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Abstract: In this study, we comprehensively explored the electronic structure and optical properties of
Ni-doped Bi4O5Br2 through first-principles computational calculations. By calculating its electronic
structure and band characteristics, we investigated the impact of Ni doping on the photocatalytic
performance of Bi4O5Br2. The computational results indicated that Ni doping significantly altered the
band structure of Bi4O5Br2, leading to a reduction in the band gap width. The band gap for undoped
Bi4O5Br2 was 2.151 eV, whereas the Ni-doped system exhibited a smaller band gap, directly indicating
its enhanced visible light absorption capacity and facilitating the effective separation of photo-
generated electron–hole pairs. Through analysis of 2D charge density maps, we observed changes
in chemical bonding induced by Ni doping. The shortening of Ni-O bonds suggested increased
bond strength, consistent with the observed reduction in cell volume. These findings provide
a theoretical foundation for understanding the mechanisms behind the enhanced photocatalytic
hydrogen production performance in Ni-doped Bi4O5Br2, offering valuable insights for the design
and optimization of highly efficient photocatalytic materials.

Keywords: Ni-doped; Bi4O5Br2; first-principles calculations; photocatalysis

1. Introduction

In 1976, Japanese scientist Fujishima made a groundbreaking discovery that TiO2
could catalyze solar energy conversion through photocatalysis [1]. This discovery sparked
widespread interest among scientists, leading to significant advancements in energy and
environmental management [2,3]. Photocatalysis has demonstrated immense potential in
various applications, including water splitting to produce hydrogen [4], CO2 reduction into
organic compounds like methane, methanol, and formic acid [5], and ammonia synthesis
from N2 [6], providing a clean and sustainable alternative to conventional methods.

Furthermore, photocatalysis plays a crucial role in eco-friendly water pollution control,
preventing secondary pollution [7]. Various materials have been explored as photocatalysts,
including common sulfide photocatalysts like CdS [8], semiconductor oxide materials such
as TiO2 and ZnO [9,10], as well as materials like g-C3N4 and bismuth oxide semiconductors
(BixOyHz, where H=Cl, Br, I) [11,12]. Additionally, research has extended to encompass
metal-organic framework materials and covalent organic framework materials [13–15].
These materials have encountered limitations related to band gaps, light absorption ranges,
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and electron–hole recombination during photocatalysis [16,17]. Researchers have employed
diverse strategies to address these challenges, including constructing heterojunctions,
loading materials to inhibit electron–hole recombination, and doping to modify the energy
band structure [18–22]. Among these approaches, doping stands out as the simplest and
most effective method [23–25].

Bismuth oxybromide (Bi4O5Br2), as a ternary (V-VI-VII) semiconductor with the
molecular formula BiOX (X = Cl, Br, I), has garnered significant attention in the field of
photocatalysis due to its suitable band gap, unique two-dimensional (2D) layered structure,
and broad spectrum light responsiveness [26–31]. Among these BiOX materials, BiOBr,
with its appropriate band structure, has been a focal point of interest, yet there is still
room for improvement in its catalytic activity and light absorption range [32–36]. In
particular, Bi4O5Br2 nanostructures have drawn our attention due to their broader visible
light absorption edge and negative conduction band position when compared to pure
BiOBr materials [37–39]. However, for the practical application of Bi4O5Br2 in engineering,
there are still some limitations to address. For instance, it exhibits a relatively high charge
carrier recombination rate and a larger band gap, which restricts its photocatalytic efficiency
and also limits its absorption of visible light [40].

Despite the abundance of research on bismuth oxybromide (Bi4O5Br2) photocatalytic
materials and doping modifications, there has been relatively limited systematic theoret-
ical investigation into their electronic structure and optical properties [41–44]. Recently,
in the work by Wang et al., the enhancement of photocatalytic performance has been
achieved by doping Ni into BiOBr to increase the unit cell dipole moment and induce
spin polarization, thereby augmenting the built-in electric field [45]. Therefore, this study
employs density functional theory-based pseudopotential plane-wave methods to system-
atically calculate the electronic structure, density of states, complex dielectric function,
absorption spectra, and other properties of Ni-doped Bi4O5Br2. The aim is to theoretically
investigate how Ni doping enhances the photocatalytic performance of Bi4O5Br2. This re-
search provides crucial theoretical insights for the design and application of similar studies
in the future.

2. Computational Methods

Bi4O5Br2 belongs to the P21 space group with a = 10.94 Å, b = 5.65 Å, c = 14.60 Å,
α = γ = 90◦, β = 98.02◦ [46]. To calculate exchange-correlation energy, we applied the
Perdew-Burke-Ernzerh (PBE) generalized gradient approximation (GGA) based on density
generalization theory using the CASTEP code [47–49]. Geometric optimization employs
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method, and core electron interactions
are computed with OTFG ultrasoft pseudopotential [50,51]. For geometric optimization
and property calculations, we used a 6 × 6 × 2 k-point mesh and an energy cut-off of
580 eV. During atomic relaxation, energy convergence tolerance was set to no more than
1 × 10−5 eV/atom, and atomic forces were limited to less than 0.03 eV/Å, with maximum
stress and displacement capped at 0.05 GPa and 0.001 Å.

All computational models were constructed using Bi4O5Br2 (Figure 1a) original cells,
which contained 16 Bi atoms, 20 O atoms, and 8 Br atoms. The model of the single-doped
system is to replace one Bi atom with Ni. In our calculations, we only considered nickel
replacement doping Bi4O5Br2 (Figure 1b) because the radius and valence states of nickel
atoms favor replacement doping rather than gap doping [52].
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Figure 1. (a) Bi4O5Br2 (b) Ni-Doped Bi4O5Br2 (c) The structure used to calculate the chemical
potential of Bi and Ni.

3. Results and Discussion
3.1. Structure Optimization

After Ni replaces one Bi atom in the Bi4O5Br2 primary cell, the lattice constants
obtained were a = 5.74, b = 10.99, and c = 14.73 nm, which are 0.05 nm smaller than those
obtained by calculating Bi4O5Br2 for a, 0.15 nm smaller than for b, and 0.27 nm larger than
for c.

All the parameters of the two structures are listed in Table 1, and the main reason
for the analysis is that the radius of the Ni atoms is smaller than that of the Bi atoms
and that Ni is less electronegative, forming stronger covalent bonds with O after replac-
ing Bi atoms. This is mainly due to the fact that the radius of Ni atom is smaller than
that of Bi, and Ni is less electronegative and forms stronger covalent bonds with O after
the replacement of Bi atoms. The calculated Ni-O bond length is shorter than the Bi-O
bond, which increases the lattice constant. Chen et al. predicted through DFT calcula-
tions that by adjusting the reaction solution pH during the solvent–thermal synthesis
process, the crystal lattice parameter b of Bi2MoO6 could be shortened, inducing a larger
internal polarization [53]. Similarly, in our study, we achieved a reduction in lattice param-
eters through Ni doping, which significantly affects the distribution of electron density,
thereby inducing the distribution of electron–hole pairs and indirectly improving the
photocatalytic performance.

Table 1. Lattice parameters before and after optimization.

a b c α β γ Volume

Bi4O5Br2 5.79 11.14 15.00 82.43 89.99 90.01 960.41
Ni-Bi4O5Br2 5.74 10.99 14.73 82.35 91.05 87.87 950.17

To assess the comparative stability of the analyzed systems, we computed their doped
formation energies using the following formula:

E f = E(Ni−Bi4O5Br2)
− E(pure−Bi4O5Br2)

+ nBiµBi − nNiµNi (1)

where;

- E(Ni−Bi4O5Br2)
is the total energy of the doped Bi4O5Br2,

- E(pure−Bi4O5Br2)
is the total energy of Bi4O5Br2 without doping,

- nBi and nNi, represent the quantities of added or removed atoms of Bi and Ni, respec-
tively, in the assembly of various cells,
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- and µBi and µNi are the chemical potentials of, respectively; determined through DFT
calculations as illustrated in Figure 1c. Each of µBi and µNi corresponds to the energy
per atom in their respective bulk crystals, µBi and µNi.

Simultaneously, we computed doping formation energies for Ni separately (refer to
Table 2). The lower the doping formation energy, the greater the stability of the resulting
structure. Therefore, the structure with the eighth site is deemed optimal.

Table 2. Calculated doping formation energy at different locations.

Site 1 2 3 4 5 6 7 8

Formation energy/eV 1.76 1.70 2.42 2.44 2.62 2.34 2.71 1.91

3.2. Electronic Structures

The depicted energy band structures in Figure 2 illustrate the characteristics of both
undoped and Ni-doped materials, with the Fermi energy reference point set at 0 eV. It
is important to acknowledge that, in the realm of density functional theory (DFT), the
GGA-PBE method is renowned for its limitations, particularly in its tendency to underesti-
mate the material’s band gap when compared to experimental observations. Nevertheless,
despite this minor drawback, the obtained band gap remains adequate for conducting
a comprehensive exploration of electronic states and investigating optical properties in
subsequent analyses.
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Furthermore, it is worth noting that the computed band gap for undoped Bi4O5Br2, as
depicted in Figure 2a, stands at 2.151 eV, a mere 0.17 eV deviation from the experimentally
measured band gap width. While the predictions of PBE are not entirely accurate, it enables
a faster prediction of energy trends following structural changes without impacting the
analysis of band structures and electronic configurations [54]. As evident in Figure 2, there
is a discernible decline in band gap energy as we transition from the undoped system to the
Ni-doped system. This trend indirectly implies a gradual enhancement of the material’s
light absorption capability. In a recent work, Mao et al., using UV–vis diffuse reflectance
spectra and density function theory (DFT) calculations, indicated that Bi4O5Br2 possessed
stronger visible light adsorption, which is beneficial to effectively activate molecular oxygen
to produce [55]. This implies that the incorporation of Ni can significantly enhance the light
absorption capability of Bi4O5Br2, promoting the transfer of electrons and holes as well
as the generation of superoxide radicals. Combining these improvements in the catalyst
preparation process, the performance of the photocatalyst can be greatly elevated.

To delve deeper into the examination of doping’s impact on electronic properties,
we carried out calculations for the partial density of states (PDOS) and electron density
distributions around the Fermi energy level for both undoped and doped Bi4O5Br2, as
illustrated in Figure 3. Regarding undoped Bi4O5Br2, the partial density of states (PDOS)
is presented in Figure 3a. In this context, it is noteworthy that the valence band maxima
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(VBM) primarily originate from the 2p orbitals of oxygen (O) and the 4p orbitals of bromine
(Br), while the conduction band minima (CBM) are predominantly influenced by the 2p
orbitals of oxygen (O) and the 6p orbitals of bismuth (Bi).
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Figure 3. Total state density (TDOS) and projected state density (PDOS) of (a) Bi4O5Br2 and
(b) Ni-doped Bi4O5Br2.

In the case of Ni-doped Bi4O5Br2, as depicted in Figure 3b, the valence band maximum
(VBM) primarily arises from the O-2p orbitals with contributions from Ni-3d orbitals.
Conversely, the conduction band minimum (CBM) is predominantly governed by the Bi-6p
orbitals. Notably, the introduction of Ni doping, with Ni-3d peaks occurring within the
energy range of 0–2 eV, imparts a semi-metallic character to Bi4O5Br2. After Ni doping, a
sharp peak in the vicinity of 6 eV is observed in the O s and p orbitals. This is likely due
to the formation of a stable chemical bond between Ni and O, resulting in a significant
electron density near this energy. This sharp peak may have a crucial impact on electron
transport and photocatalytic performance of the material. Additionally, an enhanced
density of states (DOS) is observed in the range of 7–10 eV for Bi p orbitals and Br p orbitals,
attributed to the contribution of Ni d orbitals. Interaction between Ni d orbitals and Bi/Br
likely induces an increase in the electron density of these orbitals. This interaction may
lead to the formation of new electronic states, influencing the electronic structure of the
catalyst. Consequently, this alteration reduces the energy gap between the valence band
and conduction band, resulting in a redshift of the optical absorption edge. This, in turn,
enhances the photocatalytic efficiency of the doped system.

In Figure 4a–c,f–h, we present the 2D charge density maps for Bi4O5Br2 and Ni-doped
Bi4O5Br2, respectively. Upon analyzing various cross-sections, it becomes evident that
the introduction of Ni in place of Bi (Figure 4d,e) results in a reduction in bond length,
indicating that the Ni-O bond is stronger compared to the Bi-O bond. This observation
aligns with the findings in Table 1, which indicate a decrease in cell volume following Ni
atom doping. As illustrated in Figure 4, the differences in bonding properties between the
atoms in the undoped and doped cases are relatively subtle. Furthermore, as demonstrated
in Figure 4i, we explored the impact of Ni doping on the electron transfer properties of the
Bi4O5Br2 samples by utilizing the charge density difference calculated through DFT. In this
representation, the yellow color signifies a gain of electrons, while the blue color indicates
electron loss.
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It is noteworthy that the difference in charge density highlights an electron-rich
environment around the surface of Br atoms. Observing Figure 4i allows for us to conclude
that, during the photocatalytic process, the built-in electric field formed after Ni doping
suppresses the recombination of electrons (e−) and holes (h+), thereby enhancing charge
separation efficiency. This enables sustained involvement of photo-generated electrons
in reduction reactions, while photo-generated holes participate in oxidation reactions,
ultimately improving the photocatalytic performance.

3.3. Optical Properties

Ni doping introduces impurity energy levels that markedly enhance light absorption.
The simulated absorption spectra of Bi4O5Br2 and Ni-doped Bi4O5Br2 are depicted in
Figure 5a. The imaginary part of ε2(ω) related to the optical absorption of the photocatalytic
materials is shown in Figure 5b. The absorption coefficient is expressed as follows:

α(ω) = (
√

2)ω
[√

ε1(ω)2 + ε2(ω)2 − ε1(ω)

] 1
2

(2)

where ε1(ω) and ε2(ω) are the real and imaginary parts of the dielectric function, respec-
tively, and both depend on the optical frequency (ω). When the dielectric function ε2 is
not zero, it can be determined that the absorption coefficient is positively correlated with
it. Doping induces a redshift in absorption peaks, expanding the absorption range. In the
low-energy region, Ni doping significantly enhances absorption, favorably influencing
photocatalytic performance.
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Figure 5. Imaginary part of (a) light absorption range (b) dielectric function of Bi4O5Br2 and Ni-
Bi4O5Br2.

The light absorption of Bi4O5Br2 in the visible range (1.6–3.1 eV) was poor. Ni doping
resulted in a significant enhancement of the light absorption of Bi4O5Br2 in the visible
range and extended the absorption range from the visible region to the infrared region. It is
proved that Ni doping is favorable for the photocatalytic activity enhancement of Bi4O5Br2.

3.4. Photocatalytic Properties

In a photocatalytic reaction, semiconductor materials initially absorb the energy of pho-
tons, which must exceed or match the material’s band gap energy level (Eg). This photon-
induced excitation results in the generation of photoexcited electron–hole pairs within the
semiconductor. Photoexcited electrons transition to the conduction band, attaining higher
energy levels, while photoexcited holes remain in the valence band. Subsequently, these
photoexcited charge carriers (electrons and holes) propagate through the semiconductor
material, either driven by an applied electric field or moving through diffusion toward the
material’s surface. This step is crucial as it facilitates the transport of photoexcited carriers
to the catalytic reaction sites. However, during their migration, photoexcited electrons and
holes may occasionally recombine, releasing previously absorbed energy, typically in the
form of heat or light. Upon reaching the surface of the semiconductor and the catalytic sites,
photoexcited electrons and holes participate in the catalytic reaction. Typically, photoex-
cited electrons are involved in reduction reactions, while photoexcited holes take part in
oxidation reactions. This surface-driven redox chemistry ultimately initiates and sustains
the catalytic reactions. These catalytic reactions encompass a broad range of processes,
including gas conversion, water decomposition, organic compound degradation, and
more. In these reactions, chemical energy is usually released, leading to the production of
desired products.

Hence, we have derived the CBM and VBM of Bi4O5Br2 through a synergistic approach
that combines theoretical insights with DFT calculations. This comprehensive approach
enhances our ability to make more accurate predictions regarding Bi4O5Br2 photocatalytic
performance. The CBM and VBM potentials of undoped Bi4O5Br2 are empirically calculated
using the following formulas [56]:

ECBM = −1
2

Eg + χBi4O5Br2 + E0 (3)

EVBM = +
1
2

Eg + χBi4O5Br2 + E0 (4)

χBi4O5Br2 = (χ4
Biχ

5
Oχ2

Br)
1

11 (5)
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where Eg is the band gap energy, χBi4O5Br2 is the absolute electronegativity of Bi4O5Br2.
χBi, χBr and χO are the Pearson absolute electronegativity of, respectively. According to
the literature: χBi = 4.69, χBr = 7.59 and χO = 7.54 [57]. The parameter E0 serves as the
scale factor that connects the reference redox level to the absolute vacuum scale [56]. The
obtained CBM of Bi4O5Br2 is 0.77 and VBM is 2.92. While for the Bi4O5Br2 after Ni doping
the CBM and VBM are 0.89 and 2.81, respectively. In the case of Ni-doped Bi4O5Br2, the
CBM is shifted downward by 0.12 eV with respect to Bi4O5Br2, thus greatly improving
the photoreduction capacity. Furthermore, the VBM values of the doped system span the
oxidation-reduction potential of hydroxyl radicals. This is consistent with the analysis in
the electronic structure section, where changes in the valence band and conduction band
are evident in the generation of free radical groups. This can significantly improve the
catalytic performance of the catalyst.

Therefore, the mechanism underlying the enhanced photocatalytic activity can be
elucidated as follows. Firstly, Ni introduces impurity energy levels with both upper
and lower spin in the bandgap of Bi4O5Br2 after doping, altering the electron transition
pathways and significantly reducing the bandgap of Bi4O5Br2. Secondly, the optical absorp-
tion performance of the Ni-Bi4O5Br2 composite material not only exhibits a pronounced
redshift but also shows enhanced absorption intensity. Thus, this catalysis even holds
potential for infrared reactions. In comparison to pristine Bi4O5Br2, these two advantages
can significantly increase the excitation rate of photo-generated electron–hole pairs. The
effective spatial separation of oxidation and reduction centers markedly suppresses the
recombination of electron–hole pairs, thereby improving charge carrier utilization. The com-
bined effect of these factors endows the Ni-Bi4O5Br2 composite material with outstanding
photocatalytic performance.

4. Conclusions

In order to explore the physical origin of the experimentally observed doping en-
hancement on the photocatalytic performance of Bi4O5Br2, we conducted a comprehensive
study of the electronic structure and optical properties of Ni-doped Bi4O5Br2 through
first-principles computational calculations. The computational results indicate that Ni
doping significantly alters the band structure of Bi4O5Br2. The band gap for undoped
Bi4O5Br2 is 2.151 eV, whereas the Ni-doped system exhibits a smaller band gap, directly
indicating its enhanced visible light absorption capacity. In comparison to the undoped
system, Ni doping leads to more efficient separation of electrons and holes, further pro-
moting the photocatalytic performance. Through the analysis of 2D charge density maps,
we observed changes in chemical bonding induced by Ni doping. The shortening of
Ni-O bonds suggests increased bond strength, consistent with the observed reduction
in cell volume.

Furthermore, our analysis using DFT-computed charge density difference maps re-
vealed that Ni doping alters the electron transfer and changes the electron-rich environment
around Br atoms on the surface. We can conclude that, during the photocatalytic process,
the built-in electric field formed after Ni doping suppresses the recombination of electrons
(e−) and holes (h+), thereby enhancing charge separation efficiency. In terms of light ab-
sorption, Ni doping significantly enhances the absorption of Bi4O5Br2 in the visible range,
extending the absorption range into the infrared region. This enhancement is not only
theoretically supported but also quantitatively contributes to the improved photocatalytic
activity of Bi4O5Br2. This study provides concrete guidance for the design of efficient
photocatalytic materials and underscores the effectiveness of Ni doping as a strategy to
enhance photocatalytic performance.
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