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Abstract: While thermal barrier coatings (TBCs) are being sprayed onto aero-engine turbine blades,
or while the engine blade is working, high temperatures and strong impact forces will damage TBCs
under thermal cycles, resulting in the coating peeling off from the blades. The current method of
using ECT, IRT, or another method alone cannot achieve the real-time detection of coating defects with
both high precision and high penetration power. Two detection methods, namely, terahertz pulsed
imaging (TPI) and optical coherence tomography (OCT), were combined to evaluate typical defects
observed in TBCs (including internal debonding cracks, surface high-temperature cracks, and surface
etched cracks). The results showed that the OCT system successfully obtained the micron-level axial
resolution, but the detection depth of the OCT system was limited. The TPI system achieved a higher
penetration depth than OCT—hence, it can be used for the nondestructive detection and evaluation
of the internal debonding defects in the sample—but its resolution needs to be improved. Following
this conclusion, a method is proposed using TPI and OCT concurrently for the nondestructive testing
and quantitative evaluation of TBCs on etched cracks, thus achieving progress both in terms of depth
and resolution. In our experiment, defects with a depth of 519 µm and a width of 100 µm were
measured. The proposed method is suitable for situations where multiple defects in TBC samples of
blades need to be detected simultaneously during the working process. When there are defects deep
inside the sample, more small cracks on the surface can be evaluated to achieve a combination of
depth and accuracy.

Keywords: thermal barrier coatings; defects detection; terahertz pulsed imaging; optical coherence
tomography; depth; resolution

1. Introduction

As the core component of the aircraft, the engine works at an internal temperature of
more than 1600 ◦C and even up to 2000 ◦C during operation [1]. Therefore, the blades of
the engine need to be made of special materials, which can withstand high temperatures
and high pressure and have good stability. Thermal barrier coatings (TBCs) on the aero-
engine turbine blades are an important factor in improving the operating efficiency of the
engine [2,3]. As shown in the following picture, Figure 1a is a turbine engine, Figure 1b
is the blade of a turbine engine, and the typical structure of the thermal barrier coatings
is shown in Figure 1c [4], which consists of super alloy, bond coat (BC), and ceramic
layer (Topcoat, TC). The propagation of microcracks on the TC layer and the thickening of
thermally grown oxide (TGO) caused by oxidation at high temperatures are the main factors
causing the failure of TBCs [5]. At present, the most frequently used method for failure
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detection is using a scanning electron microscope (SEM) to obtain the section information
of TBCs under static conditions. However, it is a destructive testing method and cannot
conduct real-time detection.
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Figure 1. Structure of the thermal barrier coating. (a) Turbine engines. (b) Turbine engine blades.
(c) Thermal barrier coating structure [4].

Nondestructive techniques for the detection of defects in samples mainly include
ultrasonic testing (UT), eddy current testing (ECT), X-ray detection, infrared thermography
(IRT), and so on. Among them, ultrasonic testing methods have developed rapidly in recent
years. When ultrasound is propagated to the inside of the sample through the coupling
agent, the internal defects will hinder its propagation, while the ultrasonic propagation
remains unchanged in the position without defects [6,7]. However, it requires contact with
the sample at the time of measurement, and the TBCs have many pores, so ultrasonic
testing is not suitable for TBCs. Eddy current testing technology mainly detects different
eddy current amplitudes and alternating phases generated by different objects moving
under the interaction of various alternating phase magnetic fields [8], which is easily
affected by material conductivity, sample size, and shape. X-ray detection has the problem
of unignored energy radiation; it needs to be isolated and protected when conducting
experiments, thus resulting in the limitation of the sample testing environment. At present,
the detection resolution of the infrared thermography method needs to be improved, and
the penetration ability of samples is insufficient [9–11], so the research on this detection
method needs more exploration. Up to now, no nondestructive testing method can fully
and accurately detect the characteristics of all TBC systems. Therefore, the advantages of
different detection methods should be used for the comprehensive evaluation of TBCs. Li
Jianchao et al. [12] reviewed the detection capabilities of different methods of TBC testing,
such as UT [7,13], ECT [14], X-ray [15,16], and IRT [17,18]. The detection capabilities of
different nondestructive testing TBC methods are summarized in Table 1.

In our work, other two methods were used to evaluate thermal barrier coating defects.
The first method was terahertz pulsed imaging (TPI). Terahertz wave is a kind of electro-
magnetic radiation with a frequency of 0.1~10 THz, which can be used to detect nonpolar
objects [19]. TPI has become a new method with great potential in TBC measurement,
offering a high signal-to-noise ratio and high detection depth [20]. At present, TPI is used to
detect the thickness of TBCs [21], but the thin TGO layer beyond the resolution limit cannot
be examined. In terms of pore growth, the tendency for variation in terahertz properties of
YSZ ceramic coatings with different microstructure features (porosity, pore-to-crack ratio,
pore size) was investigated [22]. The electromagnetic wave transmittance and dielectric
properties of thermal barrier coatings, as well as the evolution of defects at the interface of
oxide, ceramic, and metal layers [23,24], have been studied, and research is increasingly
being devoted to the issues of terahertz peak aliasing and resolution limits that cannot
be exceeded. The internal debonding and surface-etched cracks were measured in our
experiment to achieve the nondestructive evaluation and prediction of process failure in
TBCs. The other method that has been used is optical coherence tomography (OCT), which
adopts the principle of near-infrared light interference and can obtain a high resolution
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of 5 to 15 µm [25]. Due to significant absorption and strong scattering of near-infrared
light in thermal barrier coatings, only surface cracks in thermal barrier coatings can be de-
tected. With its micron-level high resolution, OCT serves as a valuable tool for the auxiliary
detection of defects and detailed features in samples. Currently, OCT detection in TBCs
primarily focuses on coating thickness and surface defects instead of internal defects [26,27].
This paper proposes a method for the nondestructive testing and quantitative evaluation
of thermal barrier coatings by combining TPI and OCT, leveraging the complementary
advantages of both techniques. The resolution and penetration depth of these two methods
were evaluated to assess their effectiveness.

Table 1. Detection ability of different TBCs nondestructive testing methods.

NDT Detection Conclusions

UT

Density Succeeded in evaluating the coating density of varying
thicknesses from 0.16 mm to 0.48 mm.

Thickness

The thickness of YSZ coating (256–330 µm) sprayed by plasma
on the 1Cr18Ni9Ti matrix was measured. The absolute error
range between the measurement results and the metallographic
observation results is ±10 µm, and the relative error range is
±3%.

Bond quality of TBCs Could detect 0.2–2.0 mm length of debonding.

ECT
Large internal coating pores, the

remaining thickness of the top layer
of the ceramic, and its remaining life

Completed the detection of the (1) TC layer with a thickness of
244 µm, with an error of 1.4%; (2) thickness and conductivity of
bond coating to detect delamination.

X-ray

Measurement of phase evolution
Studies of phase evolution are performed by X-ray diffraction
(XRD) and by evaluating the intensities of a few diffraction
peaks for each phase.

Strain response

Hollow cylindrical specimens, with larger temperature drops
across the coating, and significant strain gradients are seen,
which can contribute to failure modes occurring within the
layer adjacent to the interface.

IRT

Coating thickness The thickness of nonuniform TBCs was detected, and the
results showed that the pulse imaging accuracy was 0.3~2.3 µm.

Coating defects
Monitors the development of specific failure modes, such as
coating delamination after various thermal cycles, utilizing the
thermal wave amplitude signals.

Debonding of samples
Validation tests indicated that blind holes with diameters of 1, 2,
and 3 mm and artificial disbonds with diameters of 2 and 3 mm
in TBCs are detected.

2. Methods and Materials

It is vital to identify engine blade defects as early as possible to prevent the devastat-
ing damage caused by aviation accidents. The thermal stress and expansion coefficient
differences between the TC on the surface of TBCs and the substrate can lead to thermal
stress loss and mismatch in the metal substrate during service. This can result in surface
cracks in the TC layer [28], internal debonding, and the growth of a TGO layer, ultimately
leading to the failure of the thermal barrier coatings [29].

2.1. Methods

The TPI method was first applied in this experiment. When a TPI system is utilized for
quantitatively detecting defects in coatings, any defects can lead to changes in the shape of
the terahertz detection waveform [30]. As a result, the terahertz method can be employed
effectively for the early diagnosis of defects. The terahertz system contains transmission
mode and reflection mode, and a diagram of the reflection mode we used in the experiment
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is shown in Figure 2a. Figure 2b shows the Terapulse 4000 (TeraView (Cambridge, UK)) we
used in this work, where the central wavelength of the laser is 800 nm, and the repetition
rate is 80 MHz. The principle of a terahertz system is as follows [31].
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By changing the delay of the pump pulse in the terahertz system, the sampling value of
the detector changes, and a probe pulse is used to measure the terahertz-induced transient
response in the detector. The electric field E(t) of the terahertz pulse is recorded as a
function of the delay time. The information of the electromagnetic pulse Ẽ(w) in the
frequency domain can be obtained by the Fourier transform of the time domain pulse,
expressed as [32]:

Ẽ(w) ≡ A(w) exp[−iϕ(w)] =
∫ +∞

−∞
E(t) exp(−iwt)dt, (1)

In the equation, A(w) is the amplitude and ϕ(w) is the phase of the terahertz pulse.
Once the electric field of the terahertz pulse is recorded, the Fourier transform can be
performed to obtain the amplitude and phase of the pulse. In a system, the time range T of
time-domain waveform measurement is related to the spectral resolution δw of the terahertz
time-domain spectrum, and the time resolution δt of waveform measurement is related to
the spectral range Ω. The relationship between them is as follows:

δw = 2π/T, 2Ω = 2π/δt, (2)

The coating thickness can be calculated using the following formula [33]:

di = c(∆ti − ∆ti−1) cos θ/
(
2ncoating

)
, (3)

where di is the thickness of the measured coating (i = 1, 2, 3. . .), ∆ti represents the time
delay between the reflection peaks of the TPI detection signals at each coating inter-
face [34], and ∆t0 = 0. cos θ is the cosine of the refraction angle, and because θ= 0◦,
cos θ = 1. ncoating is the refractive index of the material being measured. In our previous
work [23], a signal analysis was carried out on the same sample used in the etched cracks
in Section 2.2.3 during SWT processing of the signal, and it was found that the refractive
index of the sample concurred with the conclusion that the refractive index of the TC layer
of TBCs was 4.7, as established in [35]. Therefore, the refractive index of the TC coating is
set as 4.7 in our experiment when calculating the depth of the etched crack.

In addition, detailed information on the structure of the TBC sample can be detected
in conjunction with the OCT system. The principle of OCT can be described as “ultrasonic
imaging in optics”, which can achieve the tomography of the internal microstructure of a
sample. In an OCT system, light from an optical source is split into two paths, a sample path
and a reference path. Light in the reference path is reflected from a mirror (RM) whereas
light in the sample path is reflected from surface and subsurface features of the ceramic
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samples (S). The reflected light from the sample path will only be detected if it travels a
distance that closely matches the distance traveled by the light in the reference path—this
constraint incorporates depth resolution into the technique [36]. The biggest advantage
of the OCT system is that its resolution can reach the micrometer level. The schematic
diagram of the OCT system is presented in Figure 3a [37]. Figure 3b is the Ganymede-II
(Thorlabs (Newton, NJ, USA)) we used in the work; the central wavelength of the light
source is 930 nm, and the axial resolution in the air is 6 µm.
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reference mirror; G: grating; Cyl: cylindrical lens; LSC: linear camera.

When the reference light interferes with the sample light, the OCT system in the
frequency domain can obtain complex envelope information in the depth direction of
the samples. Among them, the interference light spectrum signal in real form can be
represented as [38]:

Ireal(k) = S(k)

a2
R + 2

∞∫
−∞

aRa(z) cos(2knz))dz +
∞∫

−∞

∞∫
−∞

a(z)a(z′)ei2kn(z−z′)dzdz′

, (4)

where S(k) represents the power spectrum distribution of the light source, aR represents
the reflection coefficient of the reference mirror, a(z) represents the reflection or scattering
coefficient of the different depth layers of the sample, n is the refractive index of the sample,
and k is the wave number (k = 2π/λ). a(z) can be obtained by FFT transformation on the
interference spectrum signal Ireal(k).

FT−1[Ireal(k)] = FT−1[S(k)]⊗
(

a2
Rδ(z) + 1/2aR

ˆa(z) + 1/8AU
[

ˆa(z)
])

, (5)

where ˆa(z) = a(z) + a(−z), ⊗ represents the convolutional operation, AU
[

ˆa(z)
]

represents
the represent autocorrelation function, and the symmetric distribution of a(z) can be
obtained from the above equation ˆa(z), further obtaining a(z).

2.2. Sample Preparation

Tests were carried out on some samples with thermal barrier coating defects such as
internal debonding cracks, surface high-temperature cracks, and surface etched cracks,
which often occur in the process of blade work. We describe in detail the preparation process
of three different samples, with their ceramic coating being deposited onto components via
air plasma spray (APS). The detection target of this experiment was a method that could
conveniently detect the occurrence of multiple cracks in the same sample.
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2.2.1. Internal Debonding Cracks

During the TBC spraying process or while the engine blades are in operation, the
difference in thermal expansion coefficients between the TC layer, BC layer, and TGO
layer at high temperatures can cause the original bonding effect between the TC and BC
layers to transform into thermal mismatch stress, resulting in the detachment of TBCs and
exposure of the substrate to high-temperature gases, further causing serious consequences.
The production process of the sample with internal debonding cracks in Figure 4 includes
three steps. The TBCs are composed of a plasma-sprayed zirconium dioxide (ZrO2) TC
layer, BC layer, and nickel-based alloy substrate. The Ni-based alloy substrate size is
50 mm × 40 mm × 2 mm, thread through a hole (debonding defect) with a diameter of
2 mm and 3 mm, a base thickness of 5.82 mm, and a TC layer thickness of 281 µm. First, a
threaded hole the size of a TC-BC debonding defect was tapped on the alloy steel, and the
matched screw was tightened. Then, the screw head was cut off above the base, and the
top surface of the screw was polished. In the following step, mechanical shot peening was
carried out on the surface to achieve the preparation of the plastic surface of the component.
Finally, the TC layer was sprayed on the upper surface of the component. When the sample
had cooled, the screw was loosened to a suitable distance (the distance was smaller than the
alloy substrate) to form an air layer to simulate the debonding defects in the sample. As the
clearance between the screw and the substrate was small enough to exceed the detection
limit of the terahertz pulse, it was regarded as an integral part of the substrate. The sample
was prepared with the help of the Beijing Institute of Technology. Figure 4a,b shows the
front and backside diagrams of the sample with debonding defects, and Figure 4c is the
cross-sectional view of the sample. The two defects are located at different positions on
the diagonal of the sample, which makes it convenient to distinguish and coordinate the
positioning in the following detection.
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Figure 4. Diagram of the TC debonding sample. (a) Front diagram of the sample with debonding
defects between TC layer and base. (b) Backside diagram of the sample with debonding defects
between TC layer and base. (c) Cross-sectional view of the sample.

2.2.2. Surface High-Temperature Cracks

Under the action of working cycles at high temperatures, a large thermal mismatch
and corrosion stress exist during service [39]. Due to the phase transition or local sintering
of ceramic materials, the surface of the ceramic will shrink. When the internal stress is
larger than the limit of the ceramic material, cracks will occur [40]. If the crack area becomes
too large, it will cause the ceramic layer to peel off and, thus, greatly reduce the service life.
The second type of sample we prepared was a high-temperature oxidation defect sample, a
diagram of which is shown in Figure 5a. The production process was as follows (the sample
was prepared with the help of the East China University of Science, and we performed
the additional heat treatment): The sample was a three-layer structure, including a metal
substrate, BC layer, and TC layer. The size of the alloy steel substrate was ϕ25 × 3.1 mm.
The ceramic layer material of this sample was yttrium oxide partially stabilized zirconia
(8YSZ). The ceramic coating was a powder of 45–96 µm in size, and the thickness of the
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ceramic coating was about 250–300 µm. The sample was gradually heated to 1100 ◦C in the
heat treatment furnace and held for 40 h of high-temperature oxidation. Then, the sample
was cooled in air at a standard pressure from 1100 ◦C to 10–20 ◦C. The cooling time was
36 h and the cooling rate was 30 ◦C/h. Due to the larger particle size, there was greater
stress between the layers, and elongated cracks appeared on the surface of the sample
during cooling. The cracks were detected under the metallographic microscope and TPI
system in normal environmental circumstances. The holes were discontinuous, and the
cracks’ size was between 20 and 60 µm as can be seen in the metallographic micrograph in
Figure 5b.
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Figure 5. A sample with surface high-temperature cracks and its metallographic micrograph. (a) The
diagram of the high-temperature oxidation sample, and the box position is the location of the crack.
(b) Photographs of cracks under a metallographic microscope.

2.2.3. Etched Cracks

The last type of sample contained the etched cracks. The base material of the TBC
sample was a nickel-based superalloy block material (brand DZ125) cut into small test
pieces (size 30 mm × 10 mm × 2 mm) using wire. The metal bonding layer material was
nickel-based high-temperature alloy powder. The ceramic layer material was yttrium oxide
partially stabilized zirconia (8YSZ). Cracks of different widths and forms were carved on
the surface of the TC layer by laser etching to simulate the failure condition of the sample
under a strong impact force. This type of damage is usually due to mechanical damage
or a sudden impact. Two differently structured TBC samples are shown in Figure 6a,b;
the TC layer thickness of sample Figure 6a is about 500 µm, and the TC layer thickness of
sample Figure 6b is 265 µm. In the figure, the grooves mark the positions of the samples.
The three widths are 100 µm, 200 µm, and 300 µm, respectively, and the depth is 200 µm in
all three cases.
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3. Experiment

TPI and OCT nondestructive testing of different defect samples (such as containing
internal debonding cracks, surface high-temperature cracks, and surface etched cracks)
were conducted to compare their detection capabilities.

3.1. OCT and TPI Penetration Ability Experiment
3.1.1. Samples without Defects

First, two TBC samples with different TC layer thicknesses were tested under the same
spraying conditions on a metal base to evaluate the penetration ability. A frequency-domain
OCT system was used to detect the TC layers where the thicknesses were 180 µm and
280 µm. Under the same scanning parameters, the one-dimensional OCT waveforms of the
two samples are shown in Figure 7a. Since one-dimensional OCT signals adopt a B-scan in
the x–z direction, the depth information of samples can be obtained directly from images.
It can be seen that the penetration capacity of the OCT system for ceramic coatings of
different thicknesses is almost the same, but we could not find the difference between the
180 µm and 280 µm samples. In addition, the boundary between the TC and the metal base
cannot be detected. This is because the top YSZ of the TBCs is a pore structure, and the
SLD light source of OCT has insufficient penetration ability and a strong scattering effect in
the pores; hence, the backscattered light that characterizes the sample information collected
by the system is weak. Therefore, the detection depth of the OCT system is insufficient.
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The one-dimensional signals of two different coating samples measured using the
TPI system are presented in Figure 7b, and the locally amplified signals are shown in
the box area. We could see that there is a significant difference in the signals of the two
different thickness coatings. The reflection wave of a coating with a thickness of 180 µm
occurs earlier than that of 280 µm. The interface stratification can be obtained from the
one-dimensional diagram, and thus, we can verify the TC thickness through Formula (3).

The results show that the TPI system has better penetration ability than the OCT
system. OCT systems can only detect thermal barrier coatings no thicker than 200 µm,
which has been confirmed both in experiments and the literature [36]. The TPI system in
this experiment penetrated the thermal barrier coatings above 280 µm and even deeper.

3.1.2. Samples with Internal Debonding Cracks

Furthermore, the debonding defects inside the sample (Figure 4) were prepared to
emphasize the penetration ability of the TPI system on the TBCs. As the OCT system
could not penetrate the 280 µm TC layer, it was unable to complete the detection of
debonding defects.
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The TPI two-dimensional C-slice peak-peak imaging of the detected samples is shown
in Figure 8a. The outer circular is the shape of the sample table fixture for the TPI system.
Occluded by the fixture table, the sample outside the circular shows a black shadow signal
under detection. From the two-dimensional image, the position and size of the 2 mm or
3 mm artificial debonding defects can both be observed. We can realize the location of the
defects according to the relative position of the fixture table and the sample.

Coatings 2024, 14, x FOR PEER REVIEW 9 of 17 
 

 

not penetrate the 280 µm TC layer, it was unable to complete the detection of debonding 
defects. 

The TPI two-dimensional C-slice peak-peak imaging of the detected samples is 
shown in Figure 8a. The outer circular is the shape of the sample table fixture for the TPI 
system. Occluded by the fixture table, the sample outside the circular shows a black 
shadow signal under detection. From the two-dimensional image, the position and size of 
the 2 mm or 3 mm artificial debonding defects can both be observed. We can realize the 
location of the defects according to the relative position of the fixture table and the sample.  

Terahertz time-domain waveforms of 11 position points in the same x-direction with 
different y-direction values (dashed line direction in Figure 8a) at the defect location of 3 
mm were extracted, and 11 waveform signals were made continuously on the data graph 
for comparison, as shown in Figure 8b. It can be seen that the position of the debonding 
defect is also the position of the red terahertz waveform in Figure 8b—the signal has evi-
dent deformation, and the peak-to-peak value becomes smaller. In the y-axis position, the 
deformation waveform can be obtained within the range of the defect size of 3 mm. Due 
to the small size of the air gap within the defect, the reflected waveforms before and after 
the air gap at the debonding position cannot be temporally distinguished. The shape of 
the reflected waveforms differs from the original incident waveforms, indicating the pres-
ence of defects after the terahertz wave passes through the detected object. 

 
Figure 8. (a) Terahertz 2D C-slice peak-peak imaging of debonding defect samples. (b) One-dimen-
sional time-domain waveform of 11 positions in the y-direction of 3 mm defect position. 

It can be concluded that the TPI system can realize the quantitative detection of the 
debonding defects even inside the sample with a diameter larger than 2 mm, and we can 
distinguish both 2 mm and 3 mm defect locations in the image. Hence, it was confirmed 
here once again that terahertz waves have a stronger penetration ability than infrared light 
sources in OCT systems. 

3.2. Resolution Ability Experiment of OCT and TPI 
3.2.1. Surface High-Temperature Cracks 

In this experiment, high-temperature oxidation defects on the surface of the sample 
(Figure 5) were detected to test the resolution of the OCT system. 

Three-dimensional imaging was used to analyze more detailed information. As 
shown in Figure 9a, the red box is the sample detection range. It is not appropriate to set 
the scanning range to be too large concurrently with a small step size; otherwise, the stor-
age memory will overflow. We set the detection range as 0.6 mm × 1.12 mm × 1.5 mm in 
the experiment; the detection resolution was 2 µm × 2 µm × 2.04 µm; the acquisition time 
(3D) was about 3 min; and the data storage and imaging time was about 2 min. Figure 9b 
is the x–y section diagram near the focal point of the 3D OCT image of the sample, and 
the approximate position and width of the crack can be seen in the white arrow and square 
in the figure. Due to the existence of an air gap at the crack location, the refractive index 

Figure 8. (a) Terahertz 2D C-slice peak-peak imaging of debonding defect samples. (b) One-
dimensional time-domain waveform of 11 positions in the y-direction of 3 mm defect position.

Terahertz time-domain waveforms of 11 position points in the same x-direction with
different y-direction values (dashed line direction in Figure 8a) at the defect location of
3 mm were extracted, and 11 waveform signals were made continuously on the data graph
for comparison, as shown in Figure 8b. It can be seen that the position of the debonding
defect is also the position of the red terahertz waveform in Figure 8b—the signal has
evident deformation, and the peak-to-peak value becomes smaller. In the y-axis position,
the deformation waveform can be obtained within the range of the defect size of 3 mm.
Due to the small size of the air gap within the defect, the reflected waveforms before and
after the air gap at the debonding position cannot be temporally distinguished. The shape
of the reflected waveforms differs from the original incident waveforms, indicating the
presence of defects after the terahertz wave passes through the detected object.

It can be concluded that the TPI system can realize the quantitative detection of the
debonding defects even inside the sample with a diameter larger than 2 mm, and we can
distinguish both 2 mm and 3 mm defect locations in the image. Hence, it was confirmed
here once again that terahertz waves have a stronger penetration ability than infrared light
sources in OCT systems.

3.2. Resolution Ability Experiment of OCT and TPI
3.2.1. Surface High-Temperature Cracks

In this experiment, high-temperature oxidation defects on the surface of the sample
(Figure 5) were detected to test the resolution of the OCT system.

Three-dimensional imaging was used to analyze more detailed information. As shown
in Figure 9a, the red box is the sample detection range. It is not appropriate to set the
scanning range to be too large concurrently with a small step size; otherwise, the storage
memory will overflow. We set the detection range as 0.6 mm × 1.12 mm × 1.5 mm in the
experiment; the detection resolution was 2 µm × 2 µm × 2.04 µm; the acquisition time (3D)
was about 3 min; and the data storage and imaging time was about 2 min. Figure 9b is
the x–y section diagram near the focal point of the 3D OCT image of the sample, and the
approximate position and width of the crack can be seen in the white arrow and square
in the figure. Due to the existence of an air gap at the crack location, the refractive index
is lower than that of other coating components, so the color of the position indicated is
dark and its backscattered light is weak. Figure 9c is the cross-section of the y–z axis of
the volume standard imaging. It can be seen that the crack location also presents a low
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backscattering region different from the normal location in the depth direction. In the
figure, the depth of the crack can be evaluated according to the coordinates of defects in the
z-direction. Therefore, combining with the sample signals of different sections, the location
and quantification of sample cracks can be realized. The crack width of this sample is about
35 µm.
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location for volume standard OCT imaging of the sample.

There are no TPI images as the resolution is insufficient to produce worthwhile mea-
surements. The main reason is that the terahertz beam after collimation is above 100 µm,
which limits the lateral resolution of the TPI system. As the OCT system has a higher de-
tection resolution, it can obtain better results in shallow surface imaging, thus showing its
advantages. On the other hand, to collect more detailed information, the OCT system needs
to set a shorter scanning step and collect more sample data points, which may take more
time. Therefore, OCT is more suitable to be an auxiliary means of detecting TBC samples.

3.2.2. Etched Cracks

The mechanical damage cracks were simulated by creating artificial etched cracks
(Figure 6), and then, both systems were simultaneously used to detect them. First, the
sample was detected by TPI, with the detection range of the system set as 14 mm × 14 mm
and 18 mm × 10 mm, the scanning step as 200 µm, and the detection time as 5 min.

The size and location of the 100–300 µm crack can be obtained from the TPI two-
dimensional C-slice diagram in Figure 10.
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Figure 10. Diagram of two samples with surface cracks etched in different directions and widths.
(a) Two-dimensional imaging of TBCs with horizontal cracks etched: the two cracks etched are
100 µm and 200 µm. (b) Two-dimensional imaging of TBCs with mixed direction cracks etched: all
cracks etched were 300 µm.
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One-dimensional waveforms were also extracted from the surface crack data of 100 µm
and 200 µm in Figure 10a, and then, the waveform changes were compared in Figure 11a.
It can be seen from the figure that the larger the defect width, the smaller the TPI signal
strength. When the width of the defect is 200 µm, the surface reflection terahertz time-
domain signal of the crack is at its weakest. The terahertz waves are scattered within the
groove of the etched crack, resulting in a decrease in the returned terahertz intensity. At the
same time, with the increase in the width of the defect, the waveform shifted backward and
deformed. When the width of the defect was 200 µm, a second terahertz reflection peak
appeared, and the depth of the artificial crack could be calculated as 266 µm according to
the flight time of the two terahertz reflection peaks. However, when the defect width is
100 µm, it is quite difficult to distinguish the waveform change in the defect due to the
resolution limit of the TPI system and the superimposed terahertz waveform. In addition,
we observed that the reflection peak in the dashed elliptical box was the bottom of the TC
layer, and the thickness of the TC layer was 519 µm, which was consistent with the sample
parameters. Then, we performed a spectrum transformation for one-dimensional signals at
different positions with different widths, as shown in Figure 11b. The defect information
of the sample can be obtained when observing only the magnitude of the electric field in
the frequency domain. The frequency domain electric field intensity at 100 µm is slightly
decreased and barely recognizable, and when the defect size reaches 200 µm, the spectral
absorption peak caused by the defect structure is quite significant. The frequency at which
the minimum intensity is located indicates the corresponding defect width.
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Figure 11. (a) One-dimensional time-domain signals for the positions without defects and signals for
the positions of etched cracks with different widths. (b) One-dimensional frequency-domain signal
of etching crack positions without defects and with different defect widths.

It can be seen from the one-dimensional time-domain/frequency-domain waveform
and two-dimensional image of the sample that the TPI system can easily realize the detec-
tion of laser etching cracks on the surface of about 200 µm width.

The B-slice cross-sectional diagrams (with and without defects) at different positions
of the 300 µm defect (“+” shape) sample in Figure 10b are compared as follows (Figure 12).
The x-coordinate is the scanning position of the high-precision linear platform, and the
y-coordinate is the optical delay line of the system. It can be seen from Figure 12b that in
the depth direction, there is an extra reflection interface. In a partially enlarged image in
Figure 12b, the terahertz reflection wave at the bottom of the etched crack is represented by
the arrow at position 1. In addition, TPI can simultaneously detect the total thickness of the
TC layer (arrow 2).
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Figure 12. B-slice cross-sectional imaging of normal and defective locations on the etched crack
sample. (a) B-slice cross-sectional imaging of the normal location on the etched crack sample. (b) B-
slice cross-sectional imaging of the defect location on the etched crack sample.

The OCT system was also used to detect the surface “+”-shaped etched crack sam-
ples (Figure 6b), and the detection range and accuracy were compared with TPI. As
mentioned before, the crack width was about 300 µm. The detection range was set to
1.5 mm × 1.7 mm × 1.5 mm, with a detecting resolution of 3 µm × 3 µm × 2 µm. The
imaging time (3D) was about 3 min. The sample pictures and OCT detection results are
shown in Figure 13. Figure 13a is the actual photo of the sample, and the red area indicates
the scan range. When the area becomes larger, the data points become larger, thereby
increasing the imaging workload. Figure 13b is the three-dimensional OCT imaging of
the sample (surface imaging only), from which the width and depth of the manufactured
crack can be seen, and circular grooves formed by repeated etching can be seen at the
intersection of the two crack centers, as indicated by the white circle and arrow marks in
the figure, which are not detectable in TPI imaging. Figure 13c is the volume standard
imaging, in which the three-dimensional structure information of the sample can be seen
more intuitively and reliably. The black part of the surface in the image is the etched crack.
Figure 13d is the x–z direction of the volume standard imaging where the bottom of the
sample groove has stronger interfacial reflection than the air, which represents the depth
information of the sample groove. We can achieve the depth information of the surface
crack, as indicated by the distance d shown in Figure 13d.
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Figure 13. (a) The picture of the surface etched crack on the OCT sample table; the red box is the
scanning area of the picture. (b) 3D OCT imaging of the sample (surface imaging only). (c) Volume
standard imaging of the sample. (d) An x–z cross-section of a 300 µm etched crack at a certain location.

Furthermore, Figure 14a shows the one-dimensional TPI signals of the 300 µm etched
crack, and Figure 14b shows the OCT detection signals of the same crack.
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Figure 14. TPI one-dimensional signal and OCT one-dimensional signal of surface etched “+”-shaped
crack samples. (a) TPI signals of etched cracks. (b) OCT signals of etched cracks.

As can be seen from the figure, although the light intensities of the two signals are
quite different from each other, the one-dimensional signals of both show the reflected crest
position of light waves at the layered interface of the sample. The distance d of the interface
can be obtained, being the depth of the defect. In addition, the waveform and the peak
characteristics of the two figures are quite different. As can be seen, the TPI signals have
stronger signal intensity with a better signal-to-noise ratio and smoother waveform. The
detected TPI signals reveal multiple reflection echoes between the interlayer boundaries of
the sample, suggesting penetration through ceramic coating samples of significant thickness
beyond the metal bond coat layer and substrate. However, in the one-dimensional OCT
image, the backscattered signal intensity from detectors appears weaker, with insufficient
depth of penetration due to the strong scattering effect of the ultra-radiant light source in
the ceramic gap and its relatively weak intensity.

Last, the widths of the defects at 100 µm and 200 µm, measured using TPI, OCT,
and metallographic microscopy, are compared in Table 2. The width of each defect was
measured three times, and the average value was obtained. One of the reasons considered
to explain the measurement error of the crack width in both OCT and TPI systems is
the error in setting the refractive index of the TC layer. Due to the influence of different
spraying conditions and structural parameters on the refractive index of TBCs, the optical
path length (nd) can be used to verify the measurement accuracy of the samples when
comparing OCT and TPI results.

Table 2. Mean thickness comparison of TPI, OCT, and MM 1.

Resolution Thickness of the TC Layer Crack 1# Width
(100 µm)

Crack 2# Width
(200 µm)

Characteristic of
Method

TPI ~100 µm (lateral)
30 µm (axial) 519 µm Hard to detect 253 µm Real-time,

nondestructive

OCT 5–15 µm (axial) Not detected 121 µm 244 µm Real-time,
nondestructive

MM 0.2–0.5 µm Need to be cut and polished 115 µm 221 µm Damaged, in vitro
1 MM: Metallographic microscope.

The results showed a good resolution advantage of using the OCT system because it
is closer to achieving the measurement results of a metallographic microscope, which has
the highest resolution. When the defect width is 100 µm, the relative error between the two
methods is 5%, and when the defect width is 200 µm, the relative error is 10%. However,
the disadvantage is that we cannot detect the bottom of the TC layer, that is, we cannot
know the actual thickness of the TC layer.

We further analyzed the width of defects measured by TPI, OCT, and MM methods at
100 µm, 200 µm, and 300 µm (see Figure 15).
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Figure 15. (a) The mean value and standard deviation of width measurements using three methods
for detecting defects at 100 µm, 200 µm, and 300 µm. (b) The relative errors of TPI, OCT, and MM
methods for measuring defects at 100 µm, 200 µm, and 300 µm with respect to the mean values.

The mean value and standard deviation of three methods for detecting the width of
three defects were calculated as shown in Figure 15a. The average values were 118 µm,
239 µm, and 337 µm, respectively. The minimum standard deviation is 4.2 µm when
measuring 100 µm defects. Figure 15b shows the relative errors of TPI, OCT, and MM
methods for measuring defects at 100 µm, 200 µm, and 300 µm with respect to the mean
values. (The TPI method’s values of 100 µm cracks were omitted because they could not
be detected). The results measured by OCT and MM are closer to the mean value of the
three methods; however, due to the higher resolution of the MM method, we still used
the measurement results of MM as a reference value in this experiment. In addition, the
resolution provided by OCT is higher than that of TPI, whose detection value is closer to
the MM method and its mean value.

In conclusion, OCT signals can detect the repeated etched grooves at defect intersec-
tions and complete the 100 µm defect detection in this experiment on etched cracks. This
demonstrated a higher detection accuracy, and thus, it was superior when the crack depth
was shallower. The experiments show that the scanning range of OCT is limited compared
with TPI, and the data storage is more complex. Defect measurement can be accomplished
at the micron level, but the detection depth is insufficient. TPI obtained the width and
depth of the 200 µm crack, as well as the total thickness of the TC layer (about 519 µm),
which is conducive to our assessment of the remaining life of the blade. For the 100 µm
surface crack, we need to use OCT as a detail supplement, the resolution of which facilitates
detection down to the 10 µm level.

4. Conclusions

The above experiments completed the detailed evaluation of the debonding defects,
high-temperature oxidation cracks, and etched cracks on the TBCs by TPI and OCT systems.

(1) A TPI system was used to detect the typical defects of the TBCs, such as debonding
defects and etched cracks. It was verified that the size of debonding defects larger
than 2 mm and the etched defects above 200 µm could achieve good qualitative and
quantitative measurement results (100 µm defect can be hard to obtain). It was also
verified that the thickness of the penetrable TC layer exceeds 500 µm. However, the
detection of high-temperature oxide cracks by TPI failed because of the resolution
limitation of TPI.

(2) The typical defects of TBCs (surface etched cracks and high-temperature oxida-
tion cracks) were evaluated by the OCT system. The results show that the high-
temperature oxidation cracks can be detected by OCT with short coherence length
and higher resolution, and the repeated etched circular pits of surface etched cracks
can be observed better than by the TPI system. OCT can also easily measure the
width and depth of etched cracks on 100 µm surfaces, with a relative error of only
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5%. The high precision measurement of OCT systems complements the TPI detec-
tion information characteristics, but it can only complete the shallow surface crack
measurement. This conclusion is demonstrated objectively by comparing the one-
dimensional time-domain signal of terahertz with the one-dimensional time-domain
signal of OCT.

Overall, OCT can detect etched defects with a width as small as 100 µm (even high-
temperature oxidation cracks of about 35 µm can be seen), and TPI can detect TC layers
with a thickness of more than 500 µm. Thus, it is concluded that the TPI method can achieve
a larger detection depth, while the OCT system can improve the detection resolution at the
expense of its penetration depth in the sample. When the same TBC sample is working
and produces various types of defects, OCT can be used to measure the small surface
defects of the sample, while TPI can measure the internal defects. The two methods can
be comprehensively used in TBC defect measurement, which presents the opportunity
to obtain more sample information and makes it easier to monitor and comprehensively
evaluate TBC faults in a timely manner. We may evaluate more small cracks on the
surface when there are also defects in deeper areas inside the sample. This will result in a
higher resolution and better depth information than using UT or ECT alone (can detect the
thickness of about 200 µm of TC layer). In general, it enriches the measuring means and
possibilities of TBCs. Our ongoing work is focused on investigating the fusion of TPI and
OCT images of the same sample to provide more intuitive information.
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