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Abstract: Previous studies have confirmed the excellent biocompatibility, osteogenic properties, and
angiogenic ability of hydroxyapatite (HAP), as well as the good osteoblast differentiation ability
of dental pulp stem cells. We hypothesized that combining dental pulp stem cells with ultralong
hydroxyapatite nanowires and cellulose fibers could more effectively promote osteoblast differentia-
tion, making it a potential biomaterial for enhancing bone wound healing. Therefore, based on the
optimal ratio of ultralong hydroxyapatite nanowires and cellulose fibers (HAPNW/CF) determined
in previous studies, we added human dental pulp stem cells (hDPSCs) to investigate whether this
combination can accelerate cell osteogenic differentiation. hDPSCs were introduced into HAPNW/CF
scaffolds, and in vitro experiments revealed that: (1) HAPNW/CF scaffolds exhibited no cytotoxicity
toward hDPSCs; (2) HAPNW/CF scaffolds enhanced alkaline phosphatase staining activity, an early
marker of osteogenic differentiation, and significantly upregulated the expression level of osteogenic-
related proteins; (3) co-culturing with hDPSCs in HAPNW/CF scaffolds significantly increased the
expression of angiogenesis-related factors compared to hDPSCs alone when tested using human
umbilical vein endothelial cells (hUVECs). Our study demonstrates that combining hDPSCs with
HAPNW/CF can enhance osteogenic differentiation more effectively, potentially through increased
secretion of angiogenesis-related factors promoting osteoblast differentiation.

Keywords: nanomaterials; hydroxyapatite; angiogenesis; osteogenesis

1. Introduction

The repair and reconstruction of critical osseous defects induced by tumors, trauma,
and accidents remain a significant clinical challenge [1]. Autologous bone grafting is
considered the gold standard due to its safety and effectiveness; however, its clinical
application is limited by issues such as infection, donor site scarcity, and complications at
the donor site [2]. In recent decades, with the continuous advancement of tissue engineering
materials, patients with large segmental bone defects have the potential to receive safer,
more effective, and cost-efficient treatments [3–5]. An ideal bone tissue engineering scaffold
should possess characteristics similar to the extracellular matrix of natural bone and provide
a three-dimensional space for cell survival. It should also induce cellular bioactivity to
facilitate sufficient nutrient supply to cells and enhance their retention at the implantation
site [6,7]. Moreover, as the biomaterial gradually degrades over time, migrating bone cells
can continuously proliferate and differentiate toward repairing bone tissue defects [8].
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With the emergence of tissue engineering, stem cells have gained widespread utiliza-
tion as seed cells in regenerative medicine [9,10]. Currently, commonly employed seed cell
types include mesenchymal stem cells (MSCs) [11], embryonic stem cells (ESCs) [12], and
adult or embryonic neural stem cells (NSCs) [13]. Among these options, mesenchymal stem
cells are a type of pluripotent stem cells characterized by their capacity for self-renewal
and multi-lineage differentiation. These attributes render them highly applicable in fields
such as cell therapy, drug screening, and disease modeling. Consequently, they are highly
sought-after “seed cells” within the field of tissue engineering [14,15]. Gronthos success-
fully isolated dental pulp stem cells (DPSCs) from the third molar’s pulp in 2000, marking
a significant milestone in adult stem cell research. [16]. Human dental pulp stem cells
(hDPSCs) represent a subset of mesenchymal stem cells derived from dental tissues with
potential for the purpose of self-renewal and differentiation into diverse cell lineages,
encompassing osteoblasts, adipocytes, chondrocytes, odontoblast-like-cells, and neuronal-
like-cells [17,18]. The ease of isolating hDPSCs from extracted teeth provides an abundant
cellular source for tissue engineering purposes. Due to their low-risk profile, hDPSCs
possess advantages over other types of stem cells. These inherent advantages position
hDPSCs at the forefront of dentin repair, tooth regeneration, and bone tissue engineering
research [19,20]. Furthermore, research has demonstrated that hDPSCs exhibit promise for
craniofacial bone reconstruction encompassing skull bones, mandibular bones, and other
related structures [21,22]. Therefore, hDPSCs were chosen as the preferred cell source in
our study.

Hydroxyapatite (HAP) is the primary inorganic constituent of human bones and teeth, ex-
hibiting exceptional biocompatibility, bioactivity, osteoinductivity, and biodegradability [23,24].
Upon implantation into bone defects, HAP does not form a fibrous tissue interface with the
surrounding bone tissue; instead, it develops a carbonate apatite layer on its surface within the
body. Consequently, HAP holds immense potential as a hopeful biomaterial for bone repair
applications [25]. In the field of biomedical engineering, HAP finds extensive utilization in
bone defect repair, including HAP-based bioactive glass composites, HAP-graphene compos-
ites, and HAP-polymer composites [26]. The incorporation of metal compounds with HAP
can enhance osteogenesis and angiogenesis processes [27]. To improve the early stability and
biocompatibility of metal implants effectively, it is a common practice to employ HAP coatings
on their surfaces to leverage the advantages offered by both materials for enhanced success
rates [28,29]. Moreover, HAP biomaterials with diverse morphologies and pore structures
are widely employed as filling materials or delivery carriers for bone defects in bone tissue
engineering studies [30].

Unfortunately, traditional HAP materials exhibit high brittleness and poor ductility
when subjected to mechanical loads, resulting in suboptimal mechanical properties [31].
Scaffolds composed solely of these biomaterials fail to meet the mechanical requirements
of the relevance of bone tissue engineering in clinical applications. In the present study,
we prepared a novel porous and stable biopaper using a simple vacuum filtration method,
where ultralong HAP nanowires were interwoven with each other and with cellulose
fibers [32]. Unlike traditional brittle HAP materials, the hierarchical architecture in the
biopaper imparts exceptional performance to the material. The ultralong HAP nanowires
demonstrate remarkable flexibility and can be bent at large angles without fracturing [31].
Furthermore, the as-prepared biopaper based on ultralong hydroxyapatite nanowires
and cellulose fibers (HAPNW/CF) exhibits excellent thermal stability, elevated levels of
porosity and specific surface area, hydrophilicity, tensile strength as well as a porous
network structure that provides an optimal environment for bone formation and ingrowth.

However, apart from bone formation, the successful implantation of bone biomaterials
heavily relies on the establishment of a well-functioning vascular network as blood vessel
formation directly impacts the osteogenesis of implants [33,34]. HAP is not only a common
material for bone defect repair but also exhibits excellent potential in promoting angiogen-
esis [35]. Our previous research findings [36] demonstrated that highly porous aerogels
based on ultralong hydroxyapatite nanowires not only induce new bone formation but
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also facilitate vascularization in the area of bone defects, indicating HAP’s capability to
promote blood vessel generation. Furthermore, the sustained release of Ca2+ ions from
the HAPNW/CF biopaper promotes neovascularization while simultaneously influencing
osteogenesis by affecting the structure of blood clots at fracture sites.

In this study, as shown in Figure 1, we conducted a systematic investigation of the
application of HAPNW/CF biomaterial paper in bone regeneration. In vitro studies demon-
strated that HAPNW/CF biomaterial paper exhibited superior performance in terms of
proliferation, adhesion, and osteogenic differentiation of hDPSCs while also promoting
angiogenesis. The results revealed promising prospects for its application in repairing large
segmental bone defects, highlighting its significant scientific and clinical value.

Coatings 2024, 14, x FOR PEER REVIEW 3 of 14 
 

 

common material for bone defect repair but also exhibits excellent potential in promoting 
angiogenesis [35]. Our previous research findings [36] demonstrated that highly porous 
aerogels based on ultralong hydroxyapatite nanowires not only induce new bone for-
mation but also facilitate vascularization in the area of bone defects, indicating HAP’s ca-
pability to promote blood vessel generation. Furthermore, the sustained release of Ca2+ 
ions from the HAPNW/CF biopaper promotes neovascularization while simultaneously 
influencing osteogenesis by affecting the structure of blood clots at fracture sites. 

In this study, as shown in Figure 1, we conducted a systematic investigation of the 
application of HAPNW/CF biomaterial paper in bone regeneration. In vitro studies 
demonstrated that HAPNW/CF biomaterial paper exhibited superior performance in 
terms of proliferation, adhesion, and osteogenic differentiation of hDPSCs while also pro-
moting angiogenesis. The results revealed promising prospects for its application in re-
pairing large segmental bone defects, highlighting its significant scientific and clinical 
value. 

 
Figure 1. A concise schematic diagram illustrating the preparation, angiogenesis, and osteogenesis 
processes of HAPNW/CF biopaper. 

2. Materials and Methods 
2.1. Preparation of the HAPNW/CF Biopaper 

The HAPNW/CF biopaper was prepared according to the method reported in our 
previous study [32]. In brief, the mixture was prepared by combining 135 mL of deionized 
water, 60 mL of methanol, and 105 mL of oleic acid. Then, the above mixture was gradu-
ally supplemented with an aqueous solution of NaOH (10.500 g in 150 mL), CaCl2 (3.330 
g in 120 mL), and NaH2PO4·2H2O (9.360 g in 180 mL). After solvothermal treatment of the 
mixture at 185 °C for 25 h, the resulting product was sequentially washed twice with eth-
anol and deionized water, and then HAPNW dispersions were obtained. Then, when the 
weight ratio of HAPNWs to CFs was 80:20, cellulose fibers (CFs) were added to the 
HAPNW dispersion. The dispersion was imported into the filter paper, and the 
HAPNW/CF biopaper was formed by drying at 95 °C for 10 min using the vacuum filtra-
tion method. 

  

Figure 1. A concise schematic diagram illustrating the preparation, angiogenesis, and osteogenesis
processes of HAPNW/CF biopaper.

2. Materials and Methods
2.1. Preparation of the HAPNW/CF Biopaper

The HAPNW/CF biopaper was prepared according to the method reported in our
previous study [32]. In brief, the mixture was prepared by combining 135 mL of deionized
water, 60 mL of methanol, and 105 mL of oleic acid. Then, the above mixture was gradually
supplemented with an aqueous solution of NaOH (10.500 g in 150 mL), CaCl2 (3.330 g
in 120 mL), and NaH2PO4·2H2O (9.360 g in 180 mL). After solvothermal treatment of the
mixture at 185 ◦C for 25 h, the resulting product was sequentially washed twice with ethanol
and deionized water, and then HAPNW dispersions were obtained. Then, when the weight
ratio of HAPNWs to CFs was 80:20, cellulose fibers (CFs) were added to the HAPNW
dispersion. The dispersion was imported into the filter paper, and the HAPNW/CF
biopaper was formed by drying at 95 ◦C for 10 min using the vacuum filtration method.

2.2. In Vitro Cellular Researches
2.2.1. Isolation and Culture of hDPSCs

Healthy impacted third molars were extracted from 10 individuals aged 18 to 25 years
from the Department of Stomatology, Xinhua Hospital, affiliated with Shanghai Jiaotong
University School of Medicine. None of the selected objects in this research had systemic
disease, a history of radiotherapy, or smoking. All tooth extractions in the research were
authorized by the Ethics Committee of Xinhua Hospital Affiliated to Shanghai Jiaotong
University School of Medicine. The endodontic tissues were gently isolated from the
crown and root and digested in a solution containing 3 mg/mL of collagenase I (Sigma,
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St. Louis, MO, USA) and 4 mg/mL of dispase (Sigma, USA) for 0.5 h at 37 ◦C, as described
by Jia Q et al. [37]. Then, hDPSCs were cultured in α-modified Eagle medium (α-MEM,
HyClone, Logan, UT, USA) containing: (1) 10% fetal bovine serum (FBS, Gibco, Grand
Island, NE, USA); (2) 100 µg/mL penicillin (HyClone, USA); and (3) 100 mg/mL strepto-
mycin (HyClone, USA), in 5% carbon dioxide at 37 ◦C. The culture medium was refreshed
every 2 to 3 days. After reaching 70% to 80% confluence, hDPSCs were incubated using
0.05% trypsin (Gibco, USA) for a duration of 1 min to facilitate cell isolation. hDPSCs
between passages 3–4 were used for biological experiments.

2.2.2. Identification, Osteogenic and Adipogenic Differentiation of hDPSCs

Cell surface markers of hDPSCs were analyzed through flow cytometry as described
previously [38]. In briefly, 5 × 106 cells at the third passage were resuspended in cold
phosphate buffer (PBS, HyClone, USA) and subsequently incubated with the following
antibodies: CD34-FITC, CD45-PE, CD90-APC, CD105-APC and CD146-FITC (Abcam,
Cambridge, UK). All processes were performed away from light at 4 ◦C for 1 h. Following
incubation, the expression profiles were analyzed using flow cytometry (Thermo, Waltham,
MA, USA). For osteogenic differentiation, the hDPSCs were cultured in an osteogenic
medium (OM) at the third passage containing 10 ng/mL dexamethasone, 10 mmol/L beta-
glycerophosphate and 50 mg/mL ascorbic acid (Sigma, USA) for 14 days, and changing
the culture medium every 3 days. Control samples were cultured in α-MEM supple-
mented with 10% FBS with no supplements. After 14 days of culture, the calcium nodules
were measured by dyeing with alizarin red (Sigma, USA). The adipogenic medium con-
tained 10 mg/mL insulin, 200 mmol/L indomethacin, 1 mmol/L dexamethasone, and
0.05 mmol/L methylisobutylxan-thine. The hDPSCs were cultured in the adipogenic
medium and α-MEM medium for 14 days, respectively. Oil red O staining was used to
observe the lipid droplets.

2.2.3. Determination of Cell Adhesion Activity

A total of 3 × 104 hDPSCs were seeded per well on the HAPNW/CF biopaper
(2 mm × 2 mm) in 24-well plates and cultured for 1, 4, and 24 h. After performing three
rounds of PBS washing at room temperature for each time point, the cells were fixed
with 4% paraformaldehyde (PFA) for a duration of 10 min and subsequently subjected
to three washes with PBS after the fixation solution was sucked out. The cells were then
permeabilized with 0.1% (v/v) Triton X-100 and blocked in bovine serum albumin under
light-free conditions. The Actin-Tracker Green working solution (Sigma-Aldrich Trading
Co., Shanghai, China) was used to stain F-actin in the dark for 30 min. Subsequently, the
cells were immersed with DAPI (Sigma, USA) for nuclear staining for 5 min. The relevant
images were observed under a fluorescence microscope.

2.2.4. Cell Proliferation by CCK-8 Assay

The proliferation activity of hDPSCs on HAPNW/CF biopaper was detected by the
cell counting kit-8 (CCK-8) assay (Beyotime, Shanghai, China). The hDPSCs were cultured
on HAPNW/CF biopaper in 24-well plates at a density of 1 × 104 cells per well. When
cultured for 1, 4, and 7 days, the original medium in the pore plate was sucked away, and
the cells were thoroughly rinsed with PBS three consecutive times. Subsequently, 200 µL
of CCK-8 working liquid (the ratio of CCK-8 liquid to complete medium was 1:10) was
added to each 24-well plate and incubated in a cell incubator at 37 ◦C for 2 h away from
light. Then, 100 µL liquid was absorbed into the 96-well plate per well, and the absorbance
value was determined at 450 nm using a microplate reader.

2.2.5. ALP Staining and ALP Activity Assay

For ALP staining, the hDPSCs (2 × 104 cells per well) were cultured on HAPNW/CF
biopaper in 24-well plates. When two time points arrived (day 7 and day 14), the cells
were fixed with 4% paraformaldehyde for thirty minutes and then repetitively rinsed with
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phosphate-buffered saline (PBS) for three cycles, each lasting five minutes. After preparing
the BCIP/NBT staining solution (Beyotime, China) in accordance with the manufacturer’s
provided instructions for reagent usage, the appropriate amount of the staining solution
was taken to cover the cells and stain for 30 min without light before taking photos.

2.2.6. Live–Dead Staining

The cell viability and proliferation on HAPNW/CF biopaper were assessed using
the LIVE/DEAD™ assay kit (Thermo, USA) at 3 days of culture. Briefly, the hDPSCs
(1 × 104 cells per well) were seeded on HAPNW/CF biopaper in a 6-well plate for 3 days
as described above. Before starting cell staining, the cells were rinsed 3 times with PBS.
After the cells were completely covered with the appropriate amount of Calcin-AM /PI
solution, they were incubated for 30 min away from light. Images of living and dead cells
were observed using a fluorescence microscope, and the number of living and dead cells
was calculated separately using Image J software 6.0.

2.2.7. Western Blot

After seeding hDPSCs on HAPNW/CF biopaper for 7 days, the cells were washed
with phosphate-buffered saline (PBS) three times and subsequently trypsinized using
0.25% trypsin-EDTA solution. hDPSCs were lysed in 100 uL RIPA lysis buffer and har-
vested by centrifugation at 12,000 rpm for 10 min. As mentioned above, the total protein
content was determined by a BCA protein detection kit, and the isolation of 10 mg of
protein from each sample was achieved through the utilization of sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE), followed by transfer to 0.22 µm pore-sized
polyvinylidene fluoride (PVDF) membrane. Following a 60-min incubation at room tem-
perature in TBST buffer containing 5% nonfat dry milk solution to block, the membranes
were subsequently incubated overnight with anti-Col-1 (Abcam, UK), anti-RUNX2 (CST,
Boston, MA, USA), anti-OCN (CST, USA), anti-Enos (Abcam, UK), anti-AKT (Abcam, UK),
anti-VEGF (Abcam, UK), anti-GAPDH (Boster, Wuhan, China) in the blocking buffer at 4 ◦C.
After performing three washes with TBST, incubate the samples at room temperature for
1 h with a properly diluted secondary antibody, followed by detection using an enhanced
chemiluminescence detection system. Image J software was used to analyze the gray values
of different bands, and GAPDH bands were used as the internal reference to calculate the
relative expression levels of each group of proteins for subsequent statistical analysis. Each
group of experiments was repeated three times.

2.3. Statistical Analysis

All assays were repeated at least three times. All quantitative data were expressed as
mean ± standard deviation (SD), and the t-test was used for statistical analyses by SPSS20.0.
p < 0.05 was considered a significant difference.

3. Results
3.1. Cell Culture and Identification

The hDPSCs used in this study were obtained and cultured from dental pulp tissues
successfully. To identify hDPSCs, the immunophenotype of the cells was detected using
flow cytometer analytic method, which suggested that hDPSCs were both positive for
MSC-specific surface markers (CD90 (97.40%); CD105 (95.80%); and CD146 (93.30%)) and
negative for hematopoietic cell markers (CD34 (1.18%) and CD45 (1.08%)) (Figure 2A–E).
Staining with alizarin red (Figure 2F,G) and oil red O (Figure 2H,I) confirmed multipotency
of hDPSCs after 14 days of induction.
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Figure 2. Cell identification, osteogenic and adipogenesis differentiation of hDPSCs. Cell surface
markers: (A) CD90 (97.40%); (B) CD105 (95.80%); (C) CD146 (93.30%); (D) CD73 (95.50%) and
(E) CD34 (1.18%). Alizarin red staining was used to test mineralized tissue formation of hDPSCs
in the control group (F) and experimental group (G) on days 14 post-osteoinduction. As shown
by the arrow, calcium nodes were generated in the experimental group (scale bar: 500 µm). Oil
red O staining was used to test adipogenic differentiation of hDPSCs in the control group (H) and
experimental group (I) for 14 days (scale bar: 500 µm). As shown by the arrow, lipid droplets were
generated in the experimental group (scale bar: 500 µm).

3.2. Cell Viability, Proliferation, and Adhesion Activity of hDPSCs on the HAPNW/CF Biopaper

The hDPSCs were cultured on blank culture dish (control group) and HAPNW/CF
biopaper, respectively. Subsequently, the viability of cells on the HAPNW/CF biopaper was
assessed. The immunofluorescence staining images of living/dead cells (Figure 3A) and live
cell ratios (Figure 3B) after culturing for 3 days clearly showed that there was no significant
difference between the numbers of live cells on the HAPNW/CF biopaper of the control
group and the nHA group. The result showed that HAPNW/CF biopaper exhibits excellent
safety. Cell adhesion serves as the initial stage in mediating the interaction between cells
and the surface of biological materials, which not only allows cells to maintain structural
stability and morphology but also mediates signaling and regulation between cells.

As shown in Figure 4A, the morphology of the cells by immunofluorescence staining
was observed under a fluorescence microscope after seeding to the control and HAPNW/CF
groups. After being cultured for 1, 4, and 24 h, compared with the control group, the
HAPNW/CF group showed significantly increased cell density, better cell spreading
morphology, and more pronounced lopodia extension, especially at 24 h. The images
showed that the HAPNW/CF biopaper could provide a more favorable microenvironment
for hDPSCs adhesion and thus provide assistance for the subsequent proliferation and
differentiation of hDPSCs. Cell proliferation is essential to evaluate the biocompatibility of
materials. The CCK-8 assay results showed that the proliferative activity of hDPSCs in the
nHA group was obviously higher than that of the control group after being cultured for 1,
4, and 7 days (Figure 4B).
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(A) Fluorescence images of hDPSCs cultured for 24 h (scale bar: 100 µm). (B) The proliferation of
hDPSCs cultured for 1, 4, and 7 days (* p < 0.05, ** p < 0.01, n = 3).

3.3. In Vitro Pro-Osteogenic and Pro-Angiogenic Effects

The hDPSCs represent a subtype of mesenchymal stem cells with multi-directional dif-
ferentiation and self-renewal ability, which can proliferate and differentiate into osteoblasts
under specific environmental and inducing conditions. As widely acknowledged, ALP
serves as an early indicator of osteogenic differentiation in hDPSCs, which is qualitatively
and quantitatively detected to analyze the osteogenic differentiation of hDPSCs on the
surface of the HAPNW/CF biopaper. After being cultured for 7 and 14 days (Figure 5A),
compared with the control group, the intensity of ALP staining in the HAPNW/CF group
was significantly deeper. In addition, the ALP activity in the HAPNW/CF group was signif-
icantly higher than that in the control group (Figure 5B), proving a significant enhancement
in osteogenic differentiation upon the utilization of HAPNW/CF biopaper.

Several bone formation-related proteins and transcription factors, such as Col-1, OCN,
and RUNX2, play important roles during the process of osteogenic differentiation. There-
fore, the effects of HAPNW/CF biopaper on the formation of Col-1, OCN and RUNX2
were analyzed by western blotting. As shown in Figure 5C,D, the hDPSCs cultured on the
HAPNW/CF biopaper showed higher expression of Col-1,OCN, and RUNX2 after 7 days’
culture compared with the blank control group. In a word, the HAPNW/CF biopaper has
excellent osteogenic properties and accelerates the initiation of osteogenesis.

In addition, the angiogenesis performance and proliferation of human umbilical
vein endothelial cells (hUVECs) on the HAPNW/CF biopaper were investigated. As
shown in western blot images (Figure 6A,B), the hUVECs on the HAPNW/CF biopaper
expressed more angiogenic factors (eNOS, AKT, and VEGF), which were beneficial to
neovascularization. The proliferation of cells is a crucial physiological function exhibited
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by living cells, and promoting cell proliferation is also an important index to evaluate the
performance of biomaterials. After being cultured on the HAPNW/CF biopaper for 1, 4, and
7 days, the CCK-8 results showed that compared with the control group, the proliferative
activity of hUVECs in the HAPNW/CF group was significantly higher (Figure 6C). Based
on the experiment results, the HAPNW/CF biopaper effectively promoted the angiogenesis
of hUVECs in vitro.
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4. Discussion

Reconstructing bone defects presents a significant challenge for orthopedic and max-
illofacial surgeons, particularly in cases of severe bone loss [39,40]. To overcome the
limitations associated with traditional bone grafts (autografts and allografts), it is im-
perative to conduct research and develop bone tissue engineering scaffolds that possess
exceptional osteoconductivity and osteoinductivity [3,25,41]. Hydroxyapatite has garnered
considerable attention due to its biomimetic structure and chemical composition resembling
natural bone. It can effectively stimulate new bone in areas affected by bone defects while
also facilitating vascularization to some extent [36]. Therefore, we have developed a novel
porous HAP nanowire/plant fiber composite paper known as HAPNW/CF biopaper and
further investigated its role in promoting the formation of bone tissue. The HAPNW/CF
biopaper exhibits high hydrophilicity, an elevated surface area-to-volume ratio, as well as
the porous structure and high porosity inherent to HAP nanomaterials. These character-
istics provide more adhesive sites for cells and proteins, thereby facilitating the adhesion
and proliferation of osteoblasts. In vitro experiments demonstrate that the HAPNW/CF
biopaper not only demonstrates the ability of adhesion, proliferation, and osteogenic differ-
entiation of hDPSCs but also significantly influences the proliferation of hUVECs as well as
the secretion of vascular endothelial growth factor.

The immunophenotypic characteristics of hDPSCs exhibited the expression of mes-
enchymal stem cell markers [42,43]. The staining results of Alizarin Red and Oil Red
demonstrated the osteogenic and adipogenic differentiation potential of hDPSCs, demon-
strating their multipotent differentiation potential. Dental pulp tissue is a soft tissue
containing nerves, blood vessels, and lymphatics inside the pulp cavity. hDPSCs isolated
from dental pulp tissue possess the ability to multipotently differentiate and self-renew
and can be induced to form osteoblasts under certain conditions [44]. Numerous studies
have shown that hDPSCs can form new bone tissue in the area of bone defects, effectively
promoting new bone formation and providing assistance for bone defect repair [45,46].
Therefore, hDPSCs are considered necessary seed cells for bone regeneration and pos-
sess osteogenic potential [47,48]. Petridis et al. [49] transplanted dental pulp stem cells
combined with extracellular matrix scaffolds into a critical cranial bone defect rat model,
and the results showed that it effectively promoted rat skull healing. d’Aquino et al. [50]
isolated and extracted stem cells derived from the dental pulp of third molars of humans,
expanded them, adhered them to collagen sponge scaffolds, and filled them into bone
defects in the autogenous mandible caused by bone resorption.

The live–dead staining results showed that, in comparison to the control group,
HAPNW/CF biomaterials did not display cell toxicity, indicating excellent biocompat-
ibility of HAPNW/CF biomaterials. Additionally, due to the relatively coarse surface
morphology of the HAPNW/CF biomaterial scaffold, it was beneficial for cell adhesion
and proliferation. Immunofluorescence staining results showed that cells could adhere
to the surface of HAPNW/CF biomaterials early on, and the adhesiveness of hDPSCs on
the HAPNW/CF biomaterial surface was superior to the control group. This was because
the HAPNW/CF biomaterials provided more attachment sites for hDPSCs due to their
higher specific surface area, which further promoted early adhesion of hDPSCs on the
composite membrane surface. Cell viability was examined through CCK-8 experiments
at different time points, and it was found that HAPNW/CF biomaterials promoted the
proliferation of hDPSCs. Therefore, the highly biocompatible HAPNW/CF biomaterial
scaffold provided a conducive and advantageous milieu for the proliferation and adhesion
of hDPSCs, implying that HAPNW/CF biomaterials could have a positive influence on cell
behavior. Similar to other research, many researchers have also found that hydroxyapatite
can effectively promote the proliferation and adhesion of hDPSCs [51,52].

Hydroxyapatite nanowire/cellulose fiber (HAPNW/CF) biopaper is believed to
possess the capability to promote preosteoblast differentiation [53]. The influence of
HAPNW/CF biomaterial on hDPSCs osteogenic differentiation was investigated by assess-
ing the expression of various osteogenic proteins. The staining and activity experiments of
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alkaline phosphatase (ALP) were conducted on day 7 and day 14. Compared to the control
group, HAPNW/CF biomaterial induced higher ALP expression in hDPSCs. ALP is a
specific protein enzyme secreted by cells, and its activity level reflects the early stage of os-
teogenic differentiation in osteoblasts [54]. Western blot experiments were also performed,
demonstrating that HAPNW/CF biomaterial significantly promoted hDPSCs’ osteogenic
differentiation and the expression of osteogenic proteins, including Col-1, RUNX2, and
OCN. The behavior and fate of stem cells are influenced by their microenvironment. The
arrangement of ultralong bundles composed of HAP nanowires within the HAPNW/CF
biomaterial may exert certain effects on cell orientation and connectivity. Additionally,
material degradation characteristics contribute to its biocompatibility as well. In bone
tissue engineering, new bone formation often coincides with scaffold material degrada-
tion [55]. Degradation of HAPNW/CF biomaterial enables the continuous release of Ca2+

and PO43-ions, which stimulate hDPSCs’ osteogenic differentiation [56].
In vitro studies have demonstrated that HAPNW/CF biomaterial promotes angio-

genesis. CCK-8 experiments were conducted on both the control group and HAPNW/CF
biomaterial group at 1, 2, and 3 days. Results revealed that HAPNW/CF biomaterial
significantly enhanced the proliferation rate among hUVECs. This indicates that the pres-
ence of HAPNW/CF biomaterial moderately improves cellular activity in hUVECs as
compared to control group conditions. Furthermore, in comparison to the control group,
the HAPNW/CF biomaterial also exhibited enhanced expression of angiogenesis-related
proteins, including endothelial nitric oxide synthase (eNOS), AKT, and vascular endothe-
lial growth factor (VEGF). VEGF is a highly specific angiogenic factor that stimulates
increased vascular permeability, migration, and proliferation of endothelial cells, as well as
angiogenesis itself [57,58]. This can be attributed to the continuous release of Ca2+ by the
HAPNW/CF biomaterial, which promotes angiogenesis and facilitates blood vessel forma-
tion [59]. Angiogenesis remains a significant challenge in large-scale bone transplantation
within bone tissue engineering. Synthetic scaffolds capable of promoting both bone and
blood vessel formation are considered an effective solution [34,60].

In summary, the HAPNW/CF biomaterial scaffold provides a migratory pathway and
reparative space for osteoblasts to address bone defects while demonstrating confirmed
osteogenic potential through in vitro experiments. Moreover, owing to its exceptional
biocompatibility, tissue compatibility, favorable bone conductivity properties as well as
heightened biological activity levels; HAPNW/CF biomaterial emerges as an exceedingly
promising candidate for bone defect repair.

5. Conclusions

In this study, we successfully fabricated ultralong hydroxyapatite nanowire-based
biopaper. Subsequently, we assessed the in vitro cellular response of HAPNW/CF biopaper.
The results demonstrated that HAPNW/CF biopaper promoted adhesion, proliferation,
and osteogenic differentiation of human dental pulp stem cells. Furthermore, it enhanced
cell viability and expression of angiogenesis-related proteins in human umbilical vein
endothelial cells. The HAPNW/CF biopaper, owing to its osteoinductive property, creates
a conducive milieu for bone tissue regeneration and exhibits immense potential for clinical
applications.
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