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Abstract: This review provides a comprehensive overview of recent advances in tribology concerning
pure/doped diamond-like carbon coatings (DLCs) and ionic liquid (ILs) interaction. DLC coatings
are often used in industrial machinery and processes where sliding occurs between surfaces, leading
to wear and degradation of their surfaces. DLC coatings are optimized by adjusting operating and
deposition parameters as well as doping them with other elements to improve performance, such
as thermal stability and chemical resistance. ILs are a promising green lubricant option due to their
low melting temperature, superior thermal stability, and high miscibility with organic substances.
ILs have been studied as neat lubricants and additives, and their tribological properties have been
investigated, including their use as extreme temperature lubricants. The tribological properties of
pure/doped DLC coatings with ILs have also been explored, although limited research has been
conducted in this area. The combined effect of DLCs and ILs shows great promise in reducing energy
loss due to friction, promoting longevity, and conserving energy.

Keywords: diamond-like carbon coating; doped-DLC; ionic liquid; tribology

1. Introduction

Concerns about energy and environmental sustainability have led to a need for more
efficient and cleaner industrial activities and transportation systems. Fossil fuels are the
main source of global energy consumption, which has a significant negative impact on
the environment [1]. Vehicles alone consume about 30% of all energy produced [2], and a
third of that is lost due to wear and friction. Friction losses and wear were identified as
the primary culprits that restrict the lifespan and diminish the effectiveness of machinery
used in the industry. As a result, these factors have a significant influence on the economy.
This has a major impact on national economies, as shown by studies from several countries
(United Kingdom [2], United States of America [3], Japan [4], and Canada [5]). Considerable
resources have been dedicated globally to enhance the energy efficiency and wear resistance
of moving mechanical parts. These endeavors, coupled with the increasing prevalence of
electrically powered modes of transportation, represent a major stride towards meeting the
demands for decreased carbon dioxide emissions set forth by the Kyoto [6], Paris [7], and
EURO 7 [8] guidelines.

To decrease friction between sliding components and prevent mechanical wear, the
conventional method is to utilize lubricants, typically mineral or synthetic oils in internal
combustion engines or water-based emulsions in machining fluids. Additives are frequently
incorporated into these fluids to enhance their existing properties or introduce new ones.
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Chemical compounds that can adsorb and/or interact with solid surfaces to generate low
shear-strength reaction layers (known as “tribofilms”), are among the additives utilized to
reduce friction (called “friction modifiers”), wear (known as “anti-wear additives”) [9,10],
and oxidation to modify rheology or even to add fragrances [11].

Zinc dialkyldithiophosphates (ZDDPs) have been utilized as additives in engine oil
formulations to reduce wear since the 1940s. For many years, scientists have investigated
the lubrication mechanism of ZDDP. The predominant view is that ZDDP functions as
an anti-wear agent through a surface reaction that results in the formation of uneven
phosphate films with a glass-like appearance. This theory has been widely accepted by
researchers studying ZDDP’s lubrication properties [12]. Although ZDDPs have proven
to be highly effective in reducing wear across various conditions, their usage has also
highlighted environmental concerns due to the significant levels of phosphorus, sulfur,
and zinc they contain. These elements are recognized for their ability to cause clogging in
filters and catalyst degradation in the exhaust after-treatment systems used in gasoline and
diesel engines. As a result, the permissible levels of sulphated ash, phosphorus, and sulfur
have gradually been restricted in modern engine lubricant formulations to address these
environmental concerns.

Also, the oil-based lubricant constitutes an environmental threat. Moreover, the
biodegradability of mineral oils is very low and the lubricant is released to the ambient
environment in the form of microdroplets and accumulates on plants, animal, and ground-
water tissues. The water pollution may be very aggressive since the oxygenation may be
altered, leading to a disorder in the ecosystem. Soils also suffer serious damage from oil
pollution due to the physical and chemical processes that lead to changes in the forms and
distribution of organic matter and the range of carbon, water, nitrogen, and phosphorus,
which can alter their entire ecosystem [11]. Because of all these concerns, researchers and
companies have focused on developing natural-based oils to infer biodegradability in
this product. Existing vegetable-based lubricants have good lubricity, ensuring a high
cleaning effect. However, oxidative stability and low-temperature properties are their main
drawbacks and require the integration of additives [11].

In recent years, there has been a growing interest in the use of ionic liquids (ILs) as
a replacement or supplement to ZDDPs and other molecules in lubrication science and
engineering, as well as in machining fluids. Ionic liquids are molten salts which consist of an
organic cation and a weakly coordinating anion. They have become increasingly desirable
in lubrication due to their exceptional properties, including high thermal stability [13], low
flammability [14], and negligible vapor pressure [15]. Moreover, air-stable Ils with various
structures and functionalities can be synthesized, making them a promising option for use
in applications involving extreme conditions in space for components in space-shuttle [16],
and micro-electromechanical systems [17,18]. As a result, Ils have garnered considerable
attention as a potential solution for lubrication in such demanding situations.

Numerous studies have been conducted since 2001 when ILs were first suggested as
potential lubricants [19–21]. In a recent study by Zhou et al. [22], it was demonstrated that
phosphorus-based ILs react with cast iron surfaces and create phosphate-rich tribofilms
that possess a similar chemical composition to those generated by other organophosphates,
which are commonly used as anti-wear additives. Another area of research to reduce the use
of lubricants has been the development of surfaces modified with self-lubricating coatings,
such as diamond-like carbon (DLC) or transition metal dichalcogenides (TMDs). In the past
few years, there has been significant interest in the research community towards combining
diamond-like carbon (DLC) coatings with ILs due to their exceptional tribological properties
such as resistance to wear and high levels of protection against corrosion thanks to their
inert properties [23]. DLC coatings are composed of an amorphous network of carbon
atoms that are in sp3 and sp2 hybridization and have hydrogen attached to terminate the
dangling bonds [24–26]. The flowchart in Figure 1 explains the benefits of using DLC
coatings along with ILs.
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Figure 1. Tribological study of DLC coatings with ionic liquids lubricants.

This article presents a comprehensive overview of the current knowledge and ad-
vancements in the field of tribology of diamond-like carbon coatings and ionic liquids
when used together. Firstly, the authors will describe DLC coatings concerning production
and properties, and after that, the same will be done for ionic liquids. The tribology of DLC,
undoped and doped, using ILs, will be discussed based on the literature results.

2. Diamond-like Carbon Coatings
2.1. Why DLC Coatings?

Industrial machines often operate in conditions where sliding occurs between surfaces
(i.e., boundary lubrication regimes) and contact between asperities occurs, which leads to
wear and degradation of components. Furthermore, in some industrial settings, there is a
demand for sliding contact in the absence of liquid lubrication. To respond to this issue, self-



Coatings 2024, 14, 71 4 of 29

lubricating coatings have been developed to improve durability and performance in such
situations that place high demands on the contacting surfaces. Self-lubricating coatings
have been proven to provide decent outcomes in a wide range of technical applications.
The application of these coatings modifies the microstructure, mechanical properties, and
tribological performance of the contacting surfaces [27].

Self-lubricating coatings have a lower friction coefficient due to possessing a surface
that can self-generate lubrication under certain conditions, such as heat or pressure. These
coatings can improve the wear resistance of the material and extend the life of the parts
they are applied to. However, achieving low friction and longer life simultaneously can
be challenging. In some cases, increasing the wear resistance of the coating can lead to
an increase in friction, while reducing friction can make the coating more prone to wear.
Additionally, the conditions under which the coating operates can affect its performance,
such as temperature, pressure, and environmental factors [27,28]. To overcome these
challenges, researchers have been constantly developing new materials and coating that
can provide both low friction and resistance to wear. This involves a careful balance
between the material properties, deposition conditions, and techniques to optimize the
performance of resultant coatings [28,29].

Diamond-like carbon (DLC) coatings are a type of self-lubricating coating known
for their exceptional mechanical and tribological properties, such as high hardness, low
friction, and excellent wear resistance [27,30]. Carbon coatings are classified as diamond-
like carbon (DLC) or graphite-like carbon (GLC) based on the carbon fractions of sp2 and
sp3 present in the coatings. In DLC coatings, the sp3 carbon fraction predominates, while in
graphite-like carbon the sp2 fraction is the dominant one [31]. Also, a tribological response
is heavily influenced by surface topology, as well as mechanical interlocking between
surface asperities which leads to a higher coefficient of friction, particularly during the
running-in stage. The roughness parameter of DLC coatings is largely determined by the
topology of their substrate. For instance, achieving a low CoF is more challenging when
applying this kind of film on rubber substrates [32].

DLC coatings come in a variety of types with different structural and chemical proper-
ties that can affect their tribological behavior. Some common types of DLC coatings include
hydrogenated amorphous carbon (a-C:H), tetrahedral amorphous carbon (ta-C), amor-
phous carbon (a-C), and hydrogenated tetrahedral amorphous carbon (ta-C:H) films [33].
These coatings are used on parts like tappets, pistons, piston rings, fuel injectors, and
biomedical devices (orthopedic, cardiovascular, and dental equipment), to lower friction.
This reduction in friction not only improves savings but also aids in meeting regulatory bod-
ies’ stringent environmental and legislative requirements [33–35]. According to a report [36],
the market size of diamond-like carbon (DLC) was assessed at USD 1786.04 million in 2021
and is anticipated to reach USD 3068.78 million by 2030. This growth is expected to occur
at a Compound Annual Growth Rate (CAGR) of 6.30% during the period from 2023 to 2030.
Moreover, the number of DLC publications indexed in the ScienceDirect database over
the last ten years has increased from 550 publications published in 2012 to 1300 published
articles only in 2022. The substantial increase in worldwide revenue and the correspond-
ing rise in research output indicate the increasing significance and strong demand for
DLC coatings.

2.2. Major Research Trends in the Production Process of DLCs

Currently, there is an intense focus on enhancing and optimizing DLC coatings through
two primary areas of investigation, first is operational and deposition parameters and the
second is doping DLCs with other elements to improve their performance.

The first area pertains to operational parameters such as plasma potential, ion ener-
gies, and power source, which are being extensively analyzed for their impact on DLC
quality. Physical vapor deposition (PVD) and plasma-enhanced chemical vapor deposition
(PECVD) are the most common methods for the deposition of DLCs. Common technologies
used for the deposition of DLC coatings are magnetron sputtering [37], filtered cathodic
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vacuum arc [38], microwave plasma [39], radio frequency (RF) glow [40], pulsed laser
depositing [41], ion beam [42], plasma immersion ion implantation and deposition [43],
and a combination of these techniques [44–46]. Each technology used for DLC deposition
has multiple variables that affect its growth and performance, such as electric power in-
puts [47,48], distance factors (such as substrate to source distance) [49], and deposition
temperatures [50,51]. Various methods, including sputtering, arc deposition, ion beam
deposition, and hybrid methods (such as RF + PECVD), are being utilized to increase the
sp3 ratio in DLC coatings [46]. It is worth noting that while a higher sp3 fraction leads to
higher hardness, lower friction, and higher wear resistance, such coatings also have some
drawbacks, such as higher residual stresses and lower toughness [46]. The aforementioned
concerns have resulted in the expansion of the field of DLC structural design, encompass-
ing monolayers [52–54], multilayers [55,56], and hybrid microstructures [46]. Kim et al.
examined the impact of sliding velocity and temperature on the tribological properties of
a multilayered DLC composed of Cr/CrN, a-C:H:W, and a-C:H layers deposited sequen-
tially [57]. From this we can see that raising the speed resulted in a reduction in friction
coefficients and the rates at which both surfaces experienced wear. This phenomenon
was analyzed by conducting surface examinations. It was established that several factors
contributed to the tribological characteristics, including the graphitization process and the
formation of tribofilm on the worn ball specimens [57].

Data analytics-based optimizing techniques have been used to help researchers find
the optimal parameter for deposition [58]. However, the best value for one parameter,
such as bias voltage, does not necessarily result in the best combination of properties.
Many parameter combinations may need refinement to achieve the best properties for
DLC coatings. Jean et al. implemented the Taguchi method for optimizing deposition
parameters and assessed the significance of process parameters by conducting an analysis
of variance (ANOVA) [59]. In another study [60], various properties of DLC coatings, in-
cluding their morphology, structure, bonding states, friction coefficient, and wear behaviors
were optimized using an adaptive neuro-fuzzy inference system (ANFIS) identification
technique assisted with Taguchi’s algorithm to reduce the error of fuzzy estimator systems
for tribological properties. Additionally, the optimal process parameters for the deposition
of DLC films using plasma-enhanced chemical vapor process (deposition temperature,
methane–argon flow rate, and hydrogen flow rate) were searched using the repulsive
particle swarm optimization algorithm and a traditional genetic algorithm (GA) [61].
Solis-Romero et al. [62] optimized working settings for reducing the wear and friction
of multi-layered a-C:H coating by implementing a hybrid grey-fuzzy algorithm. However,
it is crucial to consider the fact that optimization or prediction works well when the model
is made properly and accurately. A higher number of input parameters leads to more
sophisticated models. Custom functions that are defined by the user have an impact on the
results. Furthermore, the intricacy of the model has a bearing on its ability to be trained
on the available data and also diminishes its potential to generalize well to new, unseen
data [58].

The second area of investigation is related to the development of DLC nanocomposite
coatings by introducing other elements. This approach involves doping the DLC coating
with other elements (i.e., co-deposition of DLC coatings with metal, ceramic, and gaseous
elements) to produce nanocomposites with improved properties [31]. For instance, to
optimize tribological properties, DLCs have been doped with Cr [63], Mo [64], and Ni [65].

High residual stress in DLC films causes improper adhesion, which can lead to the
peeling of coating even during film deposition. According to several studies [31,66–69],
using metallic/non-metallic elements as dopants can reduce residual stress by controlling
the microscopic structure, adhesion, sp3/sp2 ratio, and surface roughness of DLC coatings.
As a result, a controllable carbon bond structure and low residual stress are critical factors
in obtaining preferable properties in a DLC film [68]. To reduce residual stress, DLCs have
been doped with Ti [70,71], W [68,72], Si [73], N [74], F [69], Nb [67], Au [66].
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Doping also improves the performance of DLC thin films in biomedical applications.
This is the case for functional coatings in ureteral stents [75] or textiles for hospital use that
need to be antibacterial [76], where, for example, Ag gives this property to DLC [77].

2.3. Characteristics of DLC Coatings
2.3.1. Thermal Stability of DLC Coatings

Another characteristic which researchers aim to enhance in DLC coatings is improving
their maximum working temperature limit. This would allow DLC coatings to be useful
in industries like aerospace, automotive, and turbomachinery, as they can currently only
handle temperatures up to 300 ◦C [46,78]. When exposed to high temperatures, DLC films
can experience various changes such as oxidation, graphitization, and dehydrogenation.
Therefore, they can lose their lubricating capabilities and even detach from the surface
they are applied to. This can lead to the creation of a transfer layer and wear debris on
the surfaces of the objects in contact [79]. The graphitization phenomenon is thought to
be responsible for lowering friction within the temperature range of 0 to 150 ◦C, in this
range, heat can facilitate the transformation of some sp3 bonded carbons to sp2 carbons
when a load is applied [80]. Similarly, the findings of Zhang et al. [81] showed that
subjecting the DLC films to thermal annealing resulted in their graphitization. According
to reports, elevating the annealing temperature caused a decrease in the hydrogen content
in hydrogenated DLC films, which facilitated the shift from sp3 to sp2 hybridization. But
they reported that at 300 ◦C and higher, the ultra-low friction behavior fails because the
heat produced during friction might not dissipate promptly, and the system’s temperature
becomes too high to sustain a proper structure. However, introducing Si into the DLC films
raised the sp3/sp2 ratio, stabilizing the structure and preventing the films from graphitizing
at high temperatures [79].

Wang et al. [82] reported on the volcano-type behavior of CoF in response to temper-
ature increases in the 27 ◦C to 726 ◦C range for DLC thin films sliding against alumina
and studied the mechanisms by implementing quantum chemical molecular dynamic
simulations. CoF was stable in the 27 ◦C to 326 ◦C range, then after passing 326 ◦C, the CoF
started to increase until it reached 527 ◦C, then again it began declining with increasing
temperature up to 726 ◦C, which formed a volcano-type trend for CoF vs. temperature. At
temperatures ranging from 326 ◦C to 527 ◦C, there is a formation of interfacial C-O and
C-Al bonds between contacts, which results in a high friction coefficient. However, as the
temperature passes 326 ◦C, the DLC undergoes graphitization, leading to a graphite-like
surface that inhibits the formation of interfacial bonds and reduces the friction coefficient.

Yu et al. [83] studied the tribological characteristics of three different DLC films with
varying Si contents applied on a tungsten interlayer. At temperatures below 300 ◦C, the
pure DLC film exhibits impressive tribological characteristics. The low friction coefficient
at room temperature is primarily due to the presence of Van deer Waals bonds, while
the high-temperature properties between 100 ◦C and 300 ◦C are believed to be a result
of graphitization. The addition of 14.56% Si content to the film allows for lubrication
to be sustained at 400 ◦C, with the low friction coefficient obtained being a result of the
enhanced thermal stability achieved through Si alloying. However, at temperatures higher
than 500 ◦C, the film failed due to the oxidation of silicon. A composite film comprising
oxidized tungsten and tungsten carbide phase is responsible for low CoF of Si-DLC with a
tungsten interlayer.

2.3.2. Chemical Resistance of DLC Films

DLC’s lack of reactivity with chemicals is highly desirable for its use as a shielding
layer to prevent chemical reactions of the substrate with surrounding compounds [84,85].
To evaluate the chemical resistance of DLC films, the researchers polished aluminum
substrates and applied DLC coatings of varying thicknesses. They found that thicker
coatings offered more protection against chemical reactions than thinner ones, and that
using a layered approach with a silicon interlayer was the most effective at preventing
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permeation. However, the presence of defects in the coatings still had an impact on the
permeation process [86]. In another study, Ohtake et al. conducted a concentrated nitric
acid corrosion test to assess the acid resistance of the DLCs [87]. Although a high sp3

content was believed to reduce film corrosion, the actual relationship between sp3 content
and corrosion resistance was found to be insignificant. Instead, corrosion resistance was
found to be more closely linked to the presence of pinholes, micrometric growth defects,
and dust particles. It was also discovered that increasing sp3 content and density during
film application did not necessarily lead to improved corrosion resistance.

Wongpanya et al. [88] focused on examining the corrosion resistance, bonding struc-
ture, and biocompatibility of DLC films deposited on stainless steel with an interlayer of
titanium. Results indicated that ta-C:Ti/Ti exhibited the highest level of corrosion resis-
tance and biocompatibility, thanks to the formation of TiO2 on its surface. Moreover, the
presence of two barrier layers was observed in ta-C:Ti/Ti, making it a promising material
for joint replacement.

Fayed et al. [89] examined the deposition of Si/DLC films on 2024-Al alloy using a
plasma-enhanced chemical vapor method at different pulse voltages. Results showed that
increasing the pulse voltage to 1800 V led to thicker coatings with better mechanical and
corrosion resistance properties in 3.5 wt.% NaCl solution compared with other coatings
due to an increase in sp3 hybrid in the coating, limiting electrical conductivity. However,
increasing the pulse voltage to 2200 V increased the corrosion rate of the coatings.

2.3.3. Friction and Wear

Numerous research papers in the past few years have explored the frictional charac-
teristics of DLC films in various settings [90]. The primary method by which DLC films
typically control friction involves the formation of a transfer film, which then facilitates easy
shear sliding within the interfacial material. However, the effectiveness of this mechanism
is significantly influenced by the type of gas environment present in the contact area [91].

DLC coatings are highly susceptible to the effects of oxidizing agents, such as oxygen
and water vapor, during friction. The presence of such agents can lead to significant
tribo-oxidation of the topcoats, which in turn can increase both friction and wear. While
wear rates can sometimes be very low, they can also be extremely high, rendering the
coating unsuitable for certain applications [92]. According to Liu et al., the sustained low
friction observed in DLC films under ambient air conditions is a result of wear-induced
graphitization, which entails the creation of a tribolayer with a graphitic structure that
exhibits low friction. The process of graphitization in their experiments was affected by
two factors: the speed at which the surfaces were sliding against each other, and the
amount of force being applied. This is because when the surfaces come into contact, the
resulting friction causes the temperature to increase at the contact points. This rise in
temperature causes hydrogen to be released from the DLC structure, which contributes to
the graphitization process [93].

Films that have varying amounts of hydrogen possess distinct physical characteristics,
including the way the carbon atoms are arranged, their refractive index, hardness, level
of stress, and how they behave under controlled tribological conditions [91]. Miyake et al.
conducted a study comparing the friction of two DLC coatings with different amounts
of hydrogen. Both of the films had similar hardness values. The DLC film with a lower
hydrogen content had higher friction in a vacuum environment than the film with more
hydrogen. However, in humid ambient air, the DLC film with a lower hydrogen content
had smaller friction compared to the film with a higher hydrogen content. The researchers
found that the DLC film with a lower hydrogen content contained a mixture of diamond
and graphite microcrystallites, resulting in friction behavior similar to that of diamond
or graphite in a vacuum. On the other hand, no crystallized structure was observed in
the DLC film with a higher hydrogen content. They speculated that hydrogen presence
modifies the adsorption process of moisture and increases friction [94].
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Donnet et al. reported that in PACVD systems, high-impact energy caused by bias
directly controls the deposition process and leads to higher precursor dissociation. This
results in a carbon network that is more crosslinked, has a lower sp3 fraction, lower
hydrogen content, and a lower fraction of hydrogen bonded to carbon. Films deposited
under such conditions are harder, have higher stress and index of refraction, lower surface
energy, and exhibit very high friction (>0.5) in ultra-high vacuum (UHV) conditions. DLC
films can achieve ultralow friction and wear in UHV if they have high enough hydrogen
content (around 40 at. %), a crosslinked carbon network, and a noticeable fraction of
unbounded hydrogen (about 0.3). By increasing the absolute bias from 500 to 800 V using
the deposition system in the present study, the hydrogen content in films deposited from
acetylene can be lowered by about 6 at. % and the fraction of hydrogen bonded to carbon
by about 0.16, thereby increasing friction in UHV from less than 0.01 to more than 0.5.
This indicates that the structure and composition of DLC films strongly affect their friction
behavior, making it crucial to control both friction and wear by paying close attention to
the deposition process [91].

In a similar study, a ball-on-disc reciprocation was used to investigate how hydro-
genated and hydrogen-free DLC coatings behave when sliding against Al2O3 in both air
and pure water [95]. Under solid lubrication conditions in an air environment, the wear rate
of DLC coatings sliding against Al2O3 balls was primarily influenced by the coating’s hard-
ness. The presence of hydrogen in the DLC coatings reduced their hardness and increases
their wear. Conversely, in water lubrication conditions, the hydrogen in hydrogenated
DLC coatings plays a crucial role in determining the wear rate. Saturated sp3-CH bonds in
hydrogenated DLC coatings exhibited the lowest friction and wear, despite having lower
hardness. On the other hand, hydrogen-free DLC coatings without H termination may
cause relatively high friction and wear in water environments [95].

In addition to the hydrogen content, relative humidity also affects the tribological
behavior of DLC coatings. Kokaku et al. [96] studied the impact of being exposed to a highly
humid atmosphere on the wear and friction properties of hard carbon films. The exposed
sample showed an increase in friction coefficients. This increase in friction coefficients
occurred due to the oxidation reaction on the surface of the carbon, leading to changes in its
surface properties. The creation of a carboxylic acid soap was responsible for the formation
of the friction layer. This was found to occur when oxidized DLC films reacted chemically
with ferrous oxide [97].

Kim et al. demonstrated how different normal loads and velocities can cause variations
in CoF and wear [98]. An increase in load results in a reduction in the graphitization
temperature due to the elevated contact stress. During experiments, it was observed that
under constant sliding velocity, as the normal load increased, the average wear rates of both
DLC coatings and AISI 52100 steel balls decreased. However, the average wear volume of
the two surfaces increased. Conversely, as sliding velocity increased under constant load,
both the average wear rates and wear volumes of the two surfaces increased until reaching
a maximum value, after which they decreased as the sliding velocity further increased. The
process of graphitization can be facilitated by friction-induced annealing on local contact
areas and the strain energy induced by sliding [99].

3. Ionic Liquids

The development of biodegradable, environmentally friendly lubricants with lower
toxicity levels is imperative. Within the realm of green chemistry, effective lubrication
decreases energy consumption in mechanical applications, thereby reducing energy loss
due to friction. The utilization of quality lubricants also protects all materials from friction
and wear while promoting longevity. Additionally, employing an exceptional lubrication
system aid in conserving energy, reducing energy loss, and minimizing raw material
usage [100]. Recently, ionic liquids (ILs) have emerged as promising lubricant options for
various applications. ILs, liquid salts composed of organic substances, are characterized by
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a low melting temperature, high combustible temperature, low vapor pressure, superior
thermal stability, low volatility, and high miscibility with organic substances [100–104].

Ionic liquids are characterized as being in a liquid state at temperatures below any
arbitrary threshold, though the temperature requirement is not crucial for categorizing a
substance as an ionic liquid [105]. Ionic liquids are very ancient and were first reported
by Gabreil in 1888. Ionic liquids are constituted by the combination of organic cations and
inorganic or organic anions, and as a result, the physicochemical characteristics of these liq-
uids can be modified by varying the combination of cations and anions. This allows for the
design of customized ionic liquids that are tailored to meet specific requirements [106,107].
So, ionic liquids are liquids that are composed of only ions and no other molecular species
are present, with certain exceptions [105].

The mechanism of ionic liquids can be understood by the below Figure 2. Initially,
as a consequence of sliding, the emission of free electrons from the metal surface occurs,
resulting in the generation of a positively charged surface that elicits electrostatic attraction
towards the anion moieties [108]. The formation of anion–cation layer-by-layer structures
on metal substrates by ionic liquids is acknowledged, wherein the anion moiety securely
anchors itself to the surface [109]. The resultant layered configuration serves as a protective
measure, mitigating friction and wear on the surface [110]. An alternative mechanism may
involve the generation of a reactive tribofilm, a phenomenon extensively discussed in the
existing literature [110,111]. Throughout the process, certain molecules of the ionic liquid
have the propensity to undergo dissociation and subsequently react with the metal present
in the substrate, leading to the establishment of a tribochemical film.
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3.1. Characteristics

Ionic liquids are recently trending for their peculiar characteristics and being viewed
as green lubricants. The majority of researched ionic liquid lubricants contain imidazolium
cations and either hexafluorophosphate or tetrafluoroborate anions [109,112–125]. As ionic
liquids can be tailormade, which means there are infinite variations, and their properties
can vary significantly, the more common characteristics for which they are usually preferred
are non-volatility, versatile solubility, and thermal stability [126].

One of the main characteristics of ionic liquids is that they are green and sustainable,
but some might contain phosphate, which is already an environment-depleting element,
so how it can be sustainable? To answer this question, phosphate is commonly employed
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as a lubricating oil additive [127–135]. The creation of an ionic liquid exhibiting superior
lubrication and anti-wear characteristics while posing no corrosion issues to metallic
friction pairs can be achieved by coordinating phosphate with cations that are resistant to
hydrolysis. Drawing inspiration from this concept, a series of alkyl imidazolium cation and
phosphate anion-based ionic liquids were synthesized, and their tribological properties as
lubricants were thoroughly studied [136]. The other characteristics of ionic liquids which
are getting traction in current times is their use as lubricant in electric motors, as they have
a wide electrochemical window [137], conductivity [138,139] and, for some of them, the
ability to modify surface tension through the formation of micelles [140]. The first two of
these properties are of fundamental importance for the use of lubricants in electric motors,
as they inhibit the build-up of electrical charges. The second is important because it makes
them compatible with other additives in the lubricant. It also increases their cleaning effect
against aggregates formed over time.

3.1.1. Cationic Structure and Anionic Structure

Ionic liquids are composed of anions (ions carrying negative charge) and cations
(ions carrying positive charge) [141]. Within an ionic liquid, the cationic structure often
incorporates organic compounds, including ammonium or imidazolium, accompanied
by alkyl chains and diverse substituents [142,143]. As for the anionic structure, it can be
either inorganic or organic, exhibiting distinct sizes, shapes, and functional groups [142].
The properties of the ionic liquid, such as viscosity, conductivity, and solubility, are de-
termined by the specific combination of cations and anions. Through the design of the
cationic and anionic structures, the properties of ionic liquids can be tailored for various
applications [144]. Furthermore, long alkyl chain substituents increase the tribological
efficiency of cationic and anionic ILs but decrease their thermal stability. Hydrophobic ILs
typically exhibit better tribological performance compared to hydrophilic ILs [145].

3.1.2. Thermal Stability

Thermal stability is a pivotal characteristic that impedes the degradation of lubri-
cants within the working temperature range. At elevated temperatures, the lubricants
are susceptible to chemical degradation, leading to fluid evaporation and viscosity reduc-
tion [146,147].

To evaluate the thermal stability of ILs dissolved in oils under nitrogen, thermogravi-
metric analysis (TGA) has been conducted extensively. Air is a crucial and practical medium
for assessing the lubricating efficacy of ILs, wherein oxidation is inevitable. Typically,
ILs exhibit greater thermal stability relative to hydrocarbon oils that decompose around
250 ◦C. Previous studies have indicated that phosphonium–carboxylate and ammonium–
phosphate ILs display inferior thermal stability when compared to phosphonium–phosphate
ILs. Conversely, imidazolium- and pyridinium-based ILs exhibit remarkable thermal stabil-
ity, even in the presence of cationic alkyl chains [148].

In contrast to mineral oil and water, ILs exhibit negligible evaporation [146,147]. The
thermal stability of a highly promising candidate for combustion engine utilization, ionic
liquid is notably exceptional, exhibiting minimal mass loss even at temperatures up to
225 ◦C. Thus, the performance of ILs is deemed to surpass that of high-performance motor
oils with regards to thermal stability [21]. Thus, they are deemed environmentally benign
compared to conventional lubricants.

3.1.3. Corrosion Behavior of Ionic Liquids

To be applied in industry, ionic liquids must fulfil several conditions and a thorough
test to check its potential corrosion behaviour towards equipment materials. The deterio-
ration of materials can jeopardize reliability, decrease productivity, trigger shutdowns of
the system, decrease yields, taint manufactured goods, lead to overdesign expenses, and
necessitate expensive maintenance procedures [149].
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One of the first comprehensive studies on this issue for flow-induced localized corro-
sion (erosion corrosion) cases was performed using the rotating cage technique and results
showed that the tosylate and dimethyl phosphate anions have detrimental impacts. When
diluted or contaminated with water, numerous anions utilized in the production of ionic
liquids could undergo hydrolysis, leading to the creation of acids such as sulfuric and
phosphoric acid. This process leads to an acidic environment which causes corrosion [149].
However, the focus of this research did not include the examination of localized attacks or
flow-related analyses of ionic liquids. These areas warrant further investigation [149].

In a similar study with rotating cage setup, a screening was conducted of various ILs
with differing ion structures to evaluate their corrosiveness behavior. The outcome of the
study reveals a significant dependence of the corrosion behavior on the particular chemical
structure of the ionic combination. It was observed that the vast majority of the tested
ILs displayed a low level of corrosiveness in interaction with steel, particularly stainless
steel [21]. Corrosion inhibitors refer to sub-stances that are added to the operating fluid
in minimal quantities and chemically or mechanically interact with the metal surface to
impede any further metal degradation and reduce corrosion [150–153]. Several studies
have investigated the potential of ILs as corrosion inhibitors [150,154,155].

Therefore, while ionic liquids (ILs) can act as corrosion inhibitors, they can also
promote corrosion in some cases. The corrosive behavior of ILs can depend on various
factors, including the chemical structure of the IL and the metal surface, as well as the
environmental conditions. These studies suggest that ILs can potentially act as corrosion
promoters depending on their chemical structure and the conditions in which they are
used. Therefore, it is important to carefully consider the specific IL and conditions when
using them in industrial applications.

3.2. Ionic Liquids in Tribology
3.2.1. Tribological Behavior of Ionic Lubricants

Ionic liquids (ILs) have been widely implemented in lubrication systems, either as
an additive or a neat lubricant. Researchers have demonstrated the remarkable outcomes
of IL-based lubricants due to their exceptional properties and the potential to customize
or substitute for traditional lubricants, thereby achieving superior results or improved
output performance. Furthermore, the ability to vary the combination of cations and
anions confers a significant advantage in the formulation of ILs for specific engineering
and manufacturing applications. The physical properties of ILs and their potential have
been extensively studied, primarily in the context of anti-wear and lubrication properties.
The collective performance of ionic liquids reveals that when bio-based oil is mixed with
ILs, the minimum coefficient of friction is achieved. The enhanced tribological performance
of oil in the presence of ILs is attributable to the dipolar structure of ionic liquids, which
adsorbs on the interacting surfaces and pro-duces a lubrication film [156]. However, the
use of ILs as lubricants raises concerns regarding thermal oxidation, toxicity, corrosion,
oil miscibility, and cost. Recent re-search has focused on developing thermally stable,
non-corrosive, and oil-soluble ILs, which has been the subject of much discussion among
researchers. The primary re-search on ILs in lubrication has shifted from utilizing them
as both lubricant additives and neat lubricants to developing halogen and phosphorus-
free ionic liquids as energy-efficient and environmentally friendly lubricant additives for
steel-based engineering surfaces. The focus is to establish the correlation between the
anion structure and the tribophysical properties of ILs. Halogen-free ionic liquids, such as
borate-based ionic liquids, are of particular importance for lubricant applications in the
present and future.

3.2.2. Ionic Liquids as Main Lubricant

Numerous research studies have been conducted on the use of ionic liquids as main
(neat) lubricants [157]. Specifically, the use of three types of ionic liquids, namely 1-butyl-1-
methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate, 1-butyl-1-methylpyrrolidinium
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bis(trifluoromethylsulfonyl)imide and ethyl-dimethyl-2-methoxyethylammonium tris
(pentafluoroethyl)trifluorophosphate, in steel-to-steel contact has been investigated [158].
The results obtained from the studies show that the ionic liquid [BMP][NTf2] exhibited
the lowest friction coefficient during the tests conducted at 40 ◦C and MTM tests as well
as the lubricated surfaces with [BMP][NTf2] showed the lowest wear volume during tests
conducted at 40 ◦C [158]. In another study, the effect of alkyl chain components on the
chemical changes of various types of methylimidazolium salt was studied [143,159,160].
The presence of tribofilms in samples lubricated was confirmed by X-ray photoelectron
spectroscopy, while only neat ionic liquid without interaction with the surface could be
detected inside the wear scar of the sample lubricated, which suggests their usability as
straight and neat lubricants. Figure 3 shows some of the ionic liquids which are used with
DLC coatings as straight, additives and as both.
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3.2.3. Ionic Liquids as an Additive

The use of ionic liquids as lubricants presents a promising option for improving the
cost-effectiveness of traditional lubricant systems. While the high cost of ionic liquids
currently limits their use as neat lubricants to specialized applications, their incorporation
as additives in small quantities in the base oils has gained interest due to their potential to
enhance tribological properties [161]. By this it will be a good starting point for the use of
ionic liquids in lubricants until a commercially viable cheap solution is devised. Therefore,
a continuous drive for improved friction and wear performance for common tribo-pairs, as
well as the need to facilitate lubrication in difficult-to-lubricate systems, necessitates the
development of additive-based lubrication systems.

In addition to lubrication applications, research has shown that the use of ILs as
lubricant additives and corrosion inhibitors can effectively reduce friction and wear. ILs
have also been found to form electric double layers in water, allowing for the effective
adsorption of additives on ceramic surfaces and improving tribological properties [162].
However, the use of water-based lubricants is limited under elevated test temperatures
due to their high volatility and low cooling point, and the development of tribofilms on
ceramic substrates is often thin. Compared to ILs, water-based lubricants may exhibit
higher coefficients of friction and greater attachment of surface-clean alkyl phosphate [161].

3.2.4. Ionic Liquids as Extreme Temperature Lubricants

Ionic liquids can be used as lubricants in extreme temperatures. Researchers have
studied the surface properties of metals lubricated with ILs at 300 ◦C. They found that ILs
react with steel/iron substrates. New types of ILs have been developed, such as those with
polyethylene glycol and functionalized dicationic, which exhibit excellent thermal stability
and are reliable lubricants [163]. Some ILs, like imidazolium-based dynamic liquids, have
high degradation temperatures which is greater than 400 ◦C, making them suitable for
extreme temperature lubrication [164]. There are also different types of ionic fluid, such
as polyacylater and polyifuoracillil, which have bridging moieties and can be tailored
to have specific lubrication properties [164]. Thus, ionic liquids have a characteristic to
maintain their properties at extreme temperature and pressure which makes them suitable
for such conditions.

4. Tribological Testing of DLC Coatings with Ionic Liquid Lubricants

Tribological tests are designed to evaluate the friction, wear, and lubrication properties
of materials in relative motion. In Figure 4, we can see the setups that help researchers and
engineers understand the tribological performance of materials and lubricants, guiding the
selection and design of components for various applications.

4.1. Tribology of Pure Diamond-like Carbon Coatings and Ionic Liquids

Industry has long used solid lubricants to lessen wear and friction under varied cir-
cumstances. Advanced vacuum methods have been used to deposit materials like tungsten
disulfide (WS2), hexagonal boron nitride (HBN), borides (MgB2 and ZnB2), and soft metals
like Cu, Ag, Sn, and Au as protective coatings or as lubricant additives. These substances
provide a barrier that shields friction pairs from one another, reducing friction and en-
hancing wear resistance [165]. Because of its outstanding qualities, such as high hardness,
excellent chemical stability, high thermal conductivity, low friction, and exceptional wear-
resistance, carbon has attracted the most interest of these solid lubricants [20]. There are
various forms of carbon, and each form’s characteristics rely on its particular structure. Re-
searchers have intensively investigated different carbon forms and their applications over
many decades [165]. Two specific forms of carbon, namely sp3 and sp2 form diamond-like
carbon (DLC) thin films [165].



Coatings 2024, 14, 71 14 of 29
Coatings 2024, 14, x FOR PEER REVIEW  15  of  31 
 

 

 

Figure 4. Testing process for DLC coatings with ionic liquid lubricants. 

4.1. Tribology of Pure Diamond-Like Carbon Coatings and Ionic Liquids 

Industry has  long used  solid  lubricants  to  lessen wear  and  friction under varied 

circumstances. Advanced  vacuum methods  have  been  used  to  deposit materials  like 

tungsten disulfide (WS2), hexagonal boron nitride (HBN), borides (MgB2 and ZnB2), and 

soft metals like Cu, Ag, Sn, and Au as protective coatings or as lubricant additives. These 

substances provide a barrier that shields friction pairs from one another, reducing friction 

and enhancing wear resistance  [165]. Because of  its outstanding qualities, such as high 

hardness,  excellent  chemical  stability,  high  thermal  conductivity,  low  friction,  and 

exceptional wear-resistance, carbon has attracted the most interest of these solid lubricants 

[20].  There  are  various  forms  of  carbon,  and  each  form’s  characteristics  rely  on  its 

particular structure. Researchers have intensively investigated different carbon forms and 

their applications over many decades [165]. Two specific forms of carbon, namely sp3 and 

sp2 form diamond-like carbon (DLC) thin films [165]. 

While  operating under  boundary  lubrication  conditions,  applying  solid  lubricant 

thin films (coatings) can improve the lubrication of moving pairs [20,166]. A solid-liquid 

composite lubricating system can have a synergistic impact by integrating the benefits of 

liquid  and  solid  lubrication.  Solid  lubrication  coating  has  favorable  load-bearing 

capabilities and low volatility. By doing so, the system is able to retain the benefits of solid 

lubrication while simultaneously gaining the benefits of liquid lubrication [167]. When the 

thin layers of fluid that separate surfaces fail, solid coatings can bear the load and serve as 

a  secondary  form of  lubrication. This provides a backup mechanism  to prevent direct 

contact between surfaces and reduce friction [168]. The combination of solid and liquid 

Figure 4. Testing process for DLC coatings with ionic liquid lubricants.

While operating under boundary lubrication conditions, applying solid lubricant
thin films (coatings) can improve the lubrication of moving pairs [20,166]. A solid-liquid
composite lubricating system can have a synergistic impact by integrating the benefits of
liquid and solid lubrication. Solid lubrication coating has favorable load-bearing capa-
bilities and low volatility. By doing so, the system is able to retain the benefits of solid
lubrication while simultaneously gaining the benefits of liquid lubrication [167]. When the
thin layers of fluid that separate surfaces fail, solid coatings can bear the load and serve
as a secondary form of lubrication. This provides a backup mechanism to prevent direct
contact between surfaces and reduce friction [168]. The combination of solid and liquid
lubrication systems has become a popular choice for dynamic equipment, including space
and automotive mechanisms. This composite lubricating system offers an effective solution
for reducing friction and preventing surface wear. Thus, recent research has explored
the potential benefits of integrating ionic liquids (ILs) with solid lubricating films. This
promising approach has the potential to further improve the performance and durability of
the composite lubricating systems [20].

Zhao et al. [169] examined the adhesion and friction of DLC and DLC coating in the
presence of 1-octyl-2,3-Dimethylimidazolium bis(trifluoromethyl)sulfonyl ionic liquid as
lubricant. To do so, a colloidal probe mounted on an AFM cantilever was used in contact
mode to evaluate adhesive and nanotribological behaviors, and a UMT-3 tribometer was
used in a ball-on-plate reciprocating mode to evaluate their microtribological behaviors.
The experimental findings indicated that the friction forces of the DLC films with micro-
grooves were effectively reduced by introducing IL to the tribological pair. The reduced
adhesion and friction forces were explained by lubricity property of ionic liquid to prevent
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direct contact between the DLC coatings and colloidal tip, which made the sliding of the
colloidal tip on the DLC coating’s surface easier. The reciprocating test setup involves
applying back-and-forth sliding motion to examine the wear and friction characteristics
of materials, particularly in reciprocating applications such as ball-on-plate reciprocating
mode or a piston-cylinder system. This setup proves valuable in assessing the performance
and durability of components subjected to reciprocating motion which is shown in the
below Figure 5.
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The outcomes of the experiment that tested the friction coefficient of three PVD coat-
ings using [BMP][FAP] lubricant demonstrated comparable values for TiN, CrN, and DLC,
with CoF of DLC being the smallest, which suggests that the ionic liquid had a noticeable
impact on the coatings regardless of their type [170]. To gain a more profound understand-
ing of the interactions between the coatings and the ionic liquid at a chemical level, XPS
analyses were conducted to examine the wear surfaces. The breakdown of ILs starts the pro-
cess, and the dynamic components in the ILs may respond with the newly formed surface
to create a reaction film, also known as a tribofilm. This tribofilm is capable of protecting the
surface from significant wear. A layer is formed on the surface of DLC by the ionic liquid,
where 40% of the fluorine is involved. When the experimental conditions became harsher,
causing an increase in temperature and pressure, the interaction rate also raised. As a result,
roughly 80% of the overall fluorine became connected to the surface within the wear scar,
in contrast to 40% outside the scar [170]. Another study investigated the same coatings but
in the presence of another ionic liquid described as [(NEMM)MOE][FAP]. When the films
were lubricated with pure ionic liquid ([(NEMM)MOE][FAP]), the lowest friction coefficient
was achieved compared to when used as an additive to PAO 6 as base oil, and no noticeable
wear scar was identified. The behavior of the ionic liquid and DLC interaction differed
significantly from that observed in other films. The ionic liquid does not interact with the
surface of DLC unless there is a significant increase in loading conditions. As a result of
significant increase in loading conditions, approximately 77% of the fluorine (F) reacts with
elements inside the wear region. When compared to previous research conducted under
identical testing conditions, the [BMP][FAP] ionic liquid displayed marginally superior
performance as a pure lubricant and as an additive in the lubrication of the three PVD coat-
ings examined, relative to the [(NEMM)MOE][FAP] ionic liquid. The improved tribological
behavior of [BMP][FAP] can be attributed to its higher viscosity and stronger interaction
with these coatings, which encourage the growth of tribofilms [170,171].

Jia et al. examined the effectiveness of synthetic ionic liquid functionalized borate
esters as additives in PAO as the base lubricant in terms of friction and wear properties
for DALC films compared to ZDDP [172]. According to the results obtained, the addition
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of borate esters in PAO provided improved friction and wear performance for DLC films
in comparison to ZDDP. The authors hypothesized that a triboplasma forms during the
process, particularly on DLC films, and that the borate esters modified with ionic liquid
might adhere to the worn surface of the pair because of the triboplasma. Furthermore, the
decomposition of the borate esters during the process leads to the B atoms infiltration into
the flaws and sublayer of the worn surface. Consequently, a tribofilm containing B, N, and
F was formed to lower friction and reduce wear [172]. Table 1 shows the brief summary of
the undoped diamond-like carbon coatings and ionic liquids.

Table 1. Summary of the available literature investigating tribological performance of undoped
diamond-like carbon coatings and ionic liquids.

Name of ILs Tribometer Additive or Main Lubricant? Ref.

1-octyl-2,3-Dimethylimidazolium
bis(trifluoromethyl)sulfonyl

UMT-3 tribometer
(ball-on-plate) Used as main lubricant (100 wt.%) [169]

1-butyl-1-methylpyrrolidinium
tris(pentafluoroethyl)trifluorophosphate

CETR-UMT-3
micro-tribometer

(ball-on-plate)

Used as both additive in PAO 6
(1 wt.% additive) and main lubricant

(for comparison)
[170]

ethyl-dimethyl-2-
methoxyethylammonium

tris(pentafluoroethyl)trifluorophosphate

UMT-3 microtribometer
(ball-on-plate)

Used as both additive in PAO 6
(1 wt.%) and main lubricant (for

comparison)
[171]

The synthesized ionic liquids of
functionalized borate esters (The specific
names are not mentioned but molecular

structure is explained in the article)

Reciprocating friction and
wear tester (ball-on-disk)

Used as 2 wt.% additives to
polyalphaolefin (PAO 6) and

compared with 2 wt.% ZDDP as a
reference additive

[172]

(1) 1-butyl-3-methylimidazolium
tetrafluoroborate

And
(2) trihexyltetradecylphosphonium

bis(trifluoromethy-lsulphonyl) amide

T-01M tester (ball-on-disc
configuration) Used as main lubricant (100 wt.%) [173]

Another study investigated the performance of two distinct ionic liquids in conjunction
with a friction pair comprised of a steel ball and a steel disc coated with DLC. In this
comparison, the 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid outshone its
counterpart, the trihexyltetradecylphosphonium bis(trifluoromethylsulphonyl) amide ionic
liquid [173]. Notably, the former demonstrated superior efficacy in lubricated friction
and exhibited compatibility with a-C:H type DLC coatings. The friction pair, consisting
of a steel ball and a steel disc with DLC coating, played a crucial role in the evaluation.
The steel ball, a standard material for friction testing, offered durability and widespread
applicability in industrial settings. Meanwhile, the steel disc’s DLC coating contributed
to enhanced wear resistance and served as a protective layer, prolonging the material’s
lifespan. Exploring possibilities for synthesizing or mixing these ionic liquids could further
optimize their performance. Such endeavours may lead to improved lubrication properties,
enhanced compatibility with DLC coatings, and potentially cost-effective solutions. The
ball-on-disk test setup, depicted in Figure 6, served as a valuable tool by allowing the
examination of contact between the ball and rotating disk, providing insights into friction
and wear properties. This testing methodology finds extensive applications in both sliding
and rolling conditions, offering a comprehensive assessment of material performance and
durability in various industrial contexts.
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4.2. Tribology of Doped Diamond-like Carbon Coatings and Ionic Liquids

In their investigation, Madej et al. [174] explored the tribological properties of diamond-
like carbon (DLC) coatings, specifically a-C:H and a-C:H:W, fabricated using plasma-
assisted chemical vapor deposition (PACVD) and physical vapor deposition (PVD) methods.
These superhard anti-wear coatings were applied to steel elements and subjected to scrutiny
under both dry and ionic liquid lubricated conditions. The study utilized atomic force
microscopy (AFM) and scanning electron microscopy (SEM) for comprehensive surface
analysis, examining topography and cross-sections. Tribological assessments, employing
a ball-on-disc tribometer and a pin-on-plate tribometer, revealed that the DLC coatings
outperformed the steel substrate, displaying lower wear, reduced friction, and higher
hardness [174]. To delve further into the wear resistance and tribological performance,
there is potential in exploring synthesis possibilities such as optimizing blending ratios or
combining PACVD and PVD methods. The pin-on-disk test setup, elucidated in Figure 7,
emerged as a pivotal tool in assessing friction and wear characteristics in sliding contact
applications. This comprehensive study contributes valuable insights into the advanced
properties of DLC coatings. Table 2 shows the brief summary of the doped diamond-like
carbon coatings and ionic liquids.
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Table 2. Summary of the available literature investigating tribological performance of doped diamond-
like carbon coatings and ionic liquids.

Name of Ionic Liquids Tribometer Doped DLC Type Ref.

dialkyloimidazolium tetrafluoroborates
(Used as main lubricant, i.e., 100 wt.%)

T-01M tribometer
(ball-on-disc configuration) W-doped DLC [174]

tributylmethylphosphonium
dimethylphosphate (PP) (used as additive

with 1 wt.%)
and

1,3-dimethylimidazolium
dimethylphosphate (IM) (used as additive

with 1 wt.%)
and

1-butyl-1-methylpyrrolidinium
tris(pentafluoroethyl)trifluorophosphate

(BMP) (used as additive with 1 wt.%)

TE 38-Phoenix Tribometer
(reciprocating pin-on-disc

tribometer)
W-doped DLC, and Ag-doped DLC [23]

1,3-dimethylimidazolium
dimethylphosphate (used as additive with

1 wt.%)

UMT-2 tribometer with
(ball-on-flat-disc geometry) W-doped DLC [175]

(1) 1-butyl-1-methylpyrrolidinium
tris(pentafluoroethyl) trifluorophosphate

([BMP][FAP]) (used as additive with
1 wt.%)

and
(2) tributyl-methyl-phosphonium

dimethylphosphate (PP) (used as additive
with 1 wt.%)

and
(3) (2-hydroxyethyl) trimethylammonium
dimethylphosphate (AM) (used as additive

with 1 wt.%)

UMT-2 tribometer
(reciprocating motion with a
ball-on-flat-disc geometry)

W-doped DLC [176]

(1) tetrafluoroborate (LB104)
or [BF4] (LB104) (used as main lubricant,

i.e., 100 wt.%)
And

(2) tetrafluoroborate (LAB103) or [BF4]
(LAB103) (used as main lubricant, i.e.,

100 wt.%)

CSM Switzerland tribometer
(ball-on-disc)

Cr-doped GLC
and

Cr-doped DLC
[26]

trihexyltetradecylphosphonium bis
(2-ethylhexyl) phosphate [P_66614] [DEHP]

(used as additive with 1 wt.%)
Block-on-Ring configuration Gd-DLC and Eu-DLC [177]

trihexyltetradecylphosphonium
bis(trifluoromethylsulfonyl) amide (used as

main lubricant, i.e., 100 wt.%)

Anton Paar TRB tribometer
(Ball-on-disc configuration) Si-DLC [178]

1-alkyl-3-octylimidazolium
hexafluorophosphate (L-P801) (used as

main lubricant, i.e., 100 wt.%)
And

1-alkyl-3-octylimidazolium
hexafluorophosphate (L-P804) (used as

main lubricant, i.e., 100 wt.%)

UMT-2MT (reciprocating
ball-on-disk) Ti-DLC [179]

Hamid K. et al. studied tribological performance of three DLC coatings (DLC, W-
doped DLC, and Ag-doped DLC) deposited on stainless steel substrates in dry and lubri-
cated conditions using a water-based main lubricant additivated with three ILs [23]. The
doped coatings demonstrated superior mechanical integrity, toughness, and adhesion com-
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pared to undoped DLC. Among the coatings, the Ag-doped DLC had the best mechanical
properties. Tungsten carbide precipitates were formed by W in the DLC coating. Friction
was controlled by two different additive-adsorption mechanisms: a triboelectrochemical
activation mechanism for Ag-DLC and an electron-transfer mechanism for W-DLC, re-
sulting in the largest friction reduction [23]. The friction of DLC (diamond-like carbon) is
influenced by the electrical charge of the surface and the lubricant’s ability to adsorb to the
surface. The electrical conductivity of the lubricant (ionic liquid) drives the transport of
additives to the surface and impacts friction. The higher the lubricant’s electrical conduc-
tivity, the lower the friction. Additionally, the Zeta-potential of DLC surfaces in aqueous
solutions is negative, resulting in no change in friction with the addition of negatively
charged molecules [180,181]. The higher electrical conductivity in IL-additivated lubricants
leads to faster transport kinetics of the cation and anion moieties to the surface, resulting in
lower friction [23].

Arshad M. et al. explored the potential of enhancing the lubrication properties of
tungsten-doped diamond-like carbon coatings by incorporating a 1,3-dimethylimidazolium
dimethylphosphate ionic liquid into glycerol base oil. The researchers conducted tribologi-
cal tests under varying loads (5 N, 10 N, 20 N) and elevated temperature (100 ◦C). They
found that the friction coefficient was significantly reduced by approximately 50% when
1 wt% IL was included. They also discovered that the formation of a thin tribofilm on
the surface of the coatings played a crucial role in friction reduction. The study provides
insights into the lubrication mechanism and offers implications for the development of
improved lubricants for tribological systems [175].

Another investigation was conducted by Arshad M. et al. to examine the interaction
between coatings of tungsten-doped diamond-like carbon (WDLC) and three phosphate-based
ionic liquid (IL) additives. Among these additives, two contained the anion dimethylphosphate,
while the third contained the hydrolytic trifluorophosphate anion. The tests were carried
out under boundary-lubrication conditions. The findings indicated that IL additives
containing dimethylphosphate anions exhibited reduced friction on the surface of WDLC,
whereas the IL with trifluorophosphate anion displayed poor performance. Analysis of
the surface revealed the formation of a tribofilm based on phosphate on the WDLC surface
when dimethylphosphate additives were present, resulting in friction reduction. The
WDLC coatings demonstrated remarkable resistance to wear [176].

Researchers conducted a study on Chromium doped diamond-like carbon coatings
(Cr-DLC) using PVD and PECVD methods [26]. The lubrication performance of solid-liquid
composite lubrication systems was studied using two ionic liquids (ILs) as lubricants. The
findings indicated that the friction coefficient was reduced by about 40% when compared
to dry conditions, and the composite system displayed an effective synergistic lubrication
effect. The Cr-DLC coating showed superior tribological, mainly because of its improved
physicochemical film formation during friction and the dense microstructure of the Cr-
DLC coating. The ILs’ viscosity, corrosiveness, and coating microstructure influenced the
composite systems’ synergistic effect [26].

Rare earth metals, such as Gd and Eu, present an intriguing avenue for enhancing the
reactivity of diamond-like carbon (DLC) when incorporated into its composition. Studies
indicate that DLC films doped with low atomic concentrations (1–3 at.%) of Eu or Gd,
particularly in dry contact conditions without lubrication, exhibit a marginally higher
coefficient of friction (CoF). However, these films demonstrate commendably low wear
rates and boast high hardness, rendering them well-suited for diverse applications [177].
Furthermore, investigations by Shaikh et al. [182] and Sadeghi et al. [183] highlight that
DLC coatings doped with gadolinium can yield an even lower coefficient of friction com-
pared to pure DLC when subjected to trihexyltetradecylphosphonium bis(2-ethylhexyl)
phosphate [P66614] [DEHP] ionic liquid (1 wt.%) as an additive to polyalphaolefin (PAO) 8.
This is due to the reactivity of the ILs and dopants, to explore the possibilities and advan-
tages of synthesizing or mixing these materials, attention should be given to optimizing
the concentration of rare earth metal dopants for optimal tribological performance. The
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Block on Ring test setup, illustrated in Figure 8, played a central role in these investiga-
tions. This setup involves pressing a stationary block against a rotating ring, enabling the
measurement of friction and wear characteristics between the two components. Widely
applied in assessing materials for brake linings and clutch facings, the Block on Ring test
provides valuable insights into the durability and tribological properties of materials under
conditions resembling real-world applications. After the tests, the results were confirmed
using the calculations in the stribeck curve and SEM/EDS analysis which showed presence
of phosphoros from ionic liquid on the surface of the doped DLC coating.
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Similar study examined the effect of a silicon doping on tribological behavior of
diamond-like carbon coating in IL-lubricated friction pairs [178]. Tests showed that the
Si-DLC coating, when used with the ionic liquid, reduced both coefficient of friction and
wear. The study concluded that using Si-DLC coatings lubricated with the ionic liquid
helps to improve tribological properties of sliding surfaces under friction [178].

In another study, Ti-doped DLC coatings were analyzed using Raman and TEM.
Two types of 1-alkyl-3-octylimidazolium hexafluorophosphate ILs (L-P801 and L-P804)
were synthesized and evaluated as lubricants for Ti-DLC/steel contacts, with excellent
friction-reducing properties. To investigate the chemical components of tribofilm formed
on the contacting surface for Ti-DLC films in the presence of L-P801 ionic liquid, XPS
characterization method was applied which confirmed the existence of PF6 anion, anime
and/or nitrogen oxide, and fluoride on the surface. These coatings with ILs lubricating
systems have potential as lubricants in vacuum and space moving friction pairs [179].

Limited research has been conducted on the tribological properties of doped DLC
coatings with ionic liquids (ILs), and their combined effect has been found to be highly ben-
eficial. The addition of doping elements has been demonstrated to improve the tribological
properties of DLC coatings significantly. ILs, with their exceptional characteristics such
as excellent lubricity and high thermal stability, are deemed ideal for various tribological
applications. Through the formation of a protective film or tribofilm on the surface of the
coating, the combination of doped DLC coatings and ILs has been reported to elevate their
tribological properties further.
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5. Conclusions

Ionic liquids (ILs) are increasingly used in tribology, particularly as lubricating agents,
with extensive assessment in laboratory settings [100–104,106,107,184]. This review empha-
sizes the need for improved efficiency and environmentally friendly practices in industrial
operations and transportation systems, addressing concerns about energy conservation
and environmental sustainability. The exploration focuses on the application of diamond-
like carbon (DLC) coatings and ionic liquids (ILs) in tribology, covering their inherent
characteristics, testing, synthesis, and potential applications.

Preferably, the anionic constituents ought to manifest hydrophobic tendencies, thereby
enhancing tribological attributes and thermo-oxidative stability. The incorporation of
larger alkyl groups within imidazolium structures augments tribological performance but
concurrently precipitates a decline in thermo-oxidative stability. The augmentation of
anti-wear properties in ionic liquids can be achieved via additive technologies. Substantial
room for optimization still exists, especially in the arena of mitigating friction and inhibiting
corrosion. Notably, DLC coatings, particularly those imbued with doping agents, have
emerged as a boon in this regard, as the coupling of doped DLC coatings with ILs has
yielded notably diminished friction coefficients and reduced wear rates [182].

Given the recognition of ionic liquids as bespoke fluids, substantial endeavours must
be undertaken to engineer innovative lubricants. Notably, halogen-free anions are in high
demand. Cationic constituents exhibit a greater degree of flexibility in comparison to their
anionic counterparts, and cations possessing multifunctional groups are of pronounced
interest to the research community.

Doped DLC coatings synergize effectively with the pronouncedly polar nature of
ILs, and this amalgamation of characteristics is beginning to be harnessed within the
domain of tribology, endowing the field with advantages such as heightened load-carrying
capacity, the formation of tribolayers subsequent to interaction with sliding surfaces, energy
conservation through the mitigation of friction coefficients, and the reduction of wear rates
for sliding materials. These advancements stand to render DLC coatings applicable across
a spectrum of industries, encompassing aerospace, automotive, and turbomachinery.

The sheer diversity in the composition of anions and cations, lateral substituents, and
self-organization within diverse base fluids necessitates a concerted effort to discern the
optimal combination for each pragmatic application. ILs are characterized by their low
melting points, elevated combustion thresholds, minimal vapor pressures, remarkable
thermal stability, low volatility, and remarkable miscibility with organic substances. Within
the ambit of this review, the tribological performance of ILs is dissected, encompassing
their role both as standalone lubricants and as additives, their application within extreme
temperature lubrication contexts, and their potential in boundary lubrication scenarios
when paired with solid lubricating coatings.

For ILs to survive in the competitive atmosphere of lubrication and tribology, they must
exhibit effectiveness not solely as autonomous lubricants but also as supplements to other
fluids, including water, mineral oils, or synthetic oils. Ionic liquids find utility as lubricants
in vacuum machinery within space applications. Moreover, their application extends to
high-temperature environments characterized by substantial fire risks. Lubricants boasting
exceedingly low vapor pressures emerge as highly desirable for machinery deployed within
clean rooms where hazardous gases are stringently regulated.

The amalgamation of Ionic Liquids (ILs) with Diamond-Like Carbon (DLC) coatings
in emerging technologies exhibits considerable promise, albeit accompanied by intricate
challenges. Notably, the stability and compatibility of ILs with DLC coatings present
formidable hurdles, necessitating sustained efficacy under diverse operational conditions.
The synthesis complexity inherent in the fabrication of DLC coatings, coupled with the
nuanced integration of specific ILs, mandates sophisticated manufacturing methodologies
to ensure uniform deposition and controlled application [182]. Furthermore, environmental
ramifications, particularly concerning the potential toxicity or ecological impact of certain
ILs, underscore the imperative to identify environmentally benign alternatives.
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In terms of extensible dimensions and prospects, the amalgamation of ILs with DLC
coatings delineates a trajectory towards advanced tribological solutions. This innovation
holds promise for the development of sophisticated lubrication systems applicable in
high-performance machinery, automotive engines, and aerospace components. Although
the production costs associated with certain IL families, such as imidazolium derivatives,
continue to present a challenge in terms of competitiveness with established commercial
lubricant additives, the emergence of novel ILs via straightforward synthetic routes is
noteworthy. Furthermore, the utilization of ionic liquids as additives within synthetic
and mineral oils has yielded fruitful outcomes, culminating in the reduction of friction
coefficients and minimal wear. This effect is further accentuated when combined with
doped DLC coatings [182]. Ongoing research endeavours offer prospects for tailored
tribological solutions, wherein the customization of IL-DLC technology aligns with specific
industrial requisites. Notably, the judicious selection of environmentally friendly ILs
contributes to the overarching goal of environmental sustainability, aligning with global
initiatives for greener industrial practices. In summation, while challenges persist, the
extensible dimensions and prospects of Ionic Liquids with DLC coatings underscore their
potential as a groundbreaking tribological solution, necessitating concerted efforts to
surmount existing impediments and harness the envisioned advancements in diverse
scientific and industrial domains.
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