottom, which makes a large amount of the high-
temperature melt stay in the top part of the molten pool and, as a result, less substrate was 
melted. Carbon in the substrate reacted with oxygen at high temperatures to produce 
pores. A lack of magnetic field assistance led to more substrate, which was melted with 
the high content of carbon elements, and it easily reacts to produce pores under high tem-
perature conditions. So, the accumulated high-temperature melt in the top part of the mol-
ten pool transfers heat to the horizontal direction, which contributes to the increase in the 
width and reduction in pore defects. 

Figure 6 and Table 4 present the morphology and size data of molten pool under 
different magnetic field directions. It is visible in Figure 6 that, when the horizontal mag-
netic field was applied, the height and width were higher, but the depth and dilution rate 
of the molten pool were lower. However, the external stable magnetic field has a limited 
effect on the width, which mainly depends on the laser cladding process parameters. 

Figure 5. Schematic diagram of the mechanism of magnetic field inhibiting convection: (a) B ⊥ V,
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Due to the weakened convection, the high-temperature melt in the upper part of the
molten pool cannot flow down to the bottom, which makes a large amount of the high-
temperature melt stay in the top part of the molten pool and, as a result, less substrate was
melted. Carbon in the substrate reacted with oxygen at high temperatures to produce pores.
A lack of magnetic field assistance led to more substrate, which was melted with the high
content of carbon elements, and it easily reacts to produce pores under high temperature
conditions. So, the accumulated high-temperature melt in the top part of the molten pool
transfers heat to the horizontal direction, which contributes to the increase in the width
and reduction in pore defects.

Figure 6 and Table 4 present the morphology and size data of molten pool under
different magnetic field directions. It is visible in Figure 6 that, when the horizontal
magnetic field was applied, the height and width were higher, but the depth and dilution
rate of the molten pool were lower. However, the external stable magnetic field has a limited
effect on the width, which mainly depends on the laser cladding process parameters.

The convective movement in the laser molten pool is the fundamental cause of the
concave–convex corrugating on the cladding layer’s surface. The steady-state magnetic
field can reduce the velocity of the molten pool surface in the normal direction, thus reduc-
ing the elevation of the coating and smoothing the coating’s surface. With an increase in
magnetic induction, the surface smoothness is further improved. Therefore, the electromag-
netic braking effect of the steady-state magnetic field is a favorable factor for decreasing
the surface fluctuation.
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Table 4. The data on the cross-sectional size and dilution rate for a single cladding layer has been
obtained under magnetic fields in all directions.

No. Melting Width/µm Melting Hight
/µm Melting Depth/µm Dilution Ratio

%

F4 2745.41 586.41 221.3 27.40%
F7 2785.04 610.91 229.65 28.35%
F6 2686.1 612.99 242.55 29.99%
F8 2688.98 464.23 320.21 40.82%

3.2. Microstructure

Figure 7 displays the cross-sectional structure of the Inconel 625 cladding layer with
different magnetic field intensities. It is visible in Figure 7 that the dendrite growth
followed the typical solidification microstructure characteristics of laser cladding; that
is, the microstructure mainly changed from planar crystals near the bottom to a cellular
and columnar dendritic near the middle, and then to epitaxial crystals near the top along
the direction of the cladding height, regardless of whether a steady-state magnetic field
was applied. F1 shows the cladding layer without a steady-state magnetic field. The
microstructure presented relatively small columnar crystals in the bottom and middle
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regions of F1, whose crystal growth direction was mainly towards the maximum heat
dissipation direction. Since the isotherm was perpendicular to the heat dissipation direction,
the dendrite growth direction was perpendicular to the isotherm of this layer. F2 and F3
shows the microstructure of the cladding layers under the steady-state magnetic fields
with magnetic field intensities of 50 mT and 100 mT. The columnar dendrites near the
bottom were slightly thicker than those without an applied magnetic field. The convection
at the bottom interfered with the external transverse steady magnetic field, and changed
the heat flow direction of the cladding layer slightly at a small magnetic field intensity.
The growth direction of the dendrite was about 70◦–80◦ in the horizontal direction. F4
presents the microstructure of the cladding layer when a 150 mT steady-state magnetic
field is added. It can be found that a larger range of strong columnar dendrites with more
orientation appeared near the bottom. These dendritic stems were arranged neatly, and the
growth direction was about 60◦–45◦ from the horizontal direction. With an increase in the
steady-state magnetic field intensity, the electromagnetic braking effect was increasingly
stronger, which reduced the velocity of convection. In this case, the primary dendrites
grew along the direction of heat flow, but the secondary dendrites were inhibited to a
greater extent. In the middle region, there were a large number of dendrites, and many fine
equiaxed crystal structures were surrounded between and above each dendrite. F5 is the
microstructure with a stable magnetic field intensity increased by 200 mT. Many columnar
dendritic crystals with neatly arranged trunks can be found at the bottom and middle. The
angle between the growth direction and the horizontal line was reduced to about 45◦.

Additionally, compared to the cladding structure without a magnetic field, the den-
drites with different directions changed to dense equiatomic structures in the middle and
top with an increase in the constant magnetic field intensity. When a low-intensity magnetic
field was applied to the solidification of the liquid metal, the temperature gradient at the
solidification front decreased with an increased magnetic Taylor number. Simultaneously,
the enhancement of the magnetic field intensity increased the induced current in the molten
pool, and generated a larger magnetic Taylor number and a smaller temperature gradient,
which were conducive to the formation of equiaxed crystals [30]. Therefore, the auxiliary
of a stable magnetic field applied during the laser cladding process can reduce the internal
energy exchange, the temperature difference of the interface front, and the concentration
of the crystallization area of the supercooling degree, and improve the stability of the
crystallization front, to promote the creation of numerous equiaxed crystals.

On the other side, under the condition of the steady-state magnetic field, the liquid
metal generated a relative flow in the crystallization front, and scoured or fused the
formed grains. These broken grain fragments were brought into the molten pool by
the convection, and became new nucleation particles, forming a finer crystal structure,
promoting the formation of equiaxed crystals, and were conducive to refining the cladding
layer structure. Therefore, with an increase in magnetic field intensity, a larger range,
denser, and smaller equiaxed crystals ensured excellent performance of the entire cladding
layer. Simultaneously, when the constant magnetic field intensity increased, dendrites
in different directions were transformed into dense equiatomic crystal structures in the
middle and top of the cladding layer. Dendrites also appeared over a wider area, and they
were more robust and organized than before.
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Figure 8 shows the direction of the dendritic growth when different magnetic field
intensities are used. As observed in Figure 8, a stable magnetic field led to dendrite
coarsening, and its growth direction extended towards the direction of maximum heat
dissipation. Since the magnetization of the Inconel 625 nickel–iron alloy in a molten
state caused changes in magnetization energy, the crystal contained iron, which is easy to
magnetize, and the crystal had the magnetic anisotropy. When the paramagnetic substance
was magnetized, the magnetic moment of the molecule was parallel to the applied magnetic
field direction, so the magnetized axis was biased to the magnetic field direction. The
magnetization Xm of Inconel 625 is 50–100, and its magnetic anisotropy is significant when
placed in a magnetic field, so that the axis of magnetic anisotropy is deflected towards
the magnetic field direction and tends to be parallel to the magnetic field direction. In
the cladding layer, the growth direction of dendritic crystals will change when the steady
magnetic field is not applied; that is, when the steady magnetic field is applied horizontally
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to the left, the dendrites on the right side of the molten pool will be deflected horizontally,
and the angle formed between the growth direction and the horizontal direction decreases,
leading to a change in the growth mode of dendritic crystals. The influence of a steady
magnetic field on dendrite deflection is limited in a complex, convective environment.
However, these two factors work together to cause some dendrites to grow along the stable
magnetic field direction, and the dendrites show a tendency to grow in that direction. This
may be due to the maximum heat dissipation direction of the liquid flow and the horizontal
magnetic field. Figure 9 shows the direction of dendritic growth with different directions
of magnetic fields with an intensity of 150 mT. It can be seen from Figure 9 that changing
the direction of the magnetic field had similar effects on the top and middle regions of
the cladding layer. The auxiliary of a steady-state magnetic field made dendritic and
cellular crystals stronger and extend towards the direction of maximum heat dissipation.
Similarly, compared to the horizontal magnetic field, the vertical magnetic field caused
the dendrites to grow at a smaller angle in the vertical direction without any external
factors after magnetization; that is, they deflected and tended to grow steadily along the
vertical direction.
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3.3. XRD Pattern Analysis

As displayed in Figure 10, the cladding layer phase was composed of the matrix phase
of γ-Ni, the Laves phase of Ni2Nb, and the strengthened phase of Ni3Nb, which were all
included in the atlas of each experimental group. It is indicated that the composition of
the cladding layer phase was not changed. As the steady-state magnetic field intensity
increased, the content of γ-Ni increased, and the strengthening phase of Ni3Nb was
enhanced. However, the Laves phase of Ni2Nb decreased. This effect caused the molten
pool to flatten, and increased the surface heat dissipation area, leading to an increase in the
cooling rate of the molten pool surface. Therefore, a decrease in the Laves phase is directly
related to an increase in the cooling rate. Figure 10b displays that the change in magnetic
field direction not only does not change the phase composition, but also has the same level
of influence on the phase content. It can be analyzed from Figure 10b that the steady-state
magnetic field added in the horizontal direction had a higher diffraction peak than that
of the matrix phase and the strengthened phase added in the vertical direction, while the
diffraction peak of the Laves phase was lower. When the steady magnetic field with D
direction was applied, the cross-section width of the cladding layer was slightly wider than
that of the upward magnetic field, and the height and depth of the molten pool were lower,
resulting in better surface heat dissipation performance, and a lower content of the Laves
phase between dendrites in the molten pool.
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Figure 10. X-ray diffraction spectra of the cladding layers with different: (a) intensities and (b) mag-
netic field directions.

Table 5 shows the XRD data of the matrix phase γ-Ni on the (111), (200), and (220)
crystal planes. The diffraction peak data presented show that the diffraction peaks of
the γ-Ni matrix phase on the two crystal planes (111) and (200) all shifted to low angles,
indicating that the lattice constant of the γ-Ni matrix phase solid solution changed with
an increase in magnetic induction intensity. The matrix phase γ-Ni solid solution lattice
constant α is expressed as:

α =
λ
√

H2 + K2 + L2

2sinθ
(1)

Table 5. XRD data of matrix phases gamma-Ni on the (111), (200), and (220) crystal planes.

Crystal Face Index
H, K, L

Diffraction Angle
(2θ/◦)

Lattice Constant
(α)

Half-Height Width
(B)

F1 43.772 3.5778 0.3606
F3 (111) 43.732 3.5810 0.3985
F5 43.693 3.5840 0.4479
F1 50.823 3.5888 0.4324
F3 (200) 50.823 3.5888 0.6087
F5 50.784 3.5913 0.6117
F1 74.852 3.5836 0.6072
F3 (220) 74.852 3.5836 0.6687
F5 74.930 3.5804 0.6399

The lattice constant, half-width, and height of the matrix phase γ-Ni solid solution
increased with an increase in magnetic induction intensity. This indicated that the steady-
state magnetic field can not only enhance the solid solubility of the matrix phase γ-Ni, but
also refine the grain. In liquid metals, atoms lose their valence electrons to form ions, which
move randomly. When a magnetic field is applied, the liquid cuts the magnetic field lines
and creates a Lorentz force, causing the ions to rotate around them. Due to the differences
in the mass and charge of Ni, Fe, Nb, and Cr, their plasma behaves differently in the
molten pool, and various solute particles have a relative motion to the matrix phase under
the condition of the magnetic field. This motion enhances the diffusion motion of solute
particles in the matrix phase, and eventually leads to an increase in the solute elements
in the matrix phase -Ni solid solution. The content increase in the γ-Ni solid solution can
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stabilize the crystal structure. The enhancement effect increases with the strength of the
constant magnetic field.

As shown at the bottom of F1 in Figure 7, a reference line with a radius of 50 µm was
drawn on the images to obtain the grain size by determining the number of grains crossing
the reference line. The results of the grain sizes are shown in Table 6.

Table 6. Grain size (µm).

F1 F3 F5

Bottom 3.96 3.58 3.29
Middle 3.46 2.38 2.26

Top 2.24 2.23 2.11
Average 3.22 2.73 2.55

As shown in Tables 3 and 6, after applying a steady-state magnetic field, the grain
structure of the entire coating became more refined. This suggests that the thermoelectric
magnetofluid effect was the primary factor influencing the solidification process. In the
solidification process, the first precipitated solid phase and melt exist at the same time to
form a paste zone. The different temperatures between solid phase and liquid phase in
the pasting zone will produce a temperature gradient (∆T) in these two phases, so that
the solid/liquid phase has different thermoelectric potential. Generally, the solid/liquid
phase is regarded as a closed loop, which generates the thermoelectric potential difference
∆V = (ηL + ηS)× ∆T, generating thermal current JTE, and the expression is [31–33]

JTE =
−σSσLƒL

σSƒS+σLƒL
(SS − SL)T (2)

where SS, SL are the electrical conductivity; SS, SL are the thermoelectric potential ratio;
and ƒS, ƒL are the volume fractions. The thermoelectric force can be expressed by the
following formula [31–33]:

FTE =
−σSσLƒL

σSƒS+σLƒL
(SS − SL)∆T × B (3)

In the formula, FTE is the thermoelectric force generated by the steady-state magnetic
field; B is magnetic induction intensity.

The steady-state magnetic field can produce opposing effects on the solution pool
through the electromagnetic braking effect and thermoelectric magnetofluid effect, which
promote grain magnetization and dendrite structure fusion. The electromagnetic braking
effect can weaken the flow velocity of the fluid, inhibit the formation of equiaxed crystals,
and promote the growth of columnar crystals. The thermoelectric magnetic force acting
on dendrites by the thermoelectric magnetofluid effect can refine grains [34]. Based on the
changes in the macroscopic morphology and microstructure of the coating in this section, it
has been observed that a steady-state magnetic field can have an electromagnetic braking
effect on the molten pool, which can result in a smoother surface. However, the steady-state
magnetic field can also refine the grain structure, which indicates that the steady-state
magnetic field also has a thermo-magnetic fluid effect on the molten pool.

3.4. Microhardness

The hardness of a material is an important mechanical property index, which shows
the ability of the surface to resist deformation. It is visible in Figure 11 that the hardness
of the cladding layer after cladding with the Inconel 625 alloy was above 360 HV, which
was much higher than the measured value of 246.3 HV of the matrix gray cast iron. There
was a small difference in the hardness between the middle region and the bottom region,
but the bottom hardness was slightly lower than that of the middle region, because the
middle part of the cladding layer contained significantly more cellular crystal structures,
while the bottom was mostly occupied by the dendritic crystal, whose hardness was lower
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than the cellular crystal. The hardness of the top was slightly higher than that of the
rest region, mainly because of the small G/R at the top of the cladding layer, the large
undercooling degree, and the equiaxed crystal structure with a smaller grain size. In
addition, with increasing magnetic induction intensity, the microhardness distribution
value of the cladding layer showed a gradual increase. This indicates that the strength
of the magnetic field has a significant impact on the microhardness of the cladding layer,
and the thermoelectric magnetofluid effect played a significant role. The existence of the
temperature gradient and the potential difference between the solid and liquid phase
formed a closed loop circuit that resulted in the creation of induced current on the newly
crystallized dendrites. The current generates a Lorentz force under the condition of the
magnetic field, and the Lorentz force acts on the dendrites. Combined with the mechanical
scour effect of the Marangoni flow on the dendrites, the crystallized dendrites are broken
to form a new nucleation, thus improving the nucleation rate and refining the grains that
contribute to the increase in microhardness. As can be seen from Figure 11, the top hardness
of the cladding layer under any magnetic field direction was slightly higher than that of
the middle and bottom of the cladding layer. From the perspective of different magnetic
field directions, the hardness of each region of the cladding layer was the highest when
the vertical downward steady magnetic field was added, followed by the vertical upward
magnetic field direction, while the hardness difference was small when the horizontal
magnetic field was added. The grain size of the magnetic field in the vertical direction was
smaller than that of the magnetic field added in the horizontal direction, so the experimental
results were consistent with the law of the calculated data.
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Figure 11. The microhardness of the cladding layers: (a) top; (b) middle; (c) bottom. 
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It is visible in Figure 11 that the hardness of the cladding layer top part under any
magnetic field direction was slightly higher than the middle and bottom. From the perspec-
tive of different magnetic field directions, the hardness of each region of the cladding layer
was the highest when the vertical downward steady magnetic field was added, followed
by the vertical upward magnetic field direction, while the hardness difference was small
when the horizontal magnetic field was applied. The vertical direction resulted in a smaller
grain size for the magnetic field compared to the horizontal direction, so the experimental
results were consistent with the law of the calculated data.

3.5. Wear Resistance

To obtain better wear performance for marine diesel engine cylinder liners, and to
study the influence law of a magnetic field on the friction coefficient and wear weight
loss of the cladding layer, the magnetic field intensity and magnetic field direction were
changed in this section, and the average data were obtained from three wear tests for each
sample, respectively.

It is visible in Figure 12 and Table 7 that the wear loss of substrate was the highest.
With an increase in magnetic field intensity, the wear loss of the cladding layer decreased to



Coatings 2024, 14, 438 16 of 21

different degrees. At a magnetic field strength of 200 mT, the cladding layer exhibited the
best wear resistance, with a wear mass of approximately 14.4 mg and an average friction
coefficient of 0.5902. Compared to the other magnetic field direction, the abrasion loss of
the cladding layer fabricated with the R direction presented highest value of 32.4 mg, and
the average friction coefficient was 0.72. When the D direction was applied, the abrasion
loss was about 16.9 mg, and the average friction coefficient was 0.59, which means the
cladding layer presented the optimal wear resistance.
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Table 7. The abrasion loss and friction coefficient of the cladding layer.

Sample Abrasion Loss/mg Coefficient of Friction

Substrate 60.9 0.704
F1 32.4 0.637
F2 31.5 0.631
F3 24.5 0.613
F4 22.7 0.604
F5 14.4 0.590
F6 32.4 0.633
F7 20.8 0.608
F8 16.9 0.599

The higher the hardness result, the lower the friction coefficient and the abrasion loss,
which means the better the friction performance. This is due to the presence of a hardness
difference between the friction pairs, which leads to plastic deformation of the softer
material, with more material being adhered and torn in a relative motion, producing more
abrasion loss and leading to an increase in the friction coefficient. Reducing this hardness
difference by increase the hardness of softer material reduces the friction coefficient and
the abrasion loss, resulting in a better friction performance.

Figure 13 displays the morphology of the coatings. It is visible that when no magnetic
field was applied, there were mainly two types of wear on the surface of the substrate:
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abrasive and fatigue wear. The surface of the cladding layer presented an uneven state,
and there were a lot of pear grooves, stratified zones, and particulate matter. In addition,
under the action of the high uplift caused by the plastic deformation, obviously worn edges
can be produced. At the same time, some shallow ploughing and different degrees of
spalling, accompanied by severe material transfers and slight cutting, were presented. As
shown in F1–F8 of Figure 13, the decrease in the depth of the scratches and the distance
between the scratches indicated the positive influence of the magnetic field on the wear
resistance of cladding layer. Only a small amount of material fell off the surface, with
minimal deformation and scratch depth, at a magnetic field intensity of 200 mT. This is due
to the density of equiaxed crystals in the cladding layer, which increased with the magnetic
field intensity and resulted in the presence of equiaxed crystal structures, significantly
enhancing the overall microhardness of the coating after the magnetic field was applied.
In addition, the magnetic field can partially prevent convection during the laser cladding
process, and results in a more even distribution of carbide particles. This not only effectively
prevented crack propagation, but also enhanced the bonding strength between the carbide
particles and the equiaxed matrix. Consequently, the wear resistance of the cladding layer
was significantly improved.
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From the perspective of the magnetic field direction, as shown in F4 and F6–F8
of Figure 13, debris peeling occurred in the samples applied in the U direction, while
surface peeling and the furrow phenomenon were relatively alleviated in the samples
applied in the D direction, accompanied by some fine and uniform scratches. However,
the samples applied in the L and R directions presented ploughing surfaces. Because the
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wear performance was related to the hardness of the cladding layer, the hardness was the
highest when the downward vertical magnetic field was applied, which showed that the
sample had better friction and wear performance.

3.6. Corrosion Resistance Test

The open circuit potential (OCP) of Inconel 625 alloy was measured by applying the
steady-state magnetic fields with different directions and intensities. As shown in Figure 14a,
the average OCP value of the Inconel 625 cladding layer without a steady-state magnetic
field was −0.475 V. When the magnetic field is added, the OCP value fluctuates greatly, and
finally stabilizes between −2.5 V and −0.48 V. Compared to no steady-state magnetic field,
the potential changed slightly. The higher OCP value indicated a lower corrosion tendency,
and vice versa. However, there was no specific rule between the change in potential and
magnetic field intensity. It is noteworthy that the OCP value of each cladding layer was higher
than that of matrix HT 300 with or without a steady-state magnetic field, which can play a
good cathodic protection role and show a small corrosion tendency.
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Figure 14. (a) Cladding surface open circuit data diagram, (b) Tafel polarization curve of the clad-
ding layer. 

Figure 14b shows the Tafel test curves of the substrate and cladding layers. No obvi-
ous passivation occurred within the set VOCP ± 1 V test range. Meanwhile, the shape and 
position of all curves were similar and the anode rate slowed down gradually, showing a 
symmetric relationship independent of self-corrosion potential. As shown in Figure 14, 
both anode and cathode curves exhibited the characteristics of active dissolution. The 
shape and position of all curves were similar, and the corrosion rate slowed down as the 
voltage changed and gradually decreased in the anode region. 
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creased and the Icorr decreased. For instance, the Ecorr was −0.55655 V, accompanied by 
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cladding layer.

Figure 14b shows the Tafel test curves of the substrate and cladding layers. No obvious
passivation occurred within the set VOCP ± 1 V test range. Meanwhile, the shape and
position of all curves were similar and the anode rate slowed down gradually, showing
a symmetric relationship independent of self-corrosion potential. As shown in Figure 14,
both anode and cathode curves exhibited the characteristics of active dissolution. The
shape and position of all curves were similar, and the corrosion rate slowed down as the
voltage changed and gradually decreased in the anode region.

It can be seen from Table 8 that the substrate presented the smallest Ecorr, with a
value of −0.76326 V, and the biggest Icorr, with a value of 0.0186231 µA/cm2, compared to
the cladding layer. That is, the laser cladding layer can enhance the surface to suppress
the corrosion. In addition, with the increase in the magnetic field intensity, the Ecorr
increased and the Icorr decreased. For instance, the Ecorr was −0.55655 V, accompanied
by the Icorr of 0.014997 µA/cm2 when the intensity was 0 mT, and the Ecorr increased to
−0.30288 V, accompanied by the decreased Icorr with a value of 0.00035922 µA/cm2 when
the intensity of 200 mT was used. This means that an increase in the intensity contributes
to an improvement in the corrosion resistance of the cladding layers. Cr, Nb, and other
elements are beneficial to increase the corrosion performance, but the precipitation of the
Laves phase will injure these strengthening elements, which results in a reduction in the
synthesized γ-Ni matrix phase, and thus a decrease in the overall corrosion resistance of the
cladding layer. However, the increase in the magnetic field intensity increased the matrix
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phase content which, in turn, decreased the harmful Laves phase. Thus, an increase in the
magnetic field intensity can improve the corrosion resistance of the cladding layer. Through
comparing to the Ecorr and Icorr of the cladding layers created by different magnetic
field directions, the cladding layer assisted by the horizontal magnetic field presented
the maximum average value of Ecorr (−0.35354 V) and minimum average value of Icorr
(0.00529505 µA/cm2).

Table 8. The self-corrosion potential (Ecorr) and current density (Icorr) of the cladding layer obtained
after the Tafel test.

Ecorr (V) Icorr (µA/cm2)

Substrate −0.76326 0.0186231
F1 −0.55655 0.014997
F2 −0.48133 0.012695
F3 −0.44469 0.010409
F4 −0.33571 0.0068632
F5 −0.30288 0.00035922
F6 −0.37137 0.0037269
F7 −0.41374 0.0095103
F8 −0.42675 0.0093793

4. Conclusions

1. A higher steady-state magnetic field intensity resulted in a slightly wider melting
width of the molten pool, but reduced the melting height, depth, and dilution rate. A
horizontal magnetic field flattened the molten pool more than a vertical one. Stronger
magnetic fields caused the dendritic structure to change into an equiaxed crystal structure
with more extensive and stronger columnar dendritic structures at the bottom of the clad
layer, biased towards the magnetic field direction.

2. The magnetic field stabilized the crystal structure and refined the grain by increasing
the content of the matrix phase and decreasing the content of Laves phase.

3. The cladding layer’s microhardness was higher than that of the matrix. A vertical
downward steady magnetic field increased the microhardness and wear resistance. The
highest hardness, lowest wear amount, and best wear performance were observed with the
vertical downward magnetic field.

4. The higher the magnetic field intensity, the better the corrosion resistance of the
cladding layer. The corrosion resistance is lower in the vertical direction than in the
horizontal direction. Increasing the magnetic field intensity increases the matrix phase
content and reduces the harmful Laves phase, leading to improved corrosion resistance of
the cladding layer.
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