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Abstract: With the development of high-efficiency gas turbine engines and increasing inlet temper-
atures, the performance of thermal barrier coatings (TBCs) for hot-section components has been
more severely challenged. The doping of multi-element rare earth elements significantly improves
the thermodynamic properties and chemical compatibility of thermal barrier coatings so that the
application performance of coatings in high-temperature environments is enhanced considerably.
In this work, the doped coatings prepared by REYSZ (RE = La, Sm, Nd) were investigated and
characterized in terms of crystal structure, elastic properties, and thermal–mechanical properties
based on the first-principles approach, combined with various empirical and semi-empirical for-
mulations, and a predictive model for resistance to CMAS corrosion based on machine learning
approaches. The results showed that the tetragonal phase REYSZ material was mechanically stable,
had a large strain damage tolerance, and was not easy to fracture under applied loads and thermal
shocks. In terms of CMAS corrosion resistance, the NdYSZ interfacial model had a lower surface
energy (3.130 J/m2) and Griffith fracture energy (6.934 J/m2) compared with the conventional YSZ
model, and Nd2O3 had the potential to improve the CMAS corrosion resistance of zirconia-based
material for thermal barrier coatings. By evaluating the machine learning prediction models, the
regression coefficients of the two algorithms were 0.9627 and 0.9740, and both these two prediction
models showed high prediction accuracy and strong robustness. Ultimately, this work presented a
novel mechanism–data hybrid method, which would facilitate the efficient development of TBC new
materials for anti-CMAS corrosion.

Keywords: thermal barrier coatings; rare earth doping; first principles; machine learning

1. Introduction

The high-performance aero-engine is a collection of high-precision technology, and its
manufacturing capacity is an important indicator of a country’s scientific and technological
industrial level. To improve the efficiency and performance of the engine, the inlet temper-
ature of the turbine engine will exceed 1500 ◦C, which will cause the hot-end components
of the engine to undergo more severe service tests. Therefore, thermal barrier coatings
(TBCs) technology and cooling gas film technology were introduced to protect superalloys.
Thermal barrier coatings are a widely used high-temperature protection technology for
hot-end components of gas turbines. Its principle is to use ceramics with low thermal
conductivity, high-temperature resistance, and corrosion resistance to combine with the
metal matrix in the form of coatings and to effectively reduce the surface temperature of
the hot-end components so that the superalloys could be used safely for a long time in an
environment far higher than its melting points [1–3]. For decades, 6–8 wt.% Yttria Partially
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Stabilized Zirconia (YSZ) has been recognized as a successful thermal barrier coatings
material in the industry, which combines the requirements of low thermal conductivity,
high fracture toughness, and a relatively high thermal expansion coefficient in an excellent
way [4,5]. However, with the further increase in operating temperature, TBC systems
face challenges. In particular, Calcium–Magnesium–Alumino–Silicates (CMAS) particles
inhaled by the engine are considered to be an unavoidable problem that will lead to severe
degradation and spalling of the ceramic layer [6–8]. The specific corrosion mode is as
follows: The molten CMAS attacks the TBCs as a moving front rapidly penetrates into
the pores and cracks of the TBCs and then dissolves the zirconia. At the same time, it
precipitates, expands in volume, and eventually reaches the metal substrate and reacts with
the bonding layer and the substrate. The infiltration process can lead to damage to the
strain tolerance of TBCs, thus making them highly susceptible to mechanical failure during
thermal cycling [9–12].

The problem of coating spalling due to molten silicate corrosion will further deteri-
orate as the operating temperature increases. The complex microstructure and material
composition of the thermal barrier coatings aggravate the complexity and multiplicity
of coating failure forms. Aiming at the current situation that the traditional 6~8 wt.%
yttrium oxide partially stabilized zirconia (6-8YSZ) thermal barrier coatings are susceptible
to CMAS erosion at high temperatures, researchers have explored a lot of CMAS corrosion
protection technology for thermal barrier coatings, but there are still problems such as a
poor long-time protection effect and short service life of the coating. A common solution
today is to prepare a protective coating on the surface of a conventional coating. These
materials have excellent performance in terms of CMAS corrosion resistance; nevertheless,
their poor thermomechanical properties lead to frequent spalling failure of the coatings
during cold–heat cycling, which greatly limits the usefulness of these materials. For ex-
ample, the work of Guo et al. [13] demonstrated that newly developed LnPO4 (Ln = La,
Gd) TBCs could effectively inhibit the penetration of molten CMAS. However, the thermal
compatibility between the coatings and CMAS needs to be further improved. In addition
to depositing a kind of protective layer on the surface of thermal barrier coatings, related
studies have shown that rare earth (RE) element doping is a commonly used means of ma-
terial modification, which could significantly improve the service performance of thermal
barrier coatings [14]. Doping of large-size rare earth elements (La3+, Nd3+, and Gd3+) could
effectively improve the high-temperature sintering resistance of the coating while doping
of small-size rare earth elements could improve the phase stability [15]; Song et al. [16], in
order to improve the thermal corrosion resistance of YSZ coatings against Na2SO4 + V2O5,
doped them with trace amounts of the rare earth elements Yb, Gd, and prepared 5.6Yb2O3.
-5.2Gd2O3-9.5Y2O3-ZrO2 (YGYZ) coating was prepared. The results showed that after
thermal corrosion at 1374.15 K for 20 h, the degradation of m-ZrO2 in the YGYZ coatings
is only about 40% of that of the YSZ coating, and the YGYSZ coating has high tetragonal
properties. To improve the thermal conductivity of the La2Zr2O7 coatings, Gul [17] et al.
doped the rare earth element Ce in this coating, and the doping of Ce element was found
to have a significant effect on the thermal conductivity of La2Zr2O7 coatings.

Therefore, based on YSZ material or zirconia material, designing new material for
thermal barrier coatings through rare earth doping modification to meet the functions of
CMAS corrosion resistance and thermal insulation is currently a more practical approach.
The mechanism utilizes a chemical reaction between a highly chemically active thermal
barrier coating material and the CMAS melt. Formation of high melting point corrosion
products, so as to achieve the sealing of open pores on the surface of the coating, achieves
the purpose of slowing down the penetration of molten CMAS. Due to the lack of necessary
theoretical guidance, the development of new CMAS corrosion-resistant thermal barrier
coating materials is mainly through the Edison experimental method; i.e., a material is
selected and experimentally proven until successful. Experimental methods provide a
more intuitive assessment of material performance, but, at the same time, greatly increase
the time and cost wasted in conventional trial-and-error processes. With so many known
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crystal structures in mineralogy and crystal chemistry, each of which can be composed of
several different elements, there is a needle in a haystack when it comes to experimentally
sifting through tens of thousands of materials to find a suitable CMAS corrosion-resistant
thermal barrier coating material.

In summary, this paper takes zirconia material as a prototype and utilizes first-principle
calculations to investigate the effects of different rare earth element doping on the ther-
modynamic properties and CMAS corrosion resistance of the material by modeling the
doping and then comparing it with conventional thermal barrier coating materials in terms
of CMAS corrosion resistance, the coefficient of thermal expansion, thermal conductiv-
ity, fracture toughness, and hardness in a comprehensive manner. Finally, a prediction
model for CMAS corrosion resistance is established through simulation data combined
with machine learning methods to further verify the accuracy and robustness of the sec-
ondary validation model driven by both mechanisms and data. The results show that the
high-throughput screening method for novel thermal barrier coating materials developed
based on first-principle computational methods can effectively predict the corrosion re-
sistance and thermophysical properties of materials against CMAS, which is of guiding
significance for the development and design of novel thermal barrier coating materials.
This paper addresses the lack of theoretical guidance for the development of materials for
CMAS corrosion-resistant thermal barrier coatings, attempting to go deeper into the atomic
perspective from first-principles calculations and developing a simple and efficient high-
throughput screening method for thermal barrier coating materials. Effective prediction of
CMAS corrosion resistance and other thermal and mechanical properties of thermal barrier
coating materials to guide experiments is provided.

2. Materials and Methods
2.1. First Principles

Using first-principles calculations based on density functional theory (DFT), four stable
supercell models with tetragonal phase structure were developed and analyzed based on
tetragonal phase zirconia cell parameters reported in the literature [18,19], namely, YSZ
(Y4Zr12O30), LaYSZ (La2Y2Zr12O30), SmYSZ (Sm2Y2Zr12O30), and NdYSZ (Nd2Y2Zr12O30),
collectively referred to as (REYSZ), and are shown in Figure 1a–d. In order to establish
a correct doping model, it was first necessary to clarify the relationship between the
substitution positions of rare earth elements and oxygen vacancies. When four ortho-
trivalent rare earth atoms (RE3+) replaced ortho-tetravalent zirconium atoms (Zr4+), the
system assumed electronegativity. Therefore, two oxygen atoms in the cell must be removed
in order to form oxygen vacancies. As shown in Figure 1e, a tetragonal phase zirconia cell
could be seen with eight oxygen atoms surrounding the central zirconium atom and the
first and second nearest neighbor sites, respectively. When the central zirconium atom was
replaced by a rare earth element, the oxygen vacancies were more inclined to occupy the
second nearest-neighbor site of the larger dopant and the first nearest-neighbor site of the
smaller dopant, and this crossover occurred approximately at the Sc element. Through
these steps, the rare earth element doped zirconia cell model was successfully constructed.

All calculations in this work were performed using ab initio quantum mechanical and
quantum chemical procedures based on density functional theory. The crystal structure and
elastic properties of the doped model were investigated using the theory of plane-wave
pseudopotential total energy calculations. To obtain a local steady state, the model was
fully relaxed before the performance and energy calculations, and the convergence criterion
was set uniformly as the Perdew–Burke–Ernzerhof (PBE) potential function based on the
generalized gradient approximation (GGA) that was used to deal with the correlation
energy of the electron exchange in the inverse easy space, with the truncation energy
chosen to be 489.8 eV, and the root mean square forces and stresses were set to be 0.03 eV/Å
and 0.01 GPa, the displacement was chosen to be 0.002 Å, and the convergence criterion
for both the self-consistent field and the energy tolerance was set to 5.0 × 10−4 eV/atom,
using the BFGS algorithm with the OTFG paradigm-conserving pseudopotential. The



Coatings 2024, 14, 1513 4 of 21

elastic constants were determined by first-principles calculations, and the internal degrees
of freedom were optimized by applying a prescribed set of finite-valued homogeneous
deformations and calculating the resulting stresses, and then the elastic stiffness constants
and associated equations were used to obtain the thermomechanical properties such as
elastic modulus, Poisson’s ratio, Vickers’ hardness, and the mean speed of sound. When
constructing the interface model, the vacuum layer thickness was taken as 15 Å. To balance
the computational accuracy and computational volume, the number of k-point lattices
in the Brillouin zone was set to 4 × 4 × 3 for the system of smaller basic cells, while the
number of k-point lattices was taken as 2 × 2 × 1 for the system of larger atomic number.
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2.2. Corrosion Resistance to CMAS

The material system was a key factor in determining the CMAS corrosion resistance of
thermal barrier coatings. Therefore, the search for new material for thermal barrier coatings
that could inhibit and mitigate CMAS corrosion has been a hot research topic in recent
years. The wetting characteristics of materials played a crucial role in improving the CMAS
corrosion resistance of thermal barrier coatings. Excellent wetting resistance was beneficial
to the separation of liquid CMAS during the high-speed operation of turbine blades. In
this work, the wetting properties of the materials were predicted using first-principle
calculations, and the wetting resistance was evaluated by two parameters, namely, Griffith
fracture energy and surface energy. Through the surface energy calculation, the stable
surface structure with the lowest energy was selected to be constructed with the amorphous
CMAS cell to obtain the interface model, as shown in Figure 2.

Due to the limitation of the cellular model, a simplified model of the CMAS amor-
phous model was obtained as Ca8Mg1Al4Si10 based on the composition and content of
the homemade CMAS powder in the laboratory. At the engine operating temperature,
CMAS melted and solidified into a glassy phase at temperatures below the melting point.
In order to investigate its properties, the construction of the CMAS amorphous model
was first carried out using the amorphous cell module of the software. Oxide mixing was
performed using the four oxide base elements, which were then fused into the lattice to
obtain an amorphous CMAS model. The obtained amorphous model was geometrically
optimized and subjected to molecular dynamics simulations. The CMAS amorphous model
was first optimized at a 1550 ◦C environment to ensure its local stability in the melting
state. Subsequently, the relaxation was performed again at the experimental temperature
of 1300 ◦C to obtain the final CMAS amorphous model. Before constructing the interfacial
model, the surface models of individual rare earth-doped zirconia supercells needed to be
obtained. By cutting the supercell model along the {1 1 1} Miller exponential crystal plane,
surface models with different atomic arrangements could be obtained. For a given model,
the surface energy was calculated using the following equation [20]:

Esur f ace =
1

2A
(Eslab − NEbulk) (1)
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where Esurface was the model surface energy, Eslab denoted the total energy of the protocells,
A represented the model cross-sectional area, and N was the number of protocells; in this
simulation, A and N were taken as 50.9028675 Å2 and 2, respectively.
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The Griffith fracture energy represented the work required to separate an interfacial
model into two separate free surface models along a perpendicular interfacial direction
and could be used to assess the bond strength of the interface. By definition, the Griffith
fracture energy was calculated as follows [21]:

W =
Etotal − ECMAS − EREYSZ

A
(2)

where Etotal was the total interface model energy, ECMAS was the CMAS amorphous model
energy, EREYSZ was the rare earth-doped zirconia REYSZ model energy, and A was the
cross-sectional area. Combined with the relationship between interfacial bond strength and
wetting angle [22],

WsL = γL(1 + cos θ) (3)

where WsL denoted the interfacial bond strength, γL was the liquid surface tension, and θ
was the wetting angle. According to Equations (2) and (3), it was not difficult to derive the
relationship between Griffith fracture energy, interfacial bond strength, and wetting angle:
The larger the Griffith fracture energy was, the larger the interfacial bond strength was, the
smaller the wetting angle was, and the worse the CMAS wetting resistance was.

2.3. Data-Driven Predictive Modeling
2.3.1. BP Neural Networks

BP neural network is a classic machine learning algorithm; the principle is to train
the network through the backpropagation algorithm according to the difference between
the actual output and the desired output to optimize the network’s weights and bias,
with the advantages of having simple structure, being easy to use, and being widely
applicable [23,24]. The basic flow of the BP neural network was shown in Figure 3, and
the algorithm covered the two main processes of forward propagation of the signal and
backpropagation of the error. The former generally used the sigmoid transform function
to construct a nonlinear mapping network between the input and output signals and
transferred to the error backpropagation process by calculating the generalized error
between the actual output and the desired output. This process apportioned the error to
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all units in each layer and used the gradient descent method and other methods to find
the optimal combination of node connection weights and thresholds in each layer so as
to minimize the overall network mean square error. In general, researchers controlled the
network generation by specifying the error precision or the maximum number of learning
times, with an intention to accelerating the network convergence and avoiding the dilemma
of local optimum.
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2.3.2. Extreme Learning Machines

Extreme learning machine (ELM) was a new type of single hidden layer forward
network with excellent performance proposed by Huang Guangbin [25] in 2006 based
on generalized inverse matrix theory. Compared with traditional neural networks, the
output weights of the network could be resolved by only one step of calculation, which
greatly improved the generalization ability and learning speed of the network, have strong
nonlinear fitting ability, and greatly reduced the amount of computation and search space.
The structure of ELM was shown in Figure 4, which consisted of three parts: the input
layer, the hidden layer, and the output layer. The input and hidden layers were connected
by input weights W and hidden layer bias b. The hidden layer and output layer were
connected by output weights β. For an ELM with the number of hidden layers L, assuming
the training set Xj = [x1,x2,. . .,xN]T∈Rn and Tj = [t1,t2,. . .,tn]T∈Rm, the computation process
of the ELM could be expressed as follows [26]:

fL(X) =
L

∑
i=1

βigi(X) =
L

∑
i=1

βig(Wi · Xj + bi), j = 1, . . . , N (4)

where N was the number of samples in the training set; g was the activation function; Wi
was the input weight, Wi = [ω1,ω2,. . .,ωn]; βi was the output weight; bi was the bias of the
ith neuron in the hidden layer.
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Figure 4. Typical structure of ELM.

2.3.3. Cross-Validation

Cross-validation was an important statistical technique for evaluating the performance
of machine learning models and selecting the best parameters, and K-fold cross-validation
was one of the most widely used methods [27]. The dataset was randomly divided into K
subsets, where K-1 subsets were used to train the model, while the remaining one was used
to evaluate the model performance. This process would be repeated K times, each time
using a different subset as the validation set, and finally, the results of the K evaluations
would be averaged to obtain the final performance metric.

As shown in Figure 5, the training set was partitioned into 5 subsets, each of which
would be rotated as part of the validation set, while the remaining 4 subsets form the
training set. Then, in each cross-validation iteration, a machine learning algorithm was used
for model training using the 4 subsets as the training set. The performance of the model on
this validation set was then evaluated using one of the remaining subsets as the validation
set. By trying different parameter combinations and evaluating the model performance
with cross-validation results, the most suitable parameter combinations for the dataset
could be found to improve the predictive and generalization capabilities of the model.
In this way, the performance of the model could be assessed more comprehensively, and
the optimal parameter configuration could be selected efficiently. Cross-validation was a
powerful tool to effectively improve the accuracy and stability of machine learning models.
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Performance evaluation plays a crucial role in machine learning model training. Each
cross-validation iteration was a test of the model’s true capability, recording the model’s
performance on the validation set, such as accuracy, precision, and other metrics. The
average of these metrics was the basis for the final assessment of the model’s performance,
which could provide an objective evaluation result. The cross-validation method could
not only reflect the generalization ability of the model more objectively but also effectively
avoid overfitting or underfitting problems and improve the stability of the model. In this
work, the 5-fold cross-validation method was adopted, and the results of each round of
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iteration were recorded and analyzed in detail to verify the reliability and accuracy of the
established prediction model.

3. Results
3.1. Lattice Structure and Stability Analysis

Studies in structural properties played an important role in the microscopic under-
standing of the physical properties of doping models. As shown in Figure 1, a 2 × 2 × 2
supercell model with 46 atoms was used for the calculations, and the tetragonal phase
zirconia base cell structure had two lattice constants, a and c. To ensure the reliability of the
calculations, the structural information obtained from full geometrical optimization of the
crystal structure was summarized in Table 1.

Table 1. Lattice constant (Å), volume (Å3), density (g/cm3), formation energy (eV/atom), and ground
state energy Ebulk/eV after doping model optimization.

Crystal a SNN V ρ Ef Ebulk

YSZ 7.380 10.716 591.458 5.419 −8.587 33,078.98941
LaYSZ 7.493 10.624 581.830 5.794 −13.122 −32,890.35333
NdYSZ 7.315 0.55 569.991 5.946 −7.086 −34,333.20421
SmYSZ 7.309 0.52 567.824 6.004 −5.728 −35,754.78252

As shown in Table 1, the equilibrium lattice constants obtained after optimization
of several doping models were close to each other, and the difference between the lattice
constants before and after optimization was less than 5%, which proved the stability of the
model structure. With the increase in the atomic number of lanthanide rare earth elements,
the lattice constant decreased, the cell volume shrank, the density of the material increased,
and the base energy showed a trend of gradual increase. The enthalpy of formation was
the energy released (absorbed) by the system during the formation of compounds from
monomers. The enthalpy of formation was usually negative, and the larger the negative
value of the enthalpy of formation, the more stable the structure of the compound was. To
determine the thermodynamic stability of the REYSZ doping model, this work calculated
the enthalpy of the formation of the material by the following equation [28]:

∆H = [Etotal − xEbulk(RE)− yEbulk(Zr)− zEbulk(O)]/(x + y + z) (5)

where Etotal was the total energy of the REYSZ doping system, and Ebulk was the single atom
energy of each element in the equilibrium crystal structure system. As shown in Table 1,
the enthalpies of the formation of REYSZ were all negative, indicating that the formation of
the compound system was an exothermic process; i.e., the material was thermodynamically
stable in the ground state.

The density of states (DOS) indicated the number of electrons allowed per unit energy
range, i.e., the distribution of electrons in a certain energy range, reflecting the distribution
of electrons in individual orbitals and interatomic bonding properties. To further under-
stand the inter-orbital interactions between the model atoms under the effect of rare earth
elements, the total DOS and partial density of states (PDOS) of the four doping systems
were obtained using data processing. The calculation results were shown in Figure 6, where
the dashed part represents the Fermi energy level, and the density of states curves of the
REYSZ phases were not significantly different, indicating that no obvious change in the
energy level structure was found, and none of the electronic density of states were zero
near the Fermi energy level, indicating that all REYSZ phases exhibit metallic properties.
As shown in Figure 6, the total density of states for the entire valence band energy was
mainly provided by the p and d orbitals, at −5 to 0 eV by the p orbitals and at 0 to 10 eV by
the d orbitals. In general, when studying crystalline materials, the relative stability of the
material could be obtained by comparing the electronic density of states N(EF) at the Fermi
energy level, and the smaller the value of N(EF), the more stable the structure was, and the
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ordering of N(EF) was LaYSZ < YSZ < NdYSZ < SmYSZ, which was in agreement with the
enthalpy of formation results. As shown in Figure 6, the N(EF) values of the two phases
YSZ and LaYSZ were closer to each other, with the p-orbitals providing the energy near the
Fermi energy level, and the doped rare earth elements Y and La contributing less to the
Fermi energy level. The N(EF) values of the two phases NdYSZ and SmYSZ were closer
to each other than the former two, and the stability of the structure decreased with the
difference in the f orbitals, which were not present in the former two, providing the Fermi
energy level. Near the Fermi energy level was a larger contribution to the total density of
states by the rare earth elements Nd and Sm.
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Figure 6. Total density of states (TDOS) and partitioned density of states (PDOS) maps for REYSZ.
(a) LaYSZ state density map; (b) YSZ state density map; (c) SmYSZ state density map; (d) NdYSZ
state density map.
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3.2. Thermo-Mechanical Property Analysis
3.2.1. Elastic Constants and Mechanical Stability Analysis

As shown in Table 2, it could be seen that the doping model fully satisfied the mechan-
ical stability criterion, which proved that the tetragonal phase zirconia material had good
mechanical stability. It was found by analyzing the elastic constants of the material:

Table 2. Independent elastic constants of the doping model Cij (GPa).

Crystal C11 C33 C44 C66 C12 C13

ZrO2 383.29 351.34 52.33 168.89 233.04 75.91
YSZ 377.20 457.34 67.75 6.88 229.42 158.01

LaYSZ 406.08 453.43 73.63 19.40 243.33 196.71
NdYSZ 372.80 416.43 71.23 120.29 231.73 159.92
SmYSZ 361.71 386.20 69.23 81.63 224.70 169.71

In REYSZ compounds, C11 < C33. C11 and C33 were parameters in the elastic constants
reflecting the ability of the crystals to resist uniaxial linear compression, and C11 < C33
indicated that the bulk modulus B of the material exhibited anisotropy. In the tetragonal
phase crystal cell C22 = C11, C33 was greater than the other elastic constants, indicating
that REYSZ had the strongest unidirectional resistance to compression along the c-axis
and was more easily compressed along the a-axis or b-axis. In general, C44 reflected the
hardness of the material, and a higher C44 usually corresponded to higher hardness, which
gradually decreased with an increasing atomic number of lanthanide rare earth elements
in the REYSZ materials. In addition, C12, C44, and C66 were all moduli that described
the ability of a material to resist shear deformation, and C44 and C66 were much smaller
than C11 and C33, suggesting that the material was more susceptible to shear deformation
compared to unidirectional compression.

3.2.2. Analysis of Intrinsic Mechanical Parameters

The intrinsic mechanical parameters of REYSZ—bulk modulus B, shear modulus G,
Young’s modulus E, Poisson’s ratio v, Pugh’s ratio, and Cauchy’s pressure—were predicted
using Vogit–Reuss–Hill (VRH) approximation, and the results were shown in Table 3.

Table 3. Bulk elastic modulus (GPa), shear modulus (GPa), Young’s modulus (GPa), Poisson’s ratio,
and Pugh’s and Cauchy’s pressures for doped models (GPa).

Crystal B G E v G/B C12–C66 C13–C44

ZrO2 205.83 91.10 238.17 0.31 0.44 64.15 23.58
YSZ 255.79 49.52 139.56 0.41 0.19 222.54 90.26

LaYSZ 282.12 62.93 175.73 0.40 0.22 223.93 123.08
NdYSZ 251.58 89.65 240.40 0.34 0.36 111.44 88.69
SmYSZ 248.50 78.91 214.06 0.36 0.32 143.07 100.48

The bulk modulus B was a parameter characterizing the relative shrinkage perfor-
mance of the cell volume of a material under isotropic pressure, and the small difference in
the bulk modulus of the REYSZ materials indicated that the materials were close to each
other in their ability to resist volumetric deformation. Among them, LaYSZ had the largest
bulk modulus, indicating that it was the most difficult to compress.

The shear modulus G represented the ability of a solid to resist tangential reversible
deformation under shear stress, and a larger shear modulus usually corresponded to a
larger C44. As could be seen in Table 3, the shear moduli of REYSZ were in the order of
NdYSZ > SmYSZ > LaYSZ > YSZ. Furthermore, the shear moduli of REYSZ were much
smaller than the bulk modulus and Young’s modulus, which also confirmed the above
statement that REYSZ was more susceptible to shear stress.
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From the above relationships, it could be seen that both the coefficient of thermal
expansion α and the thermal seismic performance R of the material show a roughly inverse
relationship with the Young’s modulus E. Therefore, a material with a lower Young’s
modulus had a higher coefficient of thermal expansion and better thermal shock resistance.
The Young’s modulus of REYSZ was ranked NdYSZ > SmYSZ > LaYSZ > YSZ, which was
exactly the same as that of the shear modulus.

As shown in Table 3, it could be seen that the Push ratio G/B < 0.57, Poisson’s ratio
v > 0.26, and Cauchy’s pressure was positive for the REYSZ material, which could be
preliminarily determined as a ductile material.

3.2.3. Hardness, Fracture Toughness, and Damage Tolerance Analysis

As shown in Figure 7, the hardness of the REYSZ material was 10.069~13.398 GPa, and
the highest hardness was 13.398 GPa for the traditional YSZ material, which was similar to
the hardness of the rare earth element-doped material and thus meets the demand for the
high hardness of the thermal barrier coating material. The mechanical properties of the
material were shown in Table 4.
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Figure 7. (a) Lame constant of REYSZ material and (b) hardness of REYSZ material.

Table 4. Lame constant (GPa), hardness (GPa), fracture toughness (MPa·m1/2), critical energy release
rate (J·m−2), and brittleness index (µm−1/2) of doped materials.

Crystal λ µ HMazhnik KIC GIC M

ZrO2 148.317 90.905 12.666 2.054 16.012 6.167
YSZ 225.45 49.489 13.398 1.722 17.674 7.780

LaYSZ 251.043 62.761 10.069 2.039 20.458 4.938
NdYSZ 190.616 89.701 13.318 2.283 19.289 5.834
SmYSZ 202.368 78.699 12.073 2.128 18.463 5.673

The fracture toughness value and critical energy release rate of the REYSZ materials were
shown in Figure 8: The fracture toughness of the REYSZ materials was 1.722~2.283 MPa-m1/2.
NdYSZ had the highest fracture toughness, and compared with the traditional YSZ materi-
als doped with lanthanide rare earth elements, fracture toughness was improved, and with
the increase in the atomic number of lanthanide rare earth, the material’s critical release en-
ergy gradually decreased, which meant that the crack expansion of the material needed to
absorb a larger amount of energy, which further proved that the REYSZ material had good
fracture toughness. As shown in Figure 8, the brittleness indices of REYSZ materials were
lower than that of conventional YSZ (7.780 µm−1/2), which indicated that REYSZ materials
had the ability to work for a long period of time in high-temperature environments. In
summary, the hardness of REYSZ materials was 10.069–13.398 GPa, the fracture toughness
was 1.722–2.283 MPa-m1/2, the critical energy release rate was 17.674–20.458 J/m2, and the
brittleness index was 4.938–7.78 µm−1/2. Among them, the best overall mechanical proper-
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ties were those of NdYSZ (hardness 13.318 GPa and fracture toughness of 2.283 MPa-m1/2),
with good mechanical properties comparable to those of YSZ materials.
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Figure 8. (a) Fracture toughness versus energy release correlation plot for REYSZ material and
(b) brittleness index of REYSZ.

3.2.4. Melting Point and Débay Temperature Analysis

As shown in Table 5. For high-temperature structural materials, the melting point
was closely related to the practicality and reliability of the material and was an important
indicator of the material’s high-temperature thermodynamic properties. In addition, the
melting point of a material was the cornerstone of the study of its thermal expansion and
bonding properties.

Table 5. Melting point (K) and Debye temperature (K) of REYSZ materials.

Crystal TM1 TM2 ΘD

ZrO2 2818 2521 516.35
YSZ 2782 2986 538.94

LaYSZ 2953 3231 528.28
NdYSZ 2756 2947 566.18
SmYSZ 2691 2918 532.59

The melting points of the REYSZ materials were shown in Figure 9. The melting points
of the REYSZ materials were 2521~3231 K, indicating that the materials could withstand
working at higher temperatures and satisfied the requirement of high melting points of
thermal barrier-coated ceramics, among which LaYSZ had the highest melting point. It was
well-known that the Debye temperature of a material was closely related to the chemical
bonding characteristics within the crystal; the stronger the chemical bonding, the higher the
Debye temperature. According to the Debye theory, the characteristic Debye temperature
originates from the thermal vibration of solid atoms and corresponds to the highest natural
mode of oscillation of the crystal. As shown in Figure 9, it could be seen that the highest
Debye temperature of NdYSZ was 566 K, indicating that the interatomic bonding of NdYSZ
was the strongest among REYSZ.



Coatings 2024, 14, 1513 13 of 21

Coatings 2024, 14, x FOR PEER REVIEW 13 of 21 
 

 

Table 5. Melting point (K) and Debye temperature (K) of REYSZ materials. 

Crystal TM1 TM2 ΘD 
ZrO2 2818 2521 516.35 
YSZ 2782 2986 538.94 

LaYSZ 2953 3231 528.28 
NdYSZ 2756 2947 566.18 
SmYSZ 2691 2918 532.59 

The melting points of the REYSZ materials were shown in Figure 9. The melting 
points of the REYSZ materials were 2521~3231 K, indicating that the materials could with-
stand working at higher temperatures and satisfied the requirement of high melting 
points of thermal barrier-coated ceramics, among which LaYSZ had the highest melting 
point. It was well-known that the Debye temperature of a material was closely related to 
the chemical bonding characteristics within the crystal; the stronger the chemical bonding, 
the higher the Debye temperature. According to the Debye theory, the characteristic De-
bye temperature originates from the thermal vibration of solid atoms and corresponds to 
the highest natural mode of oscillation of the crystal. As shown in Figure 9, it could be 
seen that the highest Debye temperature of NdYSZ was 566 K, indicating that the intera-
tomic bonding of NdYSZ was the strongest among REYSZ. 

 
Figure 9. (a) Melting point of REYSZ material and (b) Debye temperature of REYSZ material. 

3.2.5. Analysis of Phonon Rate and Minimum Thermal Conductivity 
As shown in Table 6, the kmin values obtained by both the Cahill and Clarke models 

were relatively close to each other, indicating that it was feasible to predict the minimum 
thermal conductivity of REYSZ using the above model. The calculation results of the 
Clarke model were slightly lower than those of the Cahill model, which was because the 
Cahill model introduces the narrow range of freedom of phonons in the amorphous state 
to measure the thermal conductivity of the material. As shown in Figure 10, the lowest 
thermal conductivity of the REYSZ material was 2.355~2.715 W/m·K, and the thermal con-
ductivity of the NdYSZ material was very close to that of YSZ. The reason for this was, 
firstly, the structure of REYSZ was more complex, and there were many tilted Zr-O and 
RE-O polyhedral structures in the crystal structure of REYSZ in the tetragonal phase, and 
these highly complex structures reduced the symmetry within the system. As the ionic 
radius of the lanthanide rare earth elements decreases, the tilt of the RE-O polyhedron 
further increases, and the degree of distortion within the crystal lattice increases. Finally, 
the large differences in ionic radii, atomic masses, and charges led to the diversification of 
chemical bonding species and bond lengths in REYSZ and the intensification of phonon 
scattering, which ultimately produced low intrinsic thermal conductivity, and the low 
thermal conductivity values of REYSZ were favorable for its move towards practical ap-
plications. 

ZrO2 YSZ LaYSZ NdYSZ SmYSZ
2000

2200

2400

2600

2800

3000

3200

3400

M
el

tin
g 

Po
in

t (
K

)

 Tm1

2818 2782

2953

2756
2691

(a)

 Tm2

ZrO2

YSZ

LaYSZ

NdYSZ

SmYSZ

400 450 500 550 600

Debye Temperature(K)

 ΘD(b)

532.59

566.18

528.28

538.94

516.35
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3.2.5. Analysis of Phonon Rate and Minimum Thermal Conductivity

As shown in Table 6, the kmin values obtained by both the Cahill and Clarke models
were relatively close to each other, indicating that it was feasible to predict the minimum
thermal conductivity of REYSZ using the above model. The calculation results of the
Clarke model were slightly lower than those of the Cahill model, which was because
the Cahill model introduces the narrow range of freedom of phonons in the amorphous
state to measure the thermal conductivity of the material. As shown in Figure 10, the
lowest thermal conductivity of the REYSZ material was 2.355~2.715 W/m·K, and the
thermal conductivity of the NdYSZ material was very close to that of YSZ. The reason for
this was, firstly, the structure of REYSZ was more complex, and there were many tilted
Zr-O and RE-O polyhedral structures in the crystal structure of REYSZ in the tetragonal
phase, and these highly complex structures reduced the symmetry within the system.
As the ionic radius of the lanthanide rare earth elements decreases, the tilt of the RE-
O polyhedron further increases, and the degree of distortion within the crystal lattice
increases. Finally, the large differences in ionic radii, atomic masses, and charges led
to the diversification of chemical bonding species and bond lengths in REYSZ and the
intensification of phonon scattering, which ultimately produced low intrinsic thermal
conductivity, and the low thermal conductivity values of REYSZ were favorable for its
move towards practical applications.
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Figure 10. (a) Phonon rate of REYSZ material and (b) minimum thermal conductivity of REYSZ
material.
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Table 6. Phonon rate (m/s) and minimum thermal conductivity (W/m·K) of REYSZ ceramic materials.

Crystal V t V1 VM Kmin-Cahill Kmin-Clarke

ZrO2 4069.35 7714.17 4547.56 2.715 2.564
YSZ 3023.39 7706.27 3426.17 2.355 2.214

LaYSZ 3296.97 7948.17 3730.67 2.491 2.356
NdYSZ 3883.29 7900.25 4359.84 2.363 2.225
SmYSZ 3625.28 7675.48 4085.39 2.537 2.395

3.2.6. Analysis of the Coefficient of Thermal Expansion

Under a high-temperature service environment, due to the mismatch of the coefficient
of thermal expansion between the ceramic coating and the metal bonding layer, a large
thermal mismatch stress would be generated at the interface, which contributed to the
sprouting and expansion of cracks during thermal cycling, leading to the cracking and
detachment of the ceramic coating in the direction parallel or perpendicular to the metal
substrate, which seriously affected its service life. As shown in Figure 11, the thermal
expansion coefficients of REYSZ materials were 6.773~7.432 × 10−6 K−1, in which both
NdYSZ and SmYSZ have a better performance compared with the traditional YSZ, which
was expected to be a new type of post-selected material for thermal barrier coatings.
Although the doping of rare earth elements could improve the thermal expansion coefficient
of thermal barrier coatings, it might also deteriorate other properties, so the effects of the
valence, ionic radius, and content of the elements on the lattice of YSZ needed to be
considered comprehensively. Calculations with the help of first nature principle modeling
were an effective means of obtaining a suitable doping system, which was also one of the
hot spots in the current research on the modification of YSZ material.
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Figure 11. Coefficient of thermal expansion of REYSZ material.

3.3. Analysis of Corrosion Resistance to CMAS

The data used in the model surface energy calculation process and the results of the
calculations were shown in Table 7. Through the surface energy calculation, the stable
surface structures with the lowest energy (YSZ-II, LaYSZ-I, SmYSZ- II, and NdYSZ-IV)
were selected as the base model for constructing the interfacial model, and the interfacial
model was obtained by constructing it together with the amorphous CMAS cells, as shown
in Figure 2.
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Table 7. Surface energy of surface models.

Crystal Eslab/eV Ebulk/eV Esurface/(J/m2)

YSZ (1 1 1)

YSZ-I −66,119.37796 −33,078.98941 3.49696
YSZ-II −66,121.17506 −33,078.98941 3.33415
YSZ-III −66,112.40976 −33,078.98941 4.12823
YSZ-IV −66,119.37934 −33,078.98941 3.49683

LaYSZ (1 1 1)

LaYSZ-I −65,718.37322 −32,890.35333 5.64697
LaYSZ-II −65,711.08193 −32,890.35333 6.30751
LaYSZ-III −65,715.16314 −32,890.35333 5.93778
LaYSZ-IV −65,711.08245 −32,890.35333 6.30746

SmYSZ (1 1 1)

SmYSZ-I −71,461.37647 −35,754.78252 4.36554
SmYSZ-II −71,464.32894 −35,754.78252 4.09807
SmYSZ-III −71,459.40144 −35,754.78252 4.54447
SmYSZ-IV −71,457.82904 −35,754.78252 4.68691

NdYSZ (1 1 1)

NdYSZ-I −68,792.47303 −34,415.54697 3.49878
NdYSZ-II −68,796.27802 −34,415.54697 3.15408
NdYSZ-III −68,792.46137 −34,415.54697 3.49984
NdYSZ-IV −68,796.54301 −34,415.54697 3.13007

The Griffith fracture energy of the three models could be calculated from the fracture
energy Formula (2), and the simulation data involved were shown in Table 8. From the
calculation results, it could be seen that the Griffith fracture energy of the CMAS/NdYSZ
system (6.934 J/m2) was much smaller than that of the CMAS/YSZ system (8.218 J/m2).
The surface energy of the material was also an important factor affecting its anti-wetting
property, and a lower surface energy was undoubtedly beneficial in increasing the wetting
angle between the molten CMAS and the coating surface, which affected the melt pene-
tration behavior. Comparing the surface energies of the four modeled surface structures,
it could be seen (shown in Table 7) that the NdYSZ model had the lowest surface energy
(3.130 J/m2) compared to the YSZ model (3.334 J/m2), the LaYSZ model (5.646 J/m2), and
the SmYSZ model (4.098 J/m2).

Table 8. Interface model Griffith fracture energy.

Crystal Etotal/eV ECMAS/eV EREYSZ/eV A/Å2 W/(J/m2)

CMAS/YSZ −93,468.1887 −27,293.5967 −66,121.1751 65.4679 8.218
CMAS/LaYSZ −93,072.9243 −27,293.5967 −65,718.3732 64.3453 9.473
CMAS/SmYSZ −98,814.6259 −27,293.5967 −71,464.3289 65.6354 8.638
CMAS/NdYSZ −96,134.7574 −27,293.5967 −68,796.5430 64.3458 6.934

3.4. Machine Learning Regression Prediction

Prediction of CMAS corrosion resistance of thermal barrier coatings by machine
learning was implemented using BP neural network and ELM regression prediction models.
A three-step process was carried out using dataset construction, model design and training,
performance testing, and result evaluation. Firstly, based on the index analysis of the
collected data in the first nature principle model building, the data set was constructed
with the doping type and proportion as the inputs and the surface energy and fracture
energy as the outputs, and the data were divided into a training set and test set for backup;
then, the model was trained using the data from the training set, and the parameters were
optimally adjusted according to the training results in order to achieve the best fitting effect,
and finally, the prediction model was tested using the data from the test set. Finally, in
order to objectively assess and validate the performance of the model, a five-fold cross-
validation method was used. Cross-validation was a commonly used method to assess the
performance of a model, which could reduce the dependence on the division of a single
training and test set and improve the stability and reliability of the model. In this work,
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five-fold cross-validation was used to assess the consistency and generalization ability of
the model. Model feature importance analysis was used to explore the interrelationships
between data within the model. Among the collected data, 100 sets of datasets were
randomly divided into a 70% training set and 30% test set for model training and testing,
respectively, and the applicability analysis of the established model was carried out to
assess the actual prediction effect according to the prediction model in the prediction of
corrosion performance against CMAS. As shown in Figure 12, this was a scatter plot of the
fitting results of the BP neural network.
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Figure 12. Scatterplot of fitting results for BP neural network output 1 (a) and output 2 (b).

As shown in Figure 13, it was a scatter plot of the fitting results of the extreme learning
machine. To quantify the accuracy of the prediction models of the two samples, the mean
square error, root mean square error, mean absolute error, and correlation coefficient were
further used as the evaluation indexes to comprehensively and quantitatively evaluate the
goodness-of-fit of the prediction models for the prediction of the training set of data and
the generalization performance for the prediction of the extended set of data. The mean
square error was the mean of the sum of the squares of the errors of the predicted values
and the true value y. The mean absolute error was the absolute value of the difference with
y. The correlation coefficient reflects the linear correlation with y.
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Figure 13. Scatterplot of fitting results for output 1 (a) and output 2 (b) of ELM.

After five-fold cross-validation, the accuracy and robustness of the prediction models
need to be evaluated. To further validate the prediction accuracy of the two models, the
performance of the different models was evaluated using error metrics and regression
coefficients. By comparing the two error evaluation indexes, mean absolute error (MAE),
and mean square error (MSE) and combining the regression coefficients of each model,
the model prediction accuracy was further judged. As shown in Table 9, the MAE, MSE,
and regression coefficients of output 1 of the BP neural network-based model were 0.1074,
0.0581, and 0.9579, respectively, and those of output 2 were 0.0846, 0.0659, and 0.9627,
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respectively. The MAE, MSE, and regression coefficients of output 1 of the ELM model
were 0.1278, 0.0946, and 0.9757, and the MAE, MSE, and regression coefficients for output 2
were 0.0932, 0.0935 and 0.9740, respectively.

Table 9. Evaluation of the accuracy of the prediction results of the anti-CMAS performance predic-
tion model.

K-Fold Arithmetic Output MAE MSE R2

K1
BP

surface energy 0.1147 0.082 0.9827
rupture energy 0.0908 0.0706 0.9837

ELM
surface energy 0.1425 0.0474 0.9647
rupture energy 0.1079 0.0543 0.9506

K2
BP

surface energy 0.1873 0.0267 0.9232
rupture energy 0.1352 0.1298 0.9413

ELM
surface energy 0.1253 0.1737 0.9636
rupture energy 0.2372 0.2566 0.9714

K3
BP

surface energy 0.1152 0.1095 0.9528
rupture energy 0.0751 0.0687 0.9508

ELM
surface energy 0.1452 0.1745 0.9826
rupture energy 0.0751 0.0887 0.9803

K4
BP

surface energy 0.0429 0.0486 0.9671
rupture energy 0.0146 0.0422 0.9644

ELM
surface energy 0.1479 0.0438 0.9978
rupture energy 0.0176 0.0572 0.9942

K5
BP

surface energy 0.0751 0.0237 0.9637
rupture energy 0.0184 0.0182 0.9732

ELM
surface energy 0.0781 0.0338 0.9734
rupture energy 0.0284 0.0157 0.9737

average value
BP

surface energy 0.1074 0.0581 0.9579
rupture energy 0.0846 0.0659 0.9627

ELM
surface energy 0.1278 0.0946 0.9757
rupture energy 0.0932 0.0935 0.9740

In summary, a more comprehensive, accurate, and reliable prediction model was
obtained by counting and analyzing the number of iterations and prediction results for
each fold. In the five-fold cross-validation, the ELM showed high accuracy and robustness,
thus providing strong support for practical applications. Meanwhile, the analysis of the
evaluation metrics also demonstrated the superiority of the machine learning regression
prediction model in the prediction of CMAS corrosion resistance of thermal barrier coatings.
The results of these analyses would provide important references for further optimization
of the model and prediction applications.

The core of this study was to combine first principles with machine learning to provide
a relatively novel data-driven and mechanism-driven fusion of new material development
methodology for model prediction of thermomechanical properties and CMAS corrosion
resistance of thermal barrier coatings and further service the life assessment of thermal
barrier coatings. A simple and efficient high-throughput screening method for thermal
barrier coating materials was established by starting from a first-principles computational
method and going down to the atomic level. This method could effectively predict the
CMAS corrosion resistance and other thermal and mechanical properties of material for
thermal barrier coatings. According to the development strategy of a new CMAS corrosion-
resistant material for thermal barrier coatings proposed in the article, a new thermal barrier
coatings material was designed and comprehensively compared with the conventional YSZ
material in terms of CMAS corrosion resistance, the thermal expansion coefficient, thermal
conductivity, fracture toughness, and hardness. The results were shown in Figure 14.
The results of the study further confirmed the accuracy and feasibility of using first-
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principle calculation methods for the design and development of the material for thermal
barrier coatings.
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In the process of machine learning model construction, these feature parameters were
fused as inputs and trained and optimized by the machine learning model, which was
combined with the K-fold cross-validation method to improve the accuracy and stability of
the prediction line. This demonstrated the great potential for the application of machine
learning in materials research, broadened the scope of machine learning in materials
science, and provided a new avenue for the development of new materials for thermal
barrier coatings.

In conclusion, this study not only provided insights into the issues of model selection
as well as prediction accuracy but also highlighted the innovative application of first
principles and machine learning in the prediction of the CMAS corrosion resistance of
thermal barrier coatings. This application was expected to provide a new scientific research
paradigm in the field of materials science and engineering, offering a more viable and
effective approach to materials development for thermal barrier coatings.

4. Conclusions

In this work, a more systematic theoretical prediction and evaluation of the crystal
structure, elastic properties, thermal–mechanical properties, and CMAS corrosion resistance
of REYSZ (RE = La, Sm, Nd) materials was carried out using a first-principles approach
based on density functional theory. The calculated metrics included energy stability,
mechanical stability, the modulus of elasticity, Poisson’s ratio, Pugh’s ratio, hardness,
fracture toughness, the critical energy release rate, the melting point, Debye’s temperature,
the phonon rate, thermal conductivity, the coefficient of thermal expansion, surface energy,
Griffith’s fracture energy, and regression prediction of the new material’s resistance to
CMAS corrosion using a machine learning model. The following conclusions were obtained.

(1) The formation process of the tetragonal phase REYSZ was exothermic and thermody-
namically stable, satisfying the mechanical stability criterion. The enthalpies of the
formation of REYSZ were all negative, indicating that the formation of the compound
system was an exothermic process; i.e., the material was thermodynamically stable in
the ground state. Near the Fermi energy level, none of the electronic state densities
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were zero, indicating that all REYSZ phases exhibit metallic properties. The N(EF)
values of the two phases YSZ and LaYSZ were close to each other, with the p-orbitals
providing the energy near the Fermi energy level, and the doped rare earth elements Y
and La contributing less at the Fermi energy level. The N(EF) values of the two phases
NdYSZ and SmYSZ were closer together than the first two, and the structural stability
was reduced. The difference lies in the provision of energy near the Fermi energy level
by f orbitals, which were not present in the former two, and in the larger contribution
to the total density of states by the rare earth elements Nd and Sm. Its Young’s modu-
lus and bulk modulus were large, and its shear modulus was small (49.52–91.10 GPa),
indicating that the REYSZ material was susceptible to deformation by shear stress.
The hardness of REYSZ material was 10.069~13.398 GPa, the fracture toughness was
1.722~2.283 MPa-m1/2, and the brittleness index was 4.938~7.780 µm−1/2, which
indicated that the mechanical properties of the REYSZ material were excellent, with
a large strain-damage tolerance, and it was not easy to break under the effect of
applied loads and thermal shocks. The melting point of REYSZ was 2691~2818 K,
the Debye temperature was 516.35~566.18 K, and the lowest thermal conductivity
was 2.355~2.715 W/m·K (Cahill model) and 2.214~2.564 W/m·K (Clarke). This low
thermal conductivity created a large temperature gradient between the alloy substrate
and the high-temperature gas, which protected metal parts from heat damage and
improved the efficiency of turbine engines. In addition, the coefficients of thermal
expansion of 6.773~7.432 × 10−6 K−1 were all more favorable for the performance
of REYSZ compared with the conventional YSZ system. Among them, the overall
evaluation of the NdYSZ material was better.

(2) The application of thermal barrier coatings was limited by CMAS erosion. In this
work, the surface energy of the model and the Griffith fracture energy of the interfacial
model were calculated, in which the NdYSZ model had the lowest surface energy
(3.130 J/m2), and the CMAS/NdYSZ system had the lowest Griffith fracture energy
(6.934 J/m2). Therefore, a comprehensive analysis showed that the rare earth element
Nd2O3 has the potential to improve the resistance of zirconia-based materials for
thermal barrier coatings to CMAS corrosion. To reduce the variability with YSZ
materials, and thus the degree of mismatch between the multilayers, co-doping
zirconia materials using Nd2O3 and Y2O3 would perhaps provide better overall
service performance.

(3) In this paper, quantitative parameters that characterize the CMAS resistance of materi-
als, namely surface energy and fracture energy, were derived based on first-principle
simulations. Detection of the CMAS corrosion resistance of thermal barrier coatings
was performed by a data-driven predictive model. The inputs were the doping species
and ratios, and the outputs were the surface and fracture energies. The processed
100 sets of data were divided into a training set and a validation set. Regression
prediction of CMAS corrosion resistance after rare earth doping of YSZ combined
with five-fold cross-validation was performed. From the simulation results, the pre-
diction error of the extreme learning machine model was very small, the accuracy
was significantly higher than that of the BP traditional model, and the coefficient of
determination R2 reached 0.975; the model regression effect was good. According to
the simulation data, the CMAS resistance of the rare earth-doped coating was signifi-
cantly improved compared to the conventional YSZ coating. It could be seen that the
data-driven prediction model shows excellent performance in the CMAS corrosion
resistance of thermal barrier coatings, and this study was conducive to enriching
the methodological system for the assessment of the CMAS corrosion resistance of
thermal barrier coatings.
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