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Abstract: Cobalt nickel oxide films are deposited on Si(111) or fluorine-doped tin-oxide-coated (FTO)
glass substrates employing a pulsed hollow-cathode discharge. The hollow cathode is operated with
argon gas flowing through the nozzle and with O2 gas admitted to the vacuum chamber. Three
different cathode compositions (Co20Ni80, Co50Ni50, and Co80Ni20) are investigated. Deposited
and annealed thin films are characterized by X-ray diffraction, infrared (Raman) spectroscopy, and
ellipsometry. As-deposited films consist of a single mixed cobalt nickel oxide phase. Upon annealing
at 600 ◦C, the mixed cobalt nickel oxide phase separates into two cystalline sub-phases which consist
of cubic NiO and cubic Co3O4. Annealed films are investigated by spectroscopic ellipsometry and
the optical bandgaps are determined.

Keywords: hollow-cathode discharge; mixed cobalt nickel oxide film; refractive index; absorption
coefficient; optical bandgap

1. Introduction

Mixed metal oxides (MMO) consist of two or more metal atoms in combination with
oxygen. Mixed cobalt nickel oxides (CoNiO) have received renewed interest in the past
years [1]. Non-stoichiometric CoNiO and stoichiometric NiCo2O4 are of interest for many
applications, e.g., as batteries [2–6], supercapacitors [7,8], battery supercapacitor hybrids [9],
sensors [10], solar cells [11], and catalysts [12–16]. Here, we are guided by an interest in
the crystallographic and optical properties of deposited CoNiO films with varying Co/Ni
ratios. Both cobalt oxide and nickel oxide are p-type semiconductors. The optical bandgaps
of cobalt oxide and nickel oxide are rather different. NiO has a direct optical bandgap of
about 3.8–4.1 eV [17–20]. Smaller optical bandgaps of about 2 eV have been reported for
cobalt oxide [21,22]. The bandgap of 2.0 eV is frequently attributed to single-phase Co3O4
while mixed CoO/Co3O4 phases have larger bandgaps [23]. In general, cobalt oxide shows
more than one optical bandgap, which may depend on the exact composition and on the
morphology [23–26].

In the present paper, we utilize a pulsed hollow-cathode (PHC) discharge with a
cobalt nickel cathode to deposit mixed cobalt nickel oxide films. The potential of PHC
discharges for deposition of thin films has not been fully explored yet. In particular, rather
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few investigations regarding the deposition of multi-component films have been reported
yet. In this context, PHC discharges using multi-component cathodes are particularly
useful. Here, we employ mixed CoNi cathodes with different stoichiometric compositions,
e.g., Co20Ni80, Co50Ni50, and Co80Ni20. Films are deposited on Si(111) wafers and on
soda lime glass coated with fluorine-doped tin oxide (FTO). The structural, morphological,
and optical properties of the deposited films are studied with the help of scanning electron
microscopy, X-ray diffraction, Raman spectroscopy, and ellipsometry.

2. Experiment

The experimental set-up has been described elsewhere [27,28]. It consists of a cylin-
drical hollow cathode (HC) inside a vacuum chamber. The HC is made from cobalt nickel
alloy with a purity of 99.95% [28–31]. Several cathodes with different compositions have
been employed for film deposition, e.g., Co20Ni80, Co50Ni50, and Co80Ni20, where the
numbers indicate the atomic percentage of the cathode material. We use argon and oxygen
as working gases at gas flow rates of 200 sccm and 100 sccm, repsectively.

The pulsed hollow cathode is operated with a discharge current of 0.25 A at a repetition
frequency of 5 kHz and a pulse length of 100 µs.

Films are deposited on Si(111) or FTO substrates at two different gas pressures (2.8 Pa
and 50 Pa) in the vacuum chamber. More details may be found elsewhere [27]. Typical
deposition times are 90–120 min.

As-deposited and annealed films are characterized by X-ray diffraction, Raman spec-
troscopy, and ellipsometry. Annealing is carried out in ambient air using temperatures of
410 ◦C and 600 ◦C.

Energy dispersive X-ray spectroscopy (EDX) is employed for the elemental composi-
tion analysis of the deposited thin films. The TESCAN Ferra 3 scanning electron microscope
(SEM) equipped with an EDAX Octane super 60 mm2 is employed. Chemical composition
analysis is performed with an energy of 15 kV at a working distance of 9 mm. Thickness
measurements are performed with an energy of 5 kV at the same distance.

The crystallographic structure of the samples is investigated with the help of the
X-ray diffraction (XRD) technique. The Grazing Incidence (GIXRD) geometry with Cu
Kα radiation (λ = 0.154 nm) is employed [32]. Raman spectroscopy is carried out at room
temperature using a Renishaw Raman Microscope RM 1000.

The optical transmission is measured with a UV-VIS spectrophotometer (LAMBDA
1050 UV/Vis/NIR, Perkin-Elmer). Spectroscopic ellipsometry is conducted at room temper-
ature (300 K) in a dry nitrogen atmosphere with a variable angle ellipsometer (J.A. Woollam
VUV-VASE) in the photon energy range 0.8–7.5 eV at three angles of incidence (60◦, 65◦, and
70◦). Refraction index n, extinction coefficient k, and absorption coefficient α are obtained
with the help of commercial WVASE software.

The photoelectrochemical (PEC) activity is investigated in an electrochemical cell in a
three-electrode configuration. Details may be found elesewhere [27].

3. Results and Discussion
3.1. Film Composition

Deposited films have been analyzed with the help of scanning electron microscopy
(SEM). The film thickness is obtained from the cross sectional view of the sample which
is cut at the center. The extracted film thickness is 1.98 µm, 3.68 µm, and 1.56 µm for the
films deposited with Co20Ni80, Co50Ni50, and Co80Ni20 cathodes, respectively. The film
composition of annealed films is measured at two positions (center and near the edge) by
EDX. The two results agree well with each other and only the average results are shown
in Table 1. The measured film composition and, in particular, the extracted Co/(Co+Ni)
ratios agree reasonably with the nominal composition of the considered cathodes.
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Table 1. Composition of annealed (600 ◦C) films on Si(111) substrates for different cathode materials.
Gas pressure 50 Pa.

Cathode Co (at %) Ni (at %) O (at %) Co/(Co+Ni) Ratio

Co20Ni80 14.1 30.7 55.1 0.32
Co50Ni50 24.7 26.9 48.4 0.48
Co80Ni20 54.1 11.9 35.5 0.82

3.2. Crystal Structure
3.2.1. Co50Ni50 Cathode

Figure 1 shows GIXRD results for as-deposited and annealed (at 410 ◦C and 600 ◦C)
films on Si(111) substrates deposited with the Co50Ni50 cathode at gas pressures of 2.8 Pa
and 50 Pa. These films, hence, should contain an approximately equal amount of Co and
Ni. The X-ray diffractograms of the as-deposited films show strongly broadened reflections.
For the as-deposited films, it was not possible to properly distinguish between pure nickel
oxide, cobalt oxide, and/or cobalt nickel oxide phases. The annealed films (410 ◦C) contain
a single crystalline phase which is assigned to cubic nickel oxide (c-NiO) with space group
(SG) 225 (ICSD CIF 9866 [33]). We mention in passing that this does not rule out the
existence of a mixed Ni1−xCoxO phase with a c-NiO structure [34] or of an amorphous
cobalt-rich phase. In fact, mixed Ni1−xCoxO phases with a c-NiO lattice structure and x as
large as 0.4 (40 at%) have been reported before [34].

Figure 1. GIXRD of as-deposited and annealed (410 ◦C, 600 ◦C) CoNiO films deposited with a
Co50Ni50 cathode at (a) 2.8 Pa and (b) 50 Pa. Reflections from c-NiO (•), c-Co3O4 (▲), and c-NiCo2O4

(×) are indicated.

Annealing at 600 ◦C results in a phase separation into c-NiO (SG 225) and spinel-type
c-Co3O4 (SG 227, ICSD CIF 28158 [33]) crystalline phases and leads to an increase in the
mean grain size D. Here, grain reflects the structural homogenous part in the direction of
the diffraction vector and its size is given as a length unit (nm). The mean grain size was
evaluated using the Rietveld refinement method (TOPAS software, Bruker). A separation
of crystalline phases during annealing has been observed before for CuNiO films [27]. The
crystalline phase fractions f of 50% each reflect well the initial composition of the employed
Co50Ni50 cathode. No evidence of crystalline CoO or mixed NiCo2O4 phases was found.
Table 2 summarizes the results of our analyses.

3.2.2. Co20Ni80 Cathode

Figure 2 shows the GIXRD results for the nickel-rich films deposited with the Co20Ni80
cathode. Diffractograms of the as-deposited film and of the film annealed at 410 ◦C show
reflections from c-NiO but not from cobalt oxide. Hence, there is no indication of a second
crystalline phase. The film deposited at 2.8 Pa has an almost perfect NiO(200) preferred
orientation whereas the film deposited at 50 Pa does not show this preference. The reference
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value for the lattice parameter of pure c-NiO is 0.4178 nm [33]. The slightly smaller lattice
parameters (Table 2) can be explained by a partial incorporation of Co2+ (and, eventually, Co3+)
ions into the Ni2+ lattice sites and the smaller ion radii of Co ions compared to Ni ions [35].

Table 2. Identified crystalline phases and lattice parameters of as-deposited and annealed (410 ◦C,
600 ◦C) films deposited at 2.8 Pa and 50 Pa. c = cubic, f = crystal phase fraction, D = mean grain
(particle) size. † = preferred c-NiO(200) orientation, ‡ = cubic phase modification (space group 216),
n/e = not evaluable, S/N = poor signal-to-noise ratio.

Film Crystalline Phase Lattice Parameter (nm) f (%) D (nm)

(a1) Co50Ni50—2.8 Pa
as-deposited c-Co3O4/c-NiO n/e n/e S/N
410 ◦C c-NiO 0.4191 100 12
600 ◦C c-NiO 0.418 50 13

c-Co3O4 0.810 50 13

(a2) Co50Ni50—50 Pa
as-deposited c-Co3O4/c-NiO n/e n/e S/N
410 ◦C c-NiCo2O4 0.8165 100 9
600 ◦C c-NiO 0.4176 50 320

c-Co3O4 0.8099 50 200

(b1) Co20Ni80—2.8 Pa
as-deposited c-NiO † 0.4185 100 12
410 ◦C c-NiO † 0.4170 100 11
600 ◦C c-NiO † 0.4172 87 26

c-Co3O4 0.8104 13 15

(b2) Co20Ni80—50 Pa
as-deposited c-NiO 0.415 100 14
410 ◦C c-NiO 0.415 100 17
600 ◦C c-NiO 0.4182 83 34

c-Co3O4 0.8078 17 15

(c1) Co80Ni20—2.8 Pa
as-deposited c-Co3O4

‡ 0.8139 100 22
410 ◦C c-Co3O4

‡ 0.8098 100 56

(c2) Co80Ni20—50 Pa
as-deposited c-Co3O4/c-NiO n/e n/e S/N
410 ◦C c-Co3O4

‡ 0.8078 100 25
600 ◦C c-NiO 0.4205 25 200

c-Co3O4 0.8098 75 200

Figure 2. GIXRD of as-deposited and annealed (410 ◦C, 600 ◦C) CoNiO films deposited with a
Co20Ni80 cathode at (a) 2.8 Pa and (b) 50 Pa.
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Typical crystallite (grain) sizes of the as-deposited and annealed (410 ◦C) samples are
in the range of 11–17 nm. Both diffraction patterns from the as-deposited and annealed
(410 ◦C) sample deposited at 2.8 Pa differ from the 50 Pa sample only in the peak intensities.
Annealing at 600 ◦C leads to a complete separation into cobalt oxide and nickel oxide
phases. The results of a quantitative phase analysis with the Rietveld method correspond
well with the composition of the employed cathode.

3.2.3. Co80Ni20 Cathode

Figure 3a shows the GIXRD results for the cobalt-rich film deposited at 2.8 Pa with the
Co80Ni20 cathode. The diffractograms of the as-deposited film and of the film annealed at
410 ◦C show the typical reflections from a c-Co3O4 phase modification with space group
216 (ICSD CIF 9362). There is no indication of a second crystalline phase. The X-ray
diffractogram of the as-deposited film deposited at 50 Pa shows a single reflection in the
angular range 36.8–38.1◦, which can be attributed to c-NiO, c-Co3O4, and/or c-NiCo2O4
(Figure 3b). It was not possible to distinguish between these crystalline phases due to the
strongly broadened line profile, however. Upon annealing at 410 ◦C, the crystalline phase
changes to c-Co3O4 (SG 216, ICSD CIF 9362). Mixed Co3−xNixO4 phases with a c-CO3O4
lattice structure and x as large as 0.8 (80 at %) have been reported before [34]. Further
annealing at 600 ◦C again leads to a phase separation into c-NiO (SG 225) and c-Co3O4 (SG
227, ICSD CIF 28158) and gives rise to large grain sizes of about 200 nm. The extracted
Ni/Co ratio of 25/75 is in reasonable agreement to the measured composition (Table 1) and
close to the one expected for a Co80Ni20 cathode.

Figure 3. GIXRD of as-deposited and annealed (410 ◦C, 600 ◦C) CoNiO films deposited with a
Co80Ni20 cathode at (a) 2.8 Pa and (b) 50 Pa. L = Laue peak.

3.3. Raman Spectroscopy

The GIXRD results are supported by Raman spectroscopy. The as-deposited film
from the nickel-rich Co20Ni80 cathode shows a pronounced broad peak at about 545 cm−1

and a smaller peak at 1080 cm−1 (Figure 4). The peaks are frequently assigned to one-
phonon longitudinal optical (LO) mode and two-phonon vibrational modes associated
with NiO [15,36,37]. In particular, the one-phonon LO mode at 545 cm−1 mode is strongly
suppressed in bulk NiO, while it is enhanced in nano-crystalline NiO [38,39]. Similar
structures were observed for copper nickel oxide (Cu50Ni50) films [27]. The center wave
number of the 545 cm−1 peak broadens and shifts to 565 cm−1 if the Co50Ni50 cathode is
employed. The appearance of two weak shoulders at 480 cm−1 and 660 cm−1 is indicated.
The film deposited with the cobalt-rich Co80Ni20 cathode in addition displays several
narrow peaks at 196 cm−1, 480 cm−1, and 680 cm−1 which are attributed to Co3O4 [27].

The Raman spectra of the annealed films display several narrow peaks at 193 cm−1,
480 cm−1, 525 cm−1, and 680 cm−1, which are attributed to Co3O4 (Figure 4) [40,41]. The
Raman spectrum obtained with the nickel-rich Co20Ni80 cathode additionally shows a
pronounced shoulder at 560 cm−1 and a weak peak at 1080 cm−1 indicating the presence of
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NiO [15,36,37]. The pronounced peak at 680 cm−1 is frequently assigned to the A1g mode
of Co3O4 [29]. The weak band at 193 cm−1 is assigned to tetrahedral sites of Co3O4 [15].

Figure 4. Raman spectroscopy of as-deposited (left) and annealed (right) films deposited on Si(111)
substrates. PHC discharge with three different (Co20Ni80, Co50Ni50, and Co80Ni20) cathodes. Gas
pressure 50 Pa.

3.4. Optical Properties

The optical properties of annealed films are investigated by UV-VIS measurements and
by ellipsometry. The transmittance of annealed cobalt nickel oxide films deposited on FTO-
coated glass using different cathodes obtained from the UV-VIS measurements is displayed
in Figure 5a. No corrections regarding the different film thicknesses have been applied. It is
evident that films are opaque at small wavelengths below 400 nm and become increasingly
transparent at larger wavelengths. This result is further confirmed by our ellipsometry
measurements; see below. The transmittance of non-stoichiometric CoxNi1−xO films was
investigated by Roffi et al. [42]. Accordingly, the measured transmittance decreases with
increasing cobalt content x, while the absorption edge moves to longer wavelengths (smaller
photon energies). These observations are in fair agreement with our results (Figure 5).
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Figure 4. Raman spectroscopy of as-deposited (left) and annealed (right) films deposited on Si(111)
substrates. PHC discharge with different (Co20Ni80, Co50Ni50, and Co80Ni20) cathodes. Ar gas flow
rate 200 sccm, O2 gas flow rate 100 sccm, gas pressure 50 Pa. Discharge current 0.25 A. Deposition time
90 min.

No corrections regarding the different film thicknesses have been applied. It is evident that films are165

opaque at small wavelength below 400 nm and become increasingly transparent at larger wavelength.166

This result is further confirmed by our ellipsometry measurements, see below. The transmittance of167

non-stoichiometric CoxNi1−xO films was investigated by Roffi et al. [42]. Accordingly, the measured168

transmittance decreases with increasing cobalt content x while the absorption edge moves to longer169

wavelengths (smaller photon energies). Those observations are in fair agreement with our results170

(figure 5).171

Figure 5. (a) Transmittance, (b) refractive index n, and (c) absorption coefficient of annealed films
(600 oC) deposited on FTO glass with different cathodes: ◦ Co20Ni80, △ Co50Ni50, and ▽ Co80Ni20.

Figure 5. (a) Transmittance, (b) refractive index n, and (c) absorption coefficient α of annealed films
(600 ◦C) on FTO glass obtained with different cathodes: ◦ Co20Ni80, △ Co50Ni50, and ▽ Co80Ni20.
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The optical properties of films deposited at 50 Pa on FTO-coated glass and annealed
at 600 ◦C are further obtained from ellipsometry measurements. Figure 5b displays the
refractive index n, which increases (decreases) with wavelength λ (photon energy Eph) from
about n ≈ 1.2 at λ = 180 nm (Eph = 6.9 eV) to n ≈ 1.8 at λ = 1000 nm (Eph = 1.24 eV). Only
minor differences are observed for the three samples deposited with different cathode com-
positions (Co20Ni80, Co50Ni50, and Co80Ni80). The absorption coefficient for these films
is displayed in Figure 5c as function of wavelength. Again, the present ellipsometry results
show that all films become opaque at small wavelengths and increasingly transparent at
larger wavelengths. A similar behavior of the absorbance was observed before [43]. The
absorption behavior is rather complicated, however, showing more than one absorption
edge corresponding to several optical bandgaps [44–46].

A more thorough analysis of the absorption behavior employing a so-called Tauc plot
making use of

(α Eph)
2 = Eph − Eg (1)

is shown in Figure 6, where α is the absorption coefficient and Eph is the photon energy [47].
A direct optical bandgap as in the case of CoO, Co3O4, and NiO is assumed [48–50]. From
this plot we derive optical bandgaps of 4.14 eV, 4.20 eV, and 4.14 eV for copper nickel oxide
films obtained with the Co20Ni80, Co50Ni50, and Co80Ni20 cathodes, respectively. There
is an indication of a second optical bandgap at 3.50 eV for the Co20Ni80 cathode. NiO has a
direct optical bandgap of about 3.8 eV [18–20,51–53]. A similar optical bandgap is observed
for CoO [53]. Slightly larger bandgap energies of 3.88 eV/4.07 eV [54] and 4.38 eV [8] are
reported for NiCo2O4. However, our XRD data for the annealed films reveal no evidence
of crystalline CoO or NiCo2O4 phases. The bandgap of ≈4.15 eV observed here is, hence,
assigned to the nickel oxide composition of the annealed films.

Smaller optical bandgaps are reported for cobalt oxide [21,22]. In general, cobalt
oxide shows several optical bandgaps which depend on the composition and on the
morphology. An expanded view of the photon energy region below 3.5 eV is displayed
in the inset of Figure 6. Direct optical bandgaps of 2.10 eV, 2.23 eV, and 2.19 eV for the
Co20Ni80, Co50Ni50, and Co80Ni20 cathodes, respectively, are extracted from this graph.
The extracted bandgaps agree well with the reported optical bandgap of about 2.17 eV for
Co3O4 [23–26,55]. The result is further supported by our XRD analysis.

Finally, we mention in passing that films deposited on FTO-coated glass are also tested
for photoelectrochemical activity using the same set-up as for CuNiO films [27]. Na2SO4
and NaOH are employed as electrolytes. No photoelectrochemical activity of the present
copper nickel oxide has been observed, however.

Figure 6. Tauc plot assuming a direct bandgap for annealed films (600 ◦C) deposited on FTO glass
with different cathodes: ◦ Co20Ni80, △ Co50Ni50, and ▽ Co80Ni20. Inset shows expanded view
between 1.5 eV and 3.5 eV.
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4. Conclusions

Results are reported for mixed cobalt nickel oxide films deposited with the help of a
pulsed hollow-cathode (PHC) discharge operated at 5 kHz. Deposited films are composed
of a mixed metal oxide (MMO) phase. During annealing at 600 ◦C, the MMO phase
separates into two crystalline cubic Co3O4 and cubic NiO subphases. The results are
confirmed by Raman spectroscopy. The refraction index and absorption coefficient are
derived from ellipsometry measurements. The refractive index increases from 1.2 at 200 nm
to about 1.8 at 1000 nm. Annealed films are opaque at small wavelengths and become
increasingly more transparent at longer wavelengths. Optical bandgaps of about 4.15 eV
are linked to the NiO phase of the annealed films, while a second optical bandgap at about
2.17 eV is linked to the Co3O4 phase. Photoelectrochemical activity was not observed.
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