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Abstract: Metal-organic frameworks (MOFs)-derived microwave absorbers with tunable components
and microstructures show great potential in microwave absorption. Herein, we report a facile thermal
reduction approach for synthesizing CoNi alloy/reduced graphene oxide (CoNi/rGO) composites
from bimetallic CoNi-MOFs. By tuning the ratio of graphene oxide (GO) in the precursors, the
resulting CoNi/rGO-2 composite demonstrates optimal microwave absorption performance with a
minimum reflection loss (RLmin) of −66.2 dB at 7.6 GHz in the C band. Moreover, the CoNi/rGO-2
with 50 wt% filler loading achieves a maximum effective absorption bandwidth (EAB) of 6.8 GHz
(10.6–17.4 GHz) at a thickness of 2.5 mm, almost spanning the entire Ku band and a portion of the
X band. The outstanding performance of CoNi/rGO-2 is ascribed to the high magnetic loss from
the CoNi alloy and the incorporation of rGO, which induces interfacial polarization to enhance the
dielectric loss and improve the impedance matching of composite. These favorable findings highlight
the considerable potential and superiority of the CoNi/rGO-2 composite as an electromagnetic
wave absorption material. This work sets forth a viable strategy for designing high-efficiency
alloy/rGO absorbers.

Keywords: electromagnetic wave absorption; CoNi alloy; reduced graphene oxide; metal-organic
frameworks; reflection loss

1. Introduction

Currently, the severe threat of excess electromagnetic wave pollution and irradiation
caused by electronic devices and wireless equipment has garnered significant attention [1–3].
Efforts have been made to improve the impedance matching and attenuation capability of
electromagnetic waves, aiming to purify the electromagnetic environment and design su-
perior electromagnetic wave absorbers [4–6]. Therefore, the development of high-efficiency
microwave absorption materials with low density, high attenuation intensity, broadband
absorption, and strong absorption capacity is deemed urgent for practical applications [7].

In recent years, CoNi alloy has received widespread attention for electromagnetic
wave absorption due to its excellent magnetic loss properties and low cost [8–10]. Neverthe-
less, the high density and mismatching electromagnetic parameters of CoNi alloy hinder its
practical application [8,10–12]. Opening up a rational strategy for promoting the microwave
absorption performance of CoNi alloy is vital. Lately, metal-organic frames (MOFs) are
considered to be an ideal candidate for the preparation of microwave absorption materials
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due to their tunable structure, unique pore structure, and excellent electromagnetic coor-
dination and attenuation [13–17]. MOF-derived materials can exhibit high magnetic loss,
excellent impedance matching and microwave loss characteristics. For example, Wu et al.
prepared nanoporous Co/CoO particles by carbonizing zeolitic imidazolate framework
(ZIF)-67, resulting in a minimum reflection loss (RLmin) of approximately −87.2 dB and an
effective absorption bandwidth (EAB) of 6.2 [18]. Similarly, Liu et al. pyrolyzed shelled
ZIF-67 rhombic dodecahedral cages to prepare hollow Co@N-doped carbon nanocages,
achieving an optimal RLmin of −60.6 dB and an EAB of 5.1 GHz at 1.9 mm [19]. Fur-
thermore, graphene, among various carbon-based absorbers, possesses light weight, high
electrical conductivity, and remarkable thermal conductivity [20,21]. Nevertheless, the
conductivity and electromagnetic parameters of pure graphene are too high to satisfy the
impedance matching conditions, which will lead to poor impedance matching conditions
and further hinder its practical applications [22]. Therefore, the integration of graphene into
MOF-derived alloys is anticipated to enhance impedance matching and induce interfacial
polarization to improve dielectric loss.

In this work, MOF-derived CoNi alloy composites decorated with reduced graphene
oxide (CoNi/rGO) have been fabricated via a facile thermal reduction method. Encour-
agingly, the electromagnetic wave absorption properties of CoNi/rGO composites can
be improved by adjusting the content of rGO. In addition, benefiting from improved
impedance matching and enhanced dielectric dissipation due to the combination of CoNi
alloy and rGO, respectively, the optimized CoNi/rGO-2 with a filler loading of 50 wt% can
deliver a minimum RLmin of −66.2 dB at 7.6 GHz. Furthermore, the EAB of CoNi/rGO-2 is
as large as 6.8 GHz with a thickness of 2.5 mm, covering the range of 10.6–17.4 GHz. Overall,
CoNi/rGO-2 exhibits superior electromagnetic wave absorption performance in the low
frequency range, providing insights for the preparation of high-efficiency MOF-derived
microwave absorbers.

2. Experimental Section
2.1. Synthesis of CoNi-MOF-GO Precursors

The CoNi-MOF-GO precursors were synthesized by the one-pot method. Briefly, 0.02 mol
of Co(NO3)2·6H2O, 0.02 mol of Ni(NO3)2·6H2O and 20 mg of graphene oxide (GO) were
added into 240 mL ethyl alcohol. Then, 2.00 mmol of terephthalic acid (PTA) was added
under stirring. Subsequently, the mixed solution was kept at 80 ◦C for 120 min in an oil
bath. After cooling down to room temperature, the solvent was evaporated by rotary
evaporation. Finally, the resulting CoNi-MOF-GO was dried at 60 ◦C for 12 h and marked
as CoNi-MOF-GO-1.

For comparison, CoNi-MOF-GO-2 was synthesized in a similar procedure as CoNi-
MOF-GO-1, except that the mass of GO was 30 mg. In addition, CoNi-MOF was also
prepared by a similar procedure, except that no GO was added.

2.2. Synthesis of CoNi/rGO Composites

The fabrication process of composites is delineated in Figure 1. The CoNi/rGO-1 and
CoNi/rGO-2 were prepared by thermal reduction of CoNi-MOF-GO-1 and CoNi-MOF-
GO-2 precursors, respectively. Typically, the as-obtained precursors were thermally treated
under an atmosphere of 10% H2-90% Ar at 600 ◦C for 4 h with a heating rate of 2 ◦C min−1.
After the pyrolysis process, the CoNi-MOF precursor could be transformed into CoNi alloy,
while GO was reduced to rGO. Similarly, the CoNi/C was prepared by pyrolysis of the
CoNi-MOF precursor with the same procedure.
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Figure 1. Schematic illustration of the synthesis of CoNi/rGO composites. 
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Thermo Fisher Scientific Inc., Waltham, MA, USA) with an Al Kα X-ray source. 

2.4. Microwave Absorption and Electromagnetic Parameters Measurement 
To detect the electromagnetic parameters of composites, a PNA-L Vector Network 

Analyzer (Keysight, N5232B, Agilent Technologies, Santa Clara, CA, USA) was conducted 
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Figure 1. Schematic illustration of the synthesis of CoNi/rGO composites.

2.3. Characterization

Transmission electron microscopy (TEM, JEM-3010, Japan Electron Optics Laboratory,
Tokyo, Japan) and scanning electron microscopy (SEM, JSM-6701F, Japan Electron Optics
Laboratory, Tokyo, Japan) were performed to investigate the microscopic characterizations
and morphology of samples, respectively. X-ray diffraction (XRD, XRD-6100, Shimadzu
Corp., Kyoto, Japan) with a Cu Kα radiation was carried out to analyze the structural prop-
erties of samples. The chemical state and elemental composition of samples were analyzed
by the X-ray photoelectron spectroscopy technique (XPS, ESCALAB 250Xi, Thermo Fisher
Scientific Inc., Waltham, MA, USA) with an Al Kα X-ray source.

2.4. Microwave Absorption and Electromagnetic Parameters Measurement

To detect the electromagnetic parameters of composites, a PNA-L Vector Network
Analyzer (Keysight, N5232B, Agilent Technologies, Santa Clara, CA, USA) was conducted
over the frequency range of 2–18 GHz. The mixture was prepared by mixing the sample
with the molten paraffin (50 wt%). Then, the resultant mixture was pressed into a testing
ring with an outer diameter of 7 mm and an inner diameter of 3 mm. The reflection loss
(RL) is defined as being a criterion of the absorbed and transmitted power of incident
electromagnetic waves [23]. The higher the RL, the higher the absorption. The RL value
can be calculated by the complex dielectric constant and permeability according to the
transmission line theory [1,24]:

Zin = Z0

√
µr
εr

tan h
[

j
(

2πfd
c

)
√
εrµr

]
(1)

RL (dB) = 20lg
∣∣∣∣Zin − Z0

Zin + Z0

∣∣∣∣ (2)

where Zin represents the input impedance, d signifies the thickness of absorber, µr is
the complex permeability, εr is the complex permittivity, c is the velocity of light in the
free space, Z0 represents the impedance of free space, and f stands for the frequency
of microwave.

3. Results and Discussion
3.1. Material Synthesis and Structural Characterizations

Figure 1 demonstrates the typical preparation process of CoNi/rGO composites. The
detailed procedure is outlined in the experimental section. Based on the electromagnetic
wave absorption performance, CoNi/rGO-2 was selected as a representative sample for
further investigation of its morphology and microstructure using SEM and TEM. As de-
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picted in Figure 2a–c, CoNi/rGO-2 is composed of numerous irregular nanorods decorated
with rGO. Following the thermal reduction process, CoNi-MOF is easily transformed into
CoNi alloy. Figure 2d illustrates the presence of several irregular nanoparticles on the
surface of CoNi alloy. Moreover, a bilayer structure was observed, likely due to the pres-
ence of rGO. The high-resolution TEM (HRTEM) image of CoNi/rGO-2 is illustrated in
Figure 2e. The inverse fast Fourier transform (IFFT) pattern (as inset in Figure 2e) and the
line profile (Figure 2f) reveal a lattice fringe spacing of 0.206 nm, consistent with the (111)
plane of Co0.5Ni0.5 (PDF#04-004-8490), indicating the successful formation of the CoNi
alloy. Bright diffraction spots are visible in the selected area electron diffraction (SAED)
pattern in Figure 2g, indicating that CoNi/rGO-2 possesses a single crystalline structure.
Additionally, elemental mapping images of CoNi/rGO-2 show the uniform distribution of
C, O, Co, and Ni elements (Figure 2h).
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Figure 2. (a–c) SEM images of CoNi/rGO-2. (d) TEM image of CoNi/rGO-2. (e) HRTEM image
of CoNi/rGO-2. Inset of (e) is the IFFT pattern. (f) The corresponding line profiles in panel (e).
(g) SAED pattern of CoNi/rGO-2. (h) Elemental mapping distributions for C, O, Co, and Ni elements
of CoNi/rGO-2.

XRD analysis was conducted on the spectra of CoNi/C, CoNi/rGO-1, and CoNi/rGO-
2 to determine the lattice structures of composites. As shown in Figure 3, three distinct
diffraction peaks located at 44.4◦, 51.7◦, and 76.1◦ are well-associated with the (111), (200),
and (220) crystal planes of Co0.5Ni0.5 (PDF#04-004-8490), respectively. This result indicates
the successful formation of the CoNi alloy from CoNi-MOF following a thermal reduction
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process, consistent with the TEM results. Furthermore, for CoNi/rGO-1 and CoNi/rGO-2,
a wide diffraction peak at 24.0◦ corresponds to the (002) plane of graphitic carbon [25],
demonstrating the effective reduction of GO and the formation of a graphitic structure
within the composites [26].
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To characterize the elemental status and electronic structure of CoNi/C, CoNi/rGO-1,
and CoNi/rGO-2 composite, XPS analyses were performed. As shown in Figure 4a, the
XPS survey profiles of samples display the signal peaks for C, O, Co, and Ni elements,
which is coincident with the elemental mapping result. In the high-resolution C 1s spectra
(Figure 4b), the peaks at 284.6 and 285.7 eV can be assigned to the C-C and C-O components,
respectively [8,27]. With the introduction of rGO, the C=O peak at 288.2 eV can be observed
for CoNi/rGO-1 and CoNi/rGO-2 [8]. As for the Co 2p spectra (Figure 4c), two pairs
of doublet peaks are identified at ~779.5 and ~796.0 eV, corresponding to Co 2p3/2 and
Co 2p1/2, respectively [28,29]. The high-resolution Co 2p3/2 spectra can be fitted with
three peaks. The main peaks at 779.3, 781.2, and 786.0 eV are ascribed to the Co0, Co2+,
and satellite signal peaks, respectively [30]. Similarly, in the Ni 2p3/2 spectra, there are
three primary peaks at 853.2, 855.5, and 861.0 eV, which are assigned to the Ni0, Ni2+, and
satellite species, respectively [31]. The presence of Co0 and Ni0 species in the complexes
demonstrates the successful reduction of CoNi alloys during the thermal reduction pro-
cess [27,32]. In addition, the existence of Co2+ and Ni2+ species is caused by the inevitable
surface oxidation of the metallic nanoparticles [27,29,33].

3.2. Electromagnetic Wave Absorption Properties of Composites

The RL curves and corresponding 3D/2D RL plots related to the frequency and
matching thickness of CoNi/C, CoNi/rGO-1, and CoNi/rGO-2 composites are displayed
in Figure 5. It is found that the electromagnetic wave absorption performance of composites
can be modulated by changing the ratio of CoNi alloy and rGO. As shown in Figure 5a,d, the
CoNi/C with a low thickness of 2.0 mm delivers an RLmin value of −50.8 dB at 10.4 GHz.
The maximum EAB of CoNi/C is 4.8 GHz (13.0–17.8 GHz) at thickness of 1.5 mm in the
X band (Figure 5g). Clearly, the microwave absorption performance of CoNi/rGO-1 and
CoNi/rGO-2 is greatly improved via the incorporation of rGO. Specifically, the RLmin value
of CoNi/rGO-1 reaches −51.9 dB at 6.6 GHz with a thickness of 5.0 mm (Figure 5b,e),
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and the corresponding maximum EAB is 5.8 GHz (12.2–18.0 GHz) at 2.5 mm (Figure 5h).
Meanwhile, the CoNi/rGO-2 exhibits an RLmin value of −66.2 dB at 7.6 GHz (Figure 5c,f)
and a maximum EAB of 6.8 GHz (10.6–17.4 GHz) at 2.5 mm with a filler loading of 50 wt%
(Figure 5i), demonstrating that the CoNi/rGO-2 shows potential absorption capability in
the low frequency range. As listed in Table 1, the CoNi/rGO-2 demonstrates excellent
electromagnetic wave absorption performance and broad EAB, surpassing many other
reported MOF-based absorbers. This outcome indicates the potential use of CoNi/rGO-2
as a promising microwave absorber. The enhanced performance can be ascribed to the
introduction of numerous structural defects of graphene in CoNi/rGO-2, which induce
more permanent electric dipoles and thereby improve dielectric loss [34].
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Table 1. Comparison of electromagnetic wave absorption properties with various MOF-based
absorbers.

Absorbers Matching EAB (GHz) RLmin (dB) References

Cu-S-MOF 6.72 (9.68–16.4) −52.8 [35]
Co-C composite 6.1 (14.6–8.5) −48.5 [36]

DM-700-3 2.0 (5.0–7.0) −67.5 [37]
CoFe@C 9.2 (8.8–18.0) −61.8 [38]

Ni-MOF@N-C-500 6.8 −69.6 [39]
CNT/FeCoNi@C 6.0 −51.7 [40]

DM-700 4.8 −65.2 [41]
CoZn/C@MoS2@PPy 4.56 −49.18 [42]

Ni@C@ZnO 4.1 −55.8 [43]
Co/Co3O4@HCNs 6.6 −50.6 [44]

CoNi/rGO-2 6.8 (10.6–17.4) −66.2 This work
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To understand the electromagnetic wave absorption capabilities of CoNi/C, CoNi/rGO-
1, and CoNi/rGO-2, the relationships between frequency and different electromagnetic
parameters were examined. Generally, the real parts of complex permittivity (ε′) and
permeability (µ′) represent the storage ability of electric field energy and magnetic en-
ergy, respectively [45]. The imaginary parts of complex permittivity (ε′′) and permeability
(µ′′) represent the corresponding loss capacity [17]. The microwave absorption property
of samples is primarily related to their complex permittivity (εr = εr

′ − jεr
′′) and com-

plex permeability (µr = µr
′ − jµr

′′) [46]. As shown in Figure 6a, the ε′ values of CoNi/C,
CoNi/rGO-1, and CoNi/rGO-2 decrease from 12.8 to 10.4, 6.5 to 4.5, and 7.2 to 4.7, re-
spectively, indicating that the ε′ values show a decreasing trend with the increase of the
frequency due to the dispersion behavior induced by the polarization lag [47]. In addition,
the ε′′ values of CoNi/C, CoNi/rGO-1, and CoNi/rGO-2 change from 0.3 to 2.0, 4.8 to 3.2,
and 5.1 to 2.3, respectively (Figure 6b). The presence of resonance peaks is attributed to the
existence of multi-polarization process [27]. The rise in dielectric loss of CoNi/rGO-1 and
CoNi/rGO-2 at low frequency compared to CoNi/C indicates an increase in their electrical
conductivity, further suggesting that the introduction of rGO is contributed to hopping con-
ductivity losses [17]. The dielectric dissipation capacity of composites is further evaluated
by dielectric loss tangent (tanδε = ε′′/ε′). As depicted in Figure 6c, the CoNi/rGO-1 and
CoNi/rGO-2 exhibit higher tanδε values than CoNi/C, demonstrating that CoNi/rGO-1
and CoNi/rGO-2 have stronger dielectric loss [27], which is due to the fact that rGO can
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induce more permanent electric dipoles [34]. Furthermore, it can be seen that both the µ′

and µ′′ values of CoNi/rGO-1 and CoNi/rGO-2 show low values compared with ε′ and ε′′

(Figure 6d,e), which may be related to lower content of magnetic component. As shown
in Figure 6f, the magnetic loss tangent (tanδµ = µ′′/µ′) values of CoNi/C, CoNi/rGO-1,
and CoNi/rGO-2 show a similar trend to those of µ′′ values. Meanwhile, for CoNi/rGO-1
and CoNi/rGO-2, the tanδε values are significantly higher than tanδµ values. This im-
provement may be attributed to relaxation and polarization from the defects and functional
groups of rGO, resulting in remarkable dielectric loss ability [48].
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4. Conclusions

In summary, bimetallic MOF-derived CoNi/rGO composites are successfully synthe-
sized by a thermal reduction method. The electromagnetic parameters of the composite
can be adjusted by tuning the ratio of GO in the precursors, resulting in the composites
with both good impedance matching and excellent electromagnetic wave absorption per-
formance. As a result, the CoNi/rGO-2 delivers optimal absorption performance with an
RLmin of −66.2 dB at 7.6 GHz. Moreover, the CoNi/rGO-2 can reach a maximum EAB
of 6.8 GHz at 2.5 mm, mostly covering the entire Ku band and a portion of the X band.
Excellent absorption performance can be attributed to the high magnetic loss from the
CoNi alloy. Additionally, the introduction of rGO reduces the weight of the material and
improves the dielectric loss and impedance matching of the composite. This work provides
a method for the preparation of high-efficiency MOF-derived absorbers.
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