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Abstract: This study investigates the magnetization mechanisms in MnZn ferrites, which are key
materials in high-frequency power electronics, to understand their behavior under various sinter-
ing conditions. Employing X-ray diffraction and scanning electron microscopy, we analyzed the
microstructure and phase purity of ferrites sintered at different temperatures. Our findings confirm
consistent spinel structures and highlight significant grain-growth and densification variabilities.
Magnetic properties, particularly the saturation magnetization (Ms) and initial permeability (µi), were
explored, revealing their direct correlation with the sintering process. The decomposition of magnetic
spectra into domain-wall-motion and spin-rotation components offered insights into the dominant
magnetization mechanisms, with the domain wall movement becoming increasingly significant at
higher sintering temperatures. The samples sintered at 1310 ◦C showcased superior permeability and
the least loss in our investigations. This research underscores the impact of sintering conditions on
the magnetic behavior of MnZn ferrites, providing valuable guidelines for optimizing their magnetic
performance in advanced electronic applications and contributing to the material science field’s
understanding of the interplay between sintering, microstructures, and magnetic properties.
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1. Introduction

In the current landscape of power electronics, shaped by the rapid proliferation of
5G technology and the surge in new energy vehicles, there is a profound shift towards
high power and a compact design in power-related products [1–4]. This shift prominently
features in switch-mode power supplies and communication energy storage systems [5,6].
In coatings, MnZn ferrite is utilized for its electromagnetic shielding properties to absorb
and mitigate electromagnetic interferences in electronic device enclosures, for frequency
filtering in communication equipment to enhance the signal quality, and for augmenting
surface magnetism in applications like magnetic tags or storage media, leveraging its
unique magnetic permeability and loss characteristics across various frequencies [7,8]. In
this context, reducing magnetic core losses in inductors and transformers has become a
paramount concern.

Most power supplies currently operate in the 200 kHz to 3 MHz frequency range,
predominantly employing ferrite core materials [9–15]. The inductive reactance, repre-
sented as jωL, implies that as operating frequencies (ω) increase, the required inductance
values (L) decrease. This necessitates a balance between achieving higher frequencies and
maintaining miniaturization. The key challenge in this scenario is mitigating the escalating
magnetic losses at high frequencies [16–20].

There is a pressing need for innovation in magnetic core materials, especially in the
100 kHz to 1 MHz range. A precise analysis of magnetic losses is crucial in developing
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MnZn ferrite cores that exhibit lower losses at these frequencies. The trend towards
miniaturization in electronic devices also brings to the fore the issue of heat accumulation
and temperature rises, making loss reduction at a wide range of temperatures increasingly
relevant [21,22]. This study aims to address these challenges, focusing on reducing the
magnetic losses in MnZn ferrite cores within the 100 kHz to 1 MHz range, which is pivotal
for the next generation of high-frequency power supplies.

M. Marracci et al. conducted a comprehensive study on the temperature-dependent
hysteresis losses in minor hysteresis loops, covering a temperature range from −32 ◦C
to 110 ◦C [23]. Their research revealed a non-linear trend in these losses, which was
attributable to the intricate interplay between exchange energy and magnetic crystalline
anisotropy. In a subsequent study, J. Töpfer et al. focused on the influence of various
composite additives (CaO, SiO2, Nb2O5, ZrO2, V2O5, and SnO2) on the core losses of
MnZn ferrites [24]. Through a wet chemical synthesis method, they successfully refined
the microstructure of MnZn ferrites, achieving a grain size of 4–5 µm, which significantly
reduced the core losses to 55 kW/m3 under conditions of a frequency of 1 MHz, a magnetic
field of 25 mT, and a temperature of 80 ◦C.

Ke Sun’s research shed light on ion occupancy in Ni-substituted MnZn ferrites, particu-
larly focusing on their Brillouin function temperature characteristics [25]. This study found
a distinct preference for Zn2+ and Ni2+ ions to occupy tetrahedral (A-site) and octahedral
(B-site) positions, respectively, with a Mn2+ to Fe3+ ion ratio of 4:1 in these sites.

Furthermore, K. Praveena’s work involved the synthesis of high-frequency (1 MHz)
low-loss MnZn ferrites using the combustion method. The findings indicate that increasing
the Zn2+ content led to a decrease in saturation magnetization and remanence and that
optimizing the Zn2+ content was key to achieving low losses at 1 MHz. These studies
collectively contribute significant insights into the development of MnZn ferrites for high-
frequency applications [26].

In summary, among the studies focusing on magnetic properties, composition, ad-
ditives, sintering processes, and the spectra of complex permeability [27–33], few have
delved into the contribution of magnetization mechanisms in MnZn ferrites as a function
of grain size and its relationship with the sintering temperature. This research presents
an exploration of the magnetization mechanisms in MnZn ferrites at different sintering
temperatures, discussing the findings in conjunction with the fitting results of permeabil-
ity spectrum dispersion. Low-loss MnZn ferrites, applied through tape-casting, co-fired
coating, and sol–gel particulate coating, enhance electromagnetic shielding and thin-film in-
ductors in electronics, aiding device miniaturization and performance. Sintered via ceramic
oxidation, these ferrites are ideal for magnetron sputtering and pulsed laser deposition,
advancing the integration of superior magnetic materials into thin films.

2. Materials and Methods

MnZn ferrites, composed of 55 mol% of Fe2O3, 34 mol% of MnO, and 11 mol% of ZnO,
were synthesized via the conventional ceramic oxidation method. Initially, the powders
were mixed in precise stoichiometric ratios in planetary mills with stainless steel balls for
an hour, followed by calcination at 850 ◦C for two hours in the air. The calcined powders
were then doped with 0.02 wt% of Bi2O3 and 0.03 wt% of V2O5 as a co-solvent to reduce the
sintering temperature and were subjected to a second milling for two hours. Post-milling,
the powders were dried at 90 ◦C, were granulated with 10 wt% of polyvinyl colloid, and
were compressed into toroids (Φ20 mm × Φ10 mm × h5 mm) at a pressure of 20 MPa.

The toroids were sintered at five different temperatures, 1280 ◦C (labeled x = 1), 1290 ◦C
(x = 2), 1300 ◦C (x = 3), 1310 ◦C (x = 4), and 1320 ◦C (x = 5), for two hours. Select sintered
toroids were processed into spheres with a diameter ranging from 1.2 mm to 1.8 mm to
measure their saturation magnetization (Ms).

The crystalline structure of the materials was analyzed using an X-ray diffractome-
ter (XRD-7000, Cu target, 40 kV, 40 mA, Kα radiation, Shimadzu Corporation, Kyoto,
Japan), and the cross-sectional microstructure was examined using a scanning electron
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microscope (SEM, JEOL JSM-6490LV, Akishima, Japan), with the grain size determined
by the interception method throughout several photos. The magnetic permeability (µ)
and power loss were measured using a B-H analyzer (Iwastu SY-8232, Tokyo, Japan). The
measurement of the magnetic permeability spectrum was also conducted using an SY8232,
employing a frequency sweep method, under the test conditions of 1 A/m and a frequency
of 1 kHz at room temperature. The measurements of saturation magnetization (Ms) and
coercive force (Hc) were conducted using a Vibrating Sample Magnetometer (VSM, Lake
Shore 8604, Westerville, OH, USA). The Archimedean method was employed for density
(d) measurements.

3. Results

Figure 1 displays the XRD patterns of the samples sintered at varying temperatures.
These XRD measurements reveal that all samples exhibit a characteristic spinel structure
without any impurity phases (JCPDS Card No. 074-2401). The calculated XRD densities
(dXRD) for these samples are detailed in Table 1. The theoretical XRD density (dXRD) of
MnZn ferrites can be calculated as 5.19 g/cm3 using the formula dXRD = 8 M/Na3, where
M represents the molar mass of these MnZn ferrite samples, which is determined from its
molecular formula. In the solid-state sintering process, it is anticipated that the reactants
will entirely convert into ferrite material. Based on the proportions of the reactants, the
final chemical formula of the ferrite is designated as Mn0.66Zn0.20Fe2.14O4, with a molar
mass (M) of 232.8 g/mol. The lattice constant ‘a’ was derived from XRD diffraction
peaks using the JADE 6.5.26 software and was determined to be 8.4150 Å. ‘N’ represents
Avogadro’s number.
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Table 1. Elemental properties of MnZn ferrites sintered at different temperatures.

Sample
No.

D
(µm)

µi
(f = 1 kHz)

Ms
(kA/m3)

Hc
(kA/m)

d
(g/cm3)

P
(%)

1 3.7 2794 440 3 5.09 1.9
2 5.5 2796 442 3 5.11 1.5
3 8.9 2961 441 2 5.11 1.5
4 11.5 3097 441 3 5.10 1.7
5 14.1 2996 439 5 5.07 2.3

The sintering density (d) of the MnZn ferrites was measured using the Archimedean
method, and porosity (P) was calculated as P = (dXRD − d)/dXRD × 100%. The sintering
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density (d) of MnZn ferrite increases progressively from 1280 ◦C to 1300 ◦C, while its
XRD density remains constant as an intrinsic property, underscoring the role of solid-state
reaction completion in densification. Beyond 1310 ◦C, a reduction in density and an increase
in porosity were observed, peaking at 1300 ◦C, where the MnZn ferrite attains its maximum
densification and optimal microstructure. Figure 2 presents the cross-sectional scanning
electron microscopy (SEM) images of the MnZn ferrites. This reduction of porosity (P)
is attributed to the concurrent decrease in pore presence at the grain boundaries and the
augmentation in grain size.
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With increments in the sintering temperature, a noticeable grain growth is observed in
Figure 2. In sample 1, intergranular porosity predominantly resides at the grain boundaries.
As the sintering temperature reaches 1290 ◦C, the microstructure becomes denser, due
to the formation of a larger liquid phase within the system. However, abnormal grain
growth becomes evident when exceeding 1310 ◦C. At this temperature, the grains no longer
maintain a granular shape but become adhesive, with larger pores appearing within the
grains, leading to an increase in porosity (P). The grain size (D) in Table 1 was measured
and statistically analyzed using the intercept method under lower-resolution imaging.

Table 1 presents the elemental properties of the MnZn ferrites, detailing the funda-
mental characteristics of samples 1 through 5. Ms (saturation magnetization) is primarily
influenced by densification and intrinsic molecular magnetic moments. Given the con-
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stancy of molecular magnetic moments, which is dependent solely on the compositional
formula, an increase in densification will enhance the concentration of magnetic moments
per unit volume. Consequently, the variation in Ms closely aligns with changes in the
sintering density in this study.

The Initial permeability, µi, is governed by the equilibrium between the magnetization
driving force, which is represented by the saturation magnetization Ms, and the resistance
caused by anisotropy and internal stress. The anisotropy is characterized by the anisotropy
constant K1, while the internal stress is associated with porosity (P).

In Table 1, the magnetic permeability exhibits variations far exceeding those of related
physical properties like saturation magnetization and porosity. This discrepancy neces-
sitates an analysis based on the magnetization mechanisms of the material. In magnetic
materials, two primary magnetization mechanisms—the domain rotation and the domain
wall motion—collectively determine the magnitude of magnetic permeability. This is why
permeability is considered a non-intrinsic physical quantity in magnetic materials. When
the grain size (D) in a ferromagnetic material exceeds a critical dimension, it transitions
from a single-domain to a multi-domain structure, leading to an increase in the number of
magnetic domains within each grain.

The average grain size (D) of the samples sintered at different temperatures was
determined to be 3.7 µm, 5.5 µm, 8.9 µm, 11.5 µm, and 14.1 µm, respectively. The varia-
tion in the number of domain walls, transitioning from single-domain to multi-domain
states, significantly impacted the relative contributions of the magnetization mechanisms,
leading to anomalous trends in permeability. Magnetic permeability spectrum separation
distinguishes between the domain rotation, where individual magnetic moments within a
domain reorient towards an external magnetic field, and the domain wall motion, where
the boundaries between domains shift to realign the overall magnetization.

To assess and quantitatively describe the influence of the domain wall quantity on per-
meability in ferrites, a nonlinear least squares method was employed to fit and decompose
the magnetic spectra, and the dispersed results are depicted in Figure 3. Considering that
the numerical results are already detailed in Table 2, this figure only presents a plot for a
single sample (sample 3) as an example.
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Numerical fitting of the imaginary part of the spectra was conducted, with the fitting 
parameters used to generate the real part. Good fitting results were achieved under the 
assumption that each spectrum comprises contributions from both a resonance-type do-
main wall motion and a relaxation-type domain rotation. The corresponding fitting pa-
rameters are listed in Table 2, where 
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Figure 3. The permeability spectra dispersion of MnZn ferrite for sample 3. The real and imaginary
components of the magnetic spectrum are denoted by black spheres and black triangles, respectively.
Fitted values for these components, corresponding to two distinct magnetization mechanisms, are
depicted by red and blue dashed lines for the real and imaginary parts, respectively. The aggregate
values of the magnetic spectrum’s real and imaginary parts are illustrated by red spheres and blue
triangles, respectively.
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Table 2. Permeability spectrum fitting parameters of MnZn ferrites.

No. χd0 χs0 α β (×108)
ωd

(×108 Hz)
ωs

(×108 Hz)
ωDW

µ”
(max)

(×107 Hz)

ωSP
µ”
(max)

(×107 Hz)

1 1536 1454 26.1 0.13 0.13 7.9 2.18 2.72
2 1637 1339 26.4 0.15 0.13 7.6 1.33 2.81
3 1701 1316 24.7 0.15 0.11 6.4 1.22 4.75
4 1742 1289 19.5 0.10 0.08 4.3 2.20 6.47
5 1663 1471 20.6 0.11 0.09 4.8 1.52 5.24

To isolate the contributions of the two magnetization mechanisms, the spectra were
separated into domain-wall-motion and domain-rotation components. The complex perme-
ability is expressed by Equation (1), where χd and χs represent the susceptibilities of domain
wall displacement and domain rotation mechanisms, respectively; ωd and ωs are their
respective cut-off frequencies; χd0 and χs0 are the static susceptibilities of each component;
β and α are the damping coefficients; and ω is the actual operating frequency [34–36].

µ = 1 + χd + χs = 1 +
ω2

dχd0

ω2
d − ω2 + iωβ

+
(ωs + iωα)ωsχs0

(ωs + iωα)2 − ω2
(1)

To compute the real and imaginary parts of the magnetic spectra, their expressions
were derived from Equation (1), as shown in Equations (2) and (3).

µ′ = 1 +
ω2

dχd0(ω
2
d − ω2)

(ω2
d − ω2)

2
+ ω2β2

+
χs0ω2

s [(ω
2
s − ω2) + ω2α2]

[ω2
s − ω2(1 + α2)]2 + 4ω2ω2

s α2
(2)

µ′′ =
χd0βωω2

d

(ω2
d − ω2)

2
+ ω2β2

+
χs0ωsωα[ω2

s + ω2(1 + α2)]

[ω2
s − ω2(1 + α2)]2 + 4ω2ω2

s α2
(3)

Numerical fitting of the imaginary part of the spectra was conducted, with the fitting
parameters used to generate the real part. Good fitting results were achieved under the
assumption that each spectrum comprises contributions from both a resonance-type domain
wall motion and a relaxation-type domain rotation. The corresponding fitting parameters
are listed in Table 2, where ωDW

µ
′′
(max)

and ωSP
µ
′′
(max)

correspond to the resonance frequencies of

the µDW- f and µSP- f spectra, respectively. The resonance frequencies were determined by
solving in Equation (1) for these extreme values, as depicted in Equations (4) and (5).

ωSP
µ
′′
(max)

= ωs/
√

1 + a2 (4)

ωDW
µ
′′
(max)

=
1
6

√
12ω2

d − 6β2 + 6
√

16ω4
d − 4ω2

dβ2 + β4 (5)

Besides the good agreement between the computed and experimental curves shown
in Figure 3, the accuracy of the fitting parameters was further substantiated by two aspects:
(1) the resonance frequency of the domain rotation is significantly higher than that of the
domain wall motion, and (2) the fitting results comply with Snoek’s Law, as illustrated in
Equation (6). This law indicates that the product of initial permeability caused by domain
rotation and its resonance frequency, which is determined by the intrinsic properties of
the material (γ, gyromagnetic ratio) and Ms, should inversely correlate under minimal
variations in a gyromagnetic ratio and Ms. For sample 4, as the magnetic permeability con-
tribution from the domain rotation (χs0) is the lowest, its corresponding cut-off frequency
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(ωSP
µ
′′
(max)

) will increase accordingly. The fitting results confirm these theoretical expectations

for both, affirming the credibility of the fitting methodology and outcomes [37–39].

(µi − 1) f0 = γMs/3π (6)

As the sintering temperature increases, the initial permeability (µi) values at 100 kHz
are 2794, 2796, 2961, 3097, and 2996, respectively. For a certain magnetization mechanism,
permeability is directly proportional to the square of the saturation magnetization (Ms,
which is almost invariant in this case) and is inversely proportional to magnetic hindrances,
such as internal stress. Notably, the pinning effect of pores within the grains on the domain
wall movement is crucial. Therefore, the reduction in permeability in sample 5 can be
attributed to an increase in porosity. With rising sintering temperatures, the ratio of χD0
to χS0 evolves as 1.06, 1.22, 1.29, 1.35, and 1.13. As the sintering temperature increases,
the contribution ratio of these two components initially rises and then stabilizes, with the
domain wall movement emerging as the predominant magnetization mechanism, thereby
dominating the changes in permeability. The dominant role of the domain-wall-motion
mechanism at various temperatures is also corroborated by the cutoff frequency of the
magnetic permeability spectra which is much closer with the domain wall motion part.

Due to the increase in grain size, the domain wall movement becomes a major contrib-
utor to dynamic magnetization. In this study, as the sintering temperature rose from 1280
to 1320 ◦C, the ratio of the contributions from the two magnetization mechanisms, χD0 and
χS0, initially increased but then maintained a decline due to the decline in densification
and a pinning effect of the pores. Power loss, which is generally considered an extrinsic
property, is known to be influenced by microstructures. However, there has been a long-
standing challenge in finding effective methods for its precise quantitative analysis and
adjustment. This study’s findings provide a deeper understanding of the complex magneti-
zation processes in MnZn ferrites, greatly expanding the current knowledge in this area.
Once the magnetization mechanism is clarified, using the well-established relationships
between magnetic permeability, microstructure, and power loss, the direct and precise opti-
mization of power loss in MnZn ferrites under various operating conditions by adjusting
the microstructure is possible. An accurate measurement of magnetic permeability spectra
in soft ferrite thin films has long posed a significant challenge due to large error margins
that compromise data analyses of magnetic permeability spectrum separation. Therefore,
exploring spectrum separation in sintered bodies, which are the target materials for thin-
film fabrication, is crucial for gaining insights into and for quantitatively determining the
role of the grain size in the magnetization mechanism.

To further explore the impact of permeability on power loss, the power loss of dif-
ferent samples under various operating temperatures is plotted in Figure 4. This was
executed at a frequency of 100 kHz and a magnetic-flux density of 200 mT, which is a
typical working condition for high-power applications. At low frequencies, power losses
are primarily governed by hysteresis losses, and the hysteresis loss is primarily determined
by the magnetic permeability; a higher permeability leads to lower hysteresis losses. For
manganese-zinc ferrites, the permeability–temperature (µ-T) relationship initially increases
and then decreases (dropping to zero at the Curie temperature). This initial increase results
in a unique negative temperature coefficient (NTC) that is characteristic of low-frequency
losses in ferrites [40,41]. Conversely, the eddy current and residual losses have positive
temperature coefficients, increasing with rising temperatures. The peak of permeabil-
ity with temperature increases usually occurs between 80–120 ◦C. As permeability is a
non-intrinsic parameter, its curve is not determined by the primary chemical formula
of the composition but is greatly influenced by the microstructure of the sintered body.
In Figure 4, as the sintering temperature increases, the magnetic permeability initially
rises and then declines. Under the NTC effect, in the 80–120 ◦C range, samples sintered at
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1310 ◦C exhibited the lowest loss. For the samples sintered at 1320 ◦C, the abundance of in-
tragranular pores pinning the domain walls rendered the domain wall motion irreversible,
thereby obscuring the NTC effect.
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4. Conclusions

This study comprehensively investigates the magnetization mechanisms in MnZn
ferrites, emphasizing the effects of the sintering temperature on their microstructural and
magnetic properties. XRD analyses confirmed the spinel structure of the samples, while
SEM images revealed a significant grain growth and varying degrees of densification. The
variation in saturation magnetization (Ms) across most of the samples suggests an interplay
between densification and porosity. By dispersing the magnetic spectra into domain-wall-
motion and spin-rotation components, this study finds the domain wall movement to be the
dominant magnetization mechanism at higher temperatures, as evidenced by the χD0 to χS0
ratio. The samples subjected to sintering at 1310 ◦C demonstrated optimal permeability and
minimal loss. This research provides valuable insights into the magnetic behavior of MnZn
ferrites, particularly under varying sintering conditions, contributing to the optimization
of their magnetic performance for practical applications.
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