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Abstract: This study presents a methodology to fabricate Ti6Al4V cylindrical compacts with a highly
porous core and dense shell with the aim to mimic the bone microstructure. Compacts with different
core diameters were obtained via conventional pressing and sintering. Large pores were created
with the aid of pore formers. Dilatometry was used to determine the sintering kinetics, while X-ray
computed tomography was used for characterization. Also, the permeability was evaluated on the
3D microstructure, and the mechanical strength was evaluated via compression tests. The results
indicated that sintering was constrained by the different densification rates of the porous and dense
layers. However, defect-free compacts were obtained due to neck bonding between the Ti6Al4V
particles. Large pores were located in the designed core with a similar pore size distribution. The
permeability increased following a power law as a function of the pore volume fraction. The porous
core drove the stiffness of the bilayer components, while the combination of both layers increased
their strength. The bilayer materials showed permeability (1.36 × 10−10 m2), mechanical properties
(E = 6.83 GPa and σy = 299 MPa), and admissible strain (σy/E = 43 × 10−3) similar to those of
human bones.

Keywords: sintering; Ti6Al4V alloy; compression; computed microtomography; biomedical
applications

1. Introduction

The development of porous materials with localized porosity has attracted significant
attention in producing bone implants with tailored properties [1,2]. The most widely used
manufacturing materials to produce porous materials over the last two decades have been
bioglasses [3] and metal alloys; they offer unique properties that can be difficult to achieve
with other materials, such as porous polymers (which have a low mechanical resistance
and little stability at high temperatures) and porous ceramics (which are highly fragile,
limiting their use [4]), such as stainless steel, cobalt chromium, and titanium alloys [4–7].
The materials are chosen based on the specific characteristics of the bone to be replaced
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or improved and its location. Currently, one of the most used techniques for fabricating
porous materials is additive manufacturing (AM), but its cost is strongly limiting [1,2,8].
Nonetheless, different studies have been reported with respect to the effect of the porous
size, strut size, and pore shape on the mechanical properties of scaffolds fabricated via
AM [9–11]. The main disadvantage of AM is that the porosity created has a regular and
homogenous shape and size, which is different from real human bones. Thus, in order
to imitate the real porosity of bone, there is a process that favors the formation of pores
with subsequent sintering, which is presented as a cheaper alternative to other methods
for the manufacture of porous systems: the spacer technique. In this technique, temporary
particles added to the matrix metal powder are used; these particles maintain the space
and act as pore formers [12–16]. Titanium alloys are the most studied materials because of
their high specific strength, excellent corrosion resistance, and exceptional biocompatibility;
because Ti and many of its alloys are superior to other biomaterials, such as stainless steels
and Co-Cr-based alloys; because they have no toxic interaction with the human body; and
because, in addition, they have a great potential to prevent bacterial growth [17]. The
main problem that is solved by scaffold configuration is the reduction in the mechanical
properties, which is a major concern that needs to be addressed in order to reduce the
phenomenon called stress shielding. Likewise, this phenomenon is one of the main causes
of aseptic loosening, which is generated by the difference in rigidity between the bone and
the implant [18]: 116 GPa for Ti [19] and 1–30 GPa for human bones [1]. It is well established
that the mechanical properties of the materials are reduced to the same extent that the
volume fraction of the pores increases [20,21], generally following a power law, such as that
proposed by Gibson and Ashby [22]. Other works have found that the pore characteristics
could influence the reduction in the mechanical properties, such as the size and shape. They
have proposed models including the parameters of the pore characteristics that are not easy
to obtain, and most of them were projected from 2D images, which increases the incertitude
of such models [23,24]. Recently, Cabezas et al. suggested that the exponent in the power
law proposed by Gibson and Ashby can be adjusted to find a good response for porous
Ti6Al4V materials fabricated via powder metallurgy with the space holder technique [18].
To produce a successful implant, it must have mechanical properties, biocompatibility, and
adequate osseointegration. Biocompatibility refers to the material’s ability to be accepted
by the human body; this property is limited by the material’s cytotoxicity (the release
of hazardous ions). Therefore, Ti is one of the materials with the best-demonstrated
biocompatibilities [25]. On the other hand, osseointegration is the ability of the material to
facilitate bone ingrowth. The property called permeability is of principal importance, as it
allows the flow of nutrients and osteocytes and also removes metabolic wastes as they are
transported through the pores of the bone, which are associated with bone adaptation and
regeneration [26]. In addition, interconnected pores enhance anchorage and vascularization;
thus, better mechanical adhesion between an implant and bone can be achieved [27–30].
Different authors have evaluated the permeability of scaffolds, which increases as a function
of the pore size and volume fraction [30–32]. Olmos et al. [33] investigated the permeability
of porous samples fabricated via the space holder technique. The authors demonstrated the
anisotropy of the permeability in porous materials by measuring it in the longitudinal and
transverse orientations, which is consistent with previous reports for human bones [34].

Most of the reports in the literature have linked the pore volume fraction and the
pore characteristics to mechanical and flow properties as well as to cell and/or bone
ingrowth for components with uniform porosity. Nonetheless, the real bone microstructure
includes porosity gradients that enable specific cell migration during tissue regeneration,
vascularization, and tissue ingrowth by facilitating gas diffusion, nutrient supply, and
waste removal. Recently, some studies have been devoted to analyzing the possibility
of developing functional gradient porous materials, with the aim to mimic the real bone
microstructure via AM processes [35–41]. Wu et al. [35] fabricated radial gradient porosity
materials, and they proposed an empirical model to predict the mechanical properties,
taking into account the gradient of porosity. Wang et al. [39] designed pore functionally
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graded scaffolds (PFGS) via laser beam melting, and they demonstrated that the cell
proliferation rate was 1.5 times larger than the one developed in the scaffold with the same
porosity. Xiong et al. [40] developed functionally graded materials with honeycomb-like
unit cells, introducing a radial gradient in the pore sizes. They found that the Young’s
modulus obtained for such materials is similar to the one of cortical bone but that the
yield strength and toughness are higher than those of materials with homogenous porosity,
which is more desirable for bone implant materials.

On the other hand, using the space holder technique, only a few works have reported
on the fabrication of two-layer components via powder metallurgy. M. Dewidar and
Kim [42] and Lee et al. [43] produced Ti-based systems consisting of a solid core and
a porous outer shell, where they studied the compressive behavior of these two-phase
systems. On the other hand, Ahmadi and Sadrnezhaad [44] presented a component with
a configuration similar to human bone, where there were porous cores and dense outer
layers. The results included a variation in the diameter of the porous core from 6 to 14 mm,
while the external diameter remained constant at 16 mm. In this study, it was shown that
the elastic modulus depends linearly on the thickness of the porous core.

The present work is focused on multilayer components with graded porosity fabricated
via the conventional sintering of Ti6Al4V alloy powders. The mechanical properties of the
components are evaluated via compression tests. The pore features are evaluated by X-ray
microtomography at different resolutions, and the permeability values are deduced from
3D images via numerical simulations.

2. Materials and Methods
2.1. Materials

Prealloyed Ti-6Al-4V spherical powder with particle size distribution of 0–45 µm
(Figure 1a), manufactured by Raymor (Quebec, QC, Canada), was used as the base material.
Ammonium bicarbonate salt ((NH4)HCO3) with a particle size of 100–500 µm (Figure 1b)
and an irregular shape was used to generate large pores (Alfa Aesar, Haverhill, MA, USA).
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Figure 1. (a) Prealloyed Ti6Al4V spherical powder and (b) ammonium bicarbonate salt ((NH4)HCO3).

2.2. Sample Preparation

Monolayer samples were fabricated with or without pore formers by means of die
pressing and sintering. Powders of Ti6Al4V without pore formers were mixed with
polyvinyl alcohol (PVA) as a binder at 1 wt.% and were then simply poured into an
8 mm diameter steel die. Then, samples were compacted with a pressure of 500 MPa. The
PVA was subsequently removed at 500 ◦C with 30 min of residence in an argon atmosphere;
thus, the resulting green density of these compacts was around 70%. The highly porous
monolayers were prepared by mixing Ti6Al4V with 30, 40, and 50% volume fractions of
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the salt particles ((NH4)HCO3). Also, 1% PVA was added as a binder, and the mixture was
compacted at 500 MPa pressure in a cylindrical stainless steel 8 mm die. Salt particles were
eliminated at 180 ◦C for 6 h under argon atmosphere. These samples were used to evaluate
the mechanical properties as a reference to the bilayer components.

Bilayer samples were fabricated by combining layers of dense and porous materials by
using the porous core and dense shell configuration for the samples. Porous-core samples
were those with a mixture of Ti6Al4V and salt particles in the center of the compacts.

To obtain bilayer samples, stainless steel tubes of two different diameters, 3.0 and
5.66 mm, were placed at the center of the 8 mm diameter stainless steel die. The size of the
diameter allowed there to be two ratios of volume in the whole sample corresponding to
each layer, 85/15 and 50/50 for the outer layer and core, respectively. Different quantities
of pores were obtained in the porous core by adding 30, 40, and 50% of salt particles. First,
the Ti6Al4V powders filled the outer section to obtain a denser layer. Then, a punch was
used to flatten the surface. Afterward, the mixture of Ti6Al4V and salt particles was poured
inside the tubes, and both layers were then axially pressed at 500 MPa, as illustrated in
Figure 2. The procedure to fabricate bilayer samples can be found elsewhere in more
detail [45]. Afterward, the samples were pressed at 500 MPa. Finally, the salt was removed
as described above.
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Figure 2. Schematic of the bilayer-component-processing steps.

The sintering process of green samples was carried out in a Linseis L75V vertical
dilatometer at 25 ◦C/min until reaching 1260 ◦C, remaining in argon atmosphere for 1 h.
The dilatometer was purged to remove the air by flowing high-purity argon for 30 min
before heating. After sintering, the relative density of samples was obtained by measuring
the volume of samples and weighing them to obtain the pore volume fraction. Figure 3
shows an image of the samples after sintering, where it is possible to see the porous core
from the surface.

2.3. Microstructure Characterization and Mechanical Evaluation

The sintered samples were cut and metallographically prepared with SiC abrasive
paper and alumina powder to obtain a surface roughness (Ra) of 70 nm. The microstruc-
ture was observed with a field-emission scanning electron microscope (FE-SEM TESCAN
ORSAY HOLDING, a.s., Brno-Kohoutovice, Czech Republic), Tescan MIRA 3 LMU, with a
voltage of 20 keV.
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A study of macroporosity was carried out using 3D images acquired via computerized
microtomography (CMT) in a Zeiss Xradia 510 Versa 3D X-ray microtomograph Jena,
Germany). In order to observe the 8 mm diameter Ti64 samples, an intensity of 120 kV
was used. In total, 1600 projections were obtained around the samples in 360◦ with a CCD
camera of 1025 × 1025 pixels. The resulting voxel size of approximately 9 µm allowed for
observation of the entire sample. This resolution permitted an analysis of the pores created
by the ammonium bicarbonate salt particles.

The 3D images were manually processed to obtain binary images at a constrained
threshold based on the relative density, previously obtained from the actual mass and vol-
ume. Once the binary images were obtained, the solid and porous phases were represented
with voxel intensities of 255 and 0, respectively. From the processed images, the porosity
characteristics were obtained, such as the volume fraction, the size distribution, and the
size of the channels, according to the process explained by L. Olmos et al. [33].

Simple compression tests were performed according to ASTM D695-02 [46] with
an Instron 1150 universal testing machine; the strain rate was 0.5 mm/min. The elastic
modulus (E) and the elastic limit (σy) were calculated from the load displacement data
provided by the machine for triplicate samples. For stress calculation, a data correction
was performed assuming that the volume was constant during the test; this assumption
is reasonable for low strains where E and σy are estimated. With the aim to observe the
dispersion of the data, three samples at each conditions were prepared and the average
value as well as the standard deviation were estimated.

The flow properties of the porous samples were evaluated via numerical simulation of
permeability using the Avizo® software version 2019 on the 3D reconstructed binary images
obtained via tomography. To run the numerical simulations, a minimum representative
volume (MRV) was obtained by selecting a 20 × 20 × 20 voxel volume cube from the
center of the 3D image; then, the relative density for this volume was calculated. The
operations carried out were repeated in 20 voxels per side of the cube until reaching a
relatively constant relative density; a similar method was proposed by Okuma et al. [47].
To save numerical simulation time due to computational limitations, a minimum volume
was calculated to obtain a maximum value of precision. A volume of 2503 voxels3 was
obtained, in which the relative density reached an almost constant value; therefore, a
volume of 300 × 300 × 300 voxels (20 mm3 of the real volume) was used for the numerical
simulations that were performed. The numerical simulations were carried out in three
directions, where the X and Y Cartesian axes were the horizontal planes and Z was the
vertical axis.

With the aid of the Avizo® software, numerical simulations were performed based
on Darcy’s law, solving the Navier–Stokes equations via the finite volume method. The
simulation considered a Newtonian fluid in steady state, representing the blood, with a
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viscosity of 0.045 Pa·s. The pressure conditions used at the inlet and outlet were 130 and
100 kPa, respectively.

3. Results and Discussion
3.1. Dilatometry Analysis

The axial strain during the sintering cycle of the monolayer and bilayer samples was
plotted as a function of time and temperature (Figure 4a). The curves show an initial
dilation until sintering was activated at 680 ◦C. Then, the slope of the curve changed to
negative values, which indicates a shrinkage of the compacts with exponential behavior
until the end of the isothermal stage. Finally, the stage of cooling added a small shrinkage
due to the thermal contraction of the samples. It was found that the final strain was larger
for the porous sample and that the one obtained for the bilayer was in the middle, between
the porous and dense monolayer samples. It can also be noted that the shrinkage of the
bilayer with a ratio of porous core to dense shell of 50/50 was larger than the one with a
ratio of 85/15. This behavior indicates that densification was due to a combination of both
layers. This can be confirmed by the strain rate of the bilayer samples, which increased as
the diameter of the porous core decreased (see Figure 4b). A high strain rate was reached in
the porous sample because of the macroscopic deformation caused by the sintering effects,
and neck formation and growth, and the deformation of the large pores was due to the
sintering stresses that developed as a result of the densification.

Coatings 2023, 13, x FOR PEER REVIEW 7 of 16 
 

 

  
Figure 4. Dilatometry of the bilayers of Ti6Al4V samples: (a) axial strain (dimensionless unit) and 
(b) strain rate. 

Table 1. Relative density measured and estimated via the rule of mixtures (R-M). 

Sample Relative Density (D) Relative Density (R-M) Ratio DR-M/D 
Ti6Al4V P0 0.9633 ± 8 × 10−3 --  

Ti6Al4V P30 0.5436 ± 1 × 10−2 --  
Ti6Al4V P40 0.3972 ± 2 × 10−2 --  
Ti6Al4V P50 0.3378 ± 2 × 10−2 --  

Bilayer 85/15 P30 0.7706 ± 3 × 10−2 0.9043 1.17 
Bilayer 85/15 P40 0.7544 ± 4 × 10−2 0.8837 1.17 
Bilayer 85/15 P50 0.7238 ± 3 × 10−2 0.8753 1.20 
Bilayer 50/50 P30 0.6557 ± 6 × 10−2 0.7532 1.14 
Bilayer 50/50 P40 0.6026 ± 4 × 10−2 0.6800 1.12 
Bilayer 50/50 P50 0.5827 ± 5 × 10−2 0.6502 1.11 

3.2. Tomography Analysis 
Virtual 2D slices of the bilayer samples showing the distribution of the large pores 

illustrate the interface between the porous core and the dense shell (Figure 5). Large pores 
were well located in the middle of the samples, and two different diameters could be dis-
tinguished. Because of the voxel resolution of the 3D images, it was not possible to observe 
the interparticle porosity remaining after sintering. Nevertheless, this analysis was more 
focused on the location of the large pores and on confirming that no fissures or delamina-
tion were found at the interface. It can also be qualitatively noticed that the strut size in 
the porous core reduced as the pore volume increased. A 3D rendering of the bilayer sam-
ples fabricated with 30 and 50 vol.% of salts and 85/15- and 50/50-diameter core ratios are 
shown in Figure 6a–d, respectively. It can be noticed that the core has a cylindrical shape 
that goes from top to bottom. Also, the connectivity of the pores is illustrated by a color 
code that indicates if large pores are connected to each other. As can be observed, the 
porosity that was created was fully interconnected, which was in agreement with that 
found for the monolithic porous samples [19]. 

The pore volume fraction in the porous core of the bilayer samples showed an in-
crease with respect to the volume fraction of the pore formers used (see Table 2). This was 
mainly because the interaction of the pore-former particles induced an additional in-
terparticle porosity. The pore size distribution of the porous core of the bilayer samples 
was estimated from the 3D images, and its values were very similar no matter the quantity 
of the pore formers used (Figure 7a). This suggests that the salt particles were randomly 

0

200

400

600

800

1000

1200

1400

Dense Layer
Porous Layer
Bilayer 85/15
Bilayer-50/50

Time (s)

A
xi

al
 s

tr
ai

n

Te
m

pe
ra

tu
re

 (°
C

)

10, 00080006000400020000
−0.18

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0.02

0

a)

0 200 400 600 800 1000 1200

Dense Layer
Porous Layer
Bilayer 85/15
Bilayer-50/50

St
ra

in
 ra

te
 (s

-1
)

Temperature (°C)

2x10-5

− 2x10-5

− 4x10-5

− 6x10-5

− 8x10-5

− 1x10-4

− 1x10-4

− 1x10-4

− 2x10-4

0

b)
Figure 4. Dilatometry of the bilayers of Ti6Al4V samples: (a) axial strain (dimensionless unit) and
(b) strain rate.

The relative densities of the samples after sintering are listed in Table 1, and as expected,
the values of the bilayer samples were in between those of the monolayer samples that
composed it. However, to establish if the relative density of the samples corresponded to
the volume of each layer, the rule of mixtures was used. The rule of mixtures can be written
as follows:

Db = fc Dc + fs Ds (1)

where Db, Dc, and Ds represent the relative density of the bilayer, core, and shell samples,
respectively. Dc and Ds were assumed to be the relative density of the monolayer samples
obtained under the same fabrication conditions as those of the bilayer samples, and fc and
fs represent the volume fraction of the core and shell samples, respectively. The volume
fractions of the porous-core and dense-shell layers corresponded to 15 and 50% and 85
and 50%, respectively. It was found that all the relative densities estimated via the rule
of mixtures were higher than the ones that were measured. This suggests that a greater
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interparticle porosity was obtained, which was generated by the stresses generated at the
interface of both layers. Although this difference can be as high as 10 times between the
porous and dense samples, the delamination of the core layer was not observed [44,48,49].
The larger ratios of the DR-M/D (see Table 1) found in the bilayer 85/15 samples indicate
that the dense layer should be more affected by this effect. Therefore, the relative density of
the bilayer was lower than the one predicted via the rule of mixtures.

Table 1. Relative density measured and estimated via the rule of mixtures (R-M).

Sample Relative Density (D) Relative Density (R-M) Ratio DR-M/D

Ti6Al4V P0 0.9633 ± 8 × 10−3 --
Ti6Al4V P30 0.5436 ± 1 × 10−2 --
Ti6Al4V P40 0.3972 ± 2 × 10−2 --
Ti6Al4V P50 0.3378 ± 2 × 10−2 --

Bilayer 85/15 P30 0.7706 ± 3 × 10−2 0.9043 1.17
Bilayer 85/15 P40 0.7544 ± 4 × 10−2 0.8837 1.17
Bilayer 85/15 P50 0.7238 ± 3 × 10−2 0.8753 1.20
Bilayer 50/50 P30 0.6557 ± 6 × 10−2 0.7532 1.14
Bilayer 50/50 P40 0.6026 ± 4 × 10−2 0.6800 1.12
Bilayer 50/50 P50 0.5827 ± 5 × 10−2 0.6502 1.11

3.2. Tomography Analysis

Virtual 2D slices of the bilayer samples showing the distribution of the large pores
illustrate the interface between the porous core and the dense shell (Figure 5). Large pores
were well located in the middle of the samples, and two different diameters could be
distinguished. Because of the voxel resolution of the 3D images, it was not possible to
observe the interparticle porosity remaining after sintering. Nevertheless, this analysis
was more focused on the location of the large pores and on confirming that no fissures or
delamination were found at the interface. It can also be qualitatively noticed that the strut
size in the porous core reduced as the pore volume increased. A 3D rendering of the bilayer
samples fabricated with 30 and 50 vol.% of salts and 85/15- and 50/50-diameter core ratios
are shown in Figure 6a–d, respectively. It can be noticed that the core has a cylindrical
shape that goes from top to bottom. Also, the connectivity of the pores is illustrated by a
color code that indicates if large pores are connected to each other. As can be observed,
the porosity that was created was fully interconnected, which was in agreement with that
found for the monolithic porous samples [19].

The pore volume fraction in the porous core of the bilayer samples showed an increase
with respect to the volume fraction of the pore formers used (see Table 2). This was mainly
because the interaction of the pore-former particles induced an additional interparticle
porosity. The pore size distribution of the porous core of the bilayer samples was estimated
from the 3D images, and its values were very similar no matter the quantity of the pore
formers used (Figure 7a). This suggests that the salt particles were randomly distributed
without big agglomerates that could form larger pores. A wide pore size distribution from
50 to 580 µm was found (see Table 2), which corresponded to the size of the pore formers.
The median pore size (d50) ranged from 168 to 184 µm (Table 2), indicating that the pore
formers were surrounded by the Ti64 particles. On the contrary, the median strut size
showed a reduction as the pore volume of the pore formers increased from 97 to 61 µm
(see Table 2). This represents a reduction of 38% for an increase in the pore volume of 44%,
indicating a linear behavior for the strut size with respect to the pore volume fraction. The
pore and strut sizes of the scaffolds fabricated in this study were lower than those obtained
in the scaffolds fabricated using additive manufacturing (AM), which ranged from 350 to
1400 µm for the pores and 466 to 941 µm for the struts depending on the AM technique
used [50–52]. However, the pore size distribution was suitable to allow for cell adhesion
and the formation of the mineralization tissues that lead to bone ingrowth [53–55].
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Table 2. Pore characteristics of the porous-core layers fabricated with different quantities of pore formers.

Volume Fraction
of Pore Formers

(%)

Pore Volume
Fraction (%)

Median Pore Size
(d50 µm)

Median Strut Size
(d50 µm)

Permeability
(m2 ×10−10) Tortuosity

30 32.32 ± 1 174.10 97.12 0.19 ± 8 × 10−2 1.82
40 42.50 ± 2 168.36 82.26 0.47 ± 9 × 10−2 1.58
50 57.26 ± 2 184.79 61.27 1.36 ± 1 × 10−1 1.37
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Figure 7. (a) Pore and strut size distributions (dimensionless unit) and (b) permeability as a function
of the pore volume fraction of the porous-core layer with different volume fractions of bilayer samples.

The permeability was estimated from the numerical simulations of the 3D microstruc-
ture issued from the porous core, and the values are listed in Table 2. As expected, the
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permeability increased as the volume fraction increased. The behavior corresponded to a
cubic power law with respect to the pore volume fraction, as is shown in Figure 5b. This
is consistent with the different models proposed to estimate permeability based on the
Kozeny–Carman model [56,57]. A more tortuous path for the samples with a 30 vol.%
of pore formers can also be noted from the flow lines in comparison to the ones with a
50 vol.% of pore formers (Figure 6e,f). This confirms the reduction in the tortuosity that
was measured from the 3D images and listed in Table 2. The permeability values were
also in the range of that reported for human bones. For example, permeability ranges
from 3 × 10−11 to 5 × 10−10 m2 for human proximal femurs and from 10−8 to 10−9 m2 for
human vertebral bodies, according to Nauman et al. [34].

3.3. Mechanical Strength Analysis

The compression behavior of the bilayer samples is shown in the stress–strain curves
in Figure 8a. As a reference, the monolithic samples are also plotted. As expected, the
strength decreased as the pore formers and the core diameter increased. It can also be
noticed that the ductility was reduced because the strain of the bilayer was reduced due
to the effect of the dense shell. The elastic modulus (E) and the yield stress (σy) were
estimated from the elastic part of the curves in Figure 8a, and the values are listed in
Table 3. The monolithic samples showed a large reduction as the pore volume increased,
showing the lowest value of E, 0.32 GPa, and σy, 9.7 MPa. However, the values of E that
were deduced from the stress–strain curves should be taken with caution because they
were frequently underestimated in comparison to the ones reported via the ultrasonic
method [58]. The E values of the bilayer samples also showed a reduction that showed an
exponential behavior as a function of the ratio of the surface of the porous core to that of
the dense shell (Figure 8b). The reduction in the mechanical properties was similar to the
one reported by Gryko et al. [59], who evaluated this value via finite element numerical
simulations on materials designed via AM with different pore shapes. On the other hand,
the behavior of the radial bilayer samples reported by Ahmadi and Sadrnezhaad showed
a lineal behavior [44], whose values are also plotted in Figure 8b for comparison. It can
be seen that lower values were obtained in this work for similar porous-core diameters,
which was due to the quantity of pores generated by the pore formers. The E value was
estimated using the rule of mixtures, as performed above for the density, with the aim to
understand the behavior of the samples under compression. The rule of mixtures can be
rewritten as follows:

Eb = fc Ec + fs Es (2)

where Eb, Ec, and Es are the elastic modulus of the bilayer, core, and shell samples, respec-
tively. Ec and Es were assumed to be the E of the monolayer samples obtained under the
same fabrication conditions as the bilayer samples, and fc and fs are the volume fraction of
the core and shell samples, respectively. The ER-M values were higher than those measured
from the stress–strain curves (see Table 3). This was consistent with the values of the
relative density estimated via the rule of mixtures; however, the ER-M/E ratio was larger
than that obtained from the density.

On the other hand, the σy values of the bilayer samples also showed a reduction as the
core diameter increased, which was as expected. Nevertheless, the behavior was close to
linear instead of the exponential behavior found for E. σy was also estimated via the rule of
mixtures as was performed for E:

σyb = fc σyc + fs σys (3)

where σyb, σyc, and σys represent the yield stress of the bilayer, core, and shell samples,
respectively. σyc and σys were assumed to be the σy of the monolayer samples listed in
Table 3. It was also found that the rule of mixtures overestimated the measured σy; however,
the σyR-M/σy ratio was close to one. This indicates that σy followed a linear trend since the
rule of mixtures is a linear equation. In addition, the admissible strain (σy/E), which should
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be as high as possible to improve the mechanical behavior of a bone implant, as suggested
in [60], is also shown in Table 3. The values were from 10 × 10−3 to 43 × 10−3, the highest
being the value for the bilayer of 50/50 P50. These values were in the range reported for
human bones (from 0.011 for compact bone to 0.035 for trabecular vertebrae) [1].

Table 3. Mechanical properties of monolayer and bilayer samples.

Sample E (GPa) ER-M (GPa) ER-M/E σy (MPa) σyR-M (MPa) σyR-M/σy σy/E (10−3)

Ti6Al4V P0 83.7 ± 3.01 -- 846.5 10.11
Ti6Al4V P30 4.7 ± 0.16 -- 58 12.34
Ti6Al4V P40 1.6 ± 0.05 -- 31.3 19.56
Ti6Al4V P50 0.32 ± 0.01 -- 9.7 30.31

Bilayer 85/15 P30 40.8 ± 1.47 72.59 1.77 643.9 735.61 1.14 15.78
Bilayer 85/15 P40 33.7 ± 1.21 44.15 2.15 445.5 451.81 1.01 21.73
Bilayer 85/15 P50 27.8 ± 1.00 72.15 2.14 615.5 731.86 1.18 18.26
Bilayer 50/50 P30 20.5 ± 0.73 42.60 2.87 399.8 438.44 1.09 27.01
Bilayer 50/50 P40 14.8 ± 0.53 71.97 2.58 608.5 728.82 1.19 21.88
Bilayer 50/50 P50 6.83 ± 0.24 42.60 6.23 299 438.44 1.46 43.77
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Figure 8. Stress–strain compression curves of bilayer samples with different ratios of porous-core
diameters (a) and Young’s modulus as a function of the surface ratio of core to shell layer (b) [44].

Different models have been proposed to predict the elastic modulus of porous materi-
als as a function of the pore volume fraction [22–24,61]. Some of them consider the pore
shape by introducing shape factors that are generally measured from 2D postmortem im-
ages, which makes it difficult to englobe the different porous materials. Cabezas et al. [18]
found that the Gibson and Ashby [22] power law can accurately predict E values by fitting
the exponent of the power law to be four instead of the original two that was proposed,
resulting in the following equation:

E = E0D4 (4)

where E0 is the elastic modulus of the fully dense materials. Thus, the E values of the
monolayer and bilayer samples are depicted in Figure 9a, and a good accuracy for predicting
the E values was found with the model by considering the relative density. This could
suggest that the stiffness of the bilayer samples was driven by the porosity of the samples.
This could be confirmed from the fractured images shown in Figure 10, in which pore
closure in the core layer could occur during the deformation process. It can also be seen
that the fracture showed a 45◦ angle formed at the shell, Figure 10a,c, no matter the core
diameter nor the pore volume fraction.
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Figure 10. SEM images of the fractured samples after compression tests: (a,b) Show porous cores
with 30% volume of pore formers, and (c,d) show porous cores with 50% volume of pore formers.
(e) Backscattering image at higher magnification to show the microstructure and (f) XRD pattern of
sintered samples.

On the contrary, the values of σy for the bilayer samples did not follow the behavior
estimated for the same power law proposed in [18]. These values were much higher, which
suggests that σy was more dependent on the dense shell. This could confirm that the
stiffness and strength of the bilayer samples cannot be estimated simply by the rule of
mixtures since the interaction of both layers played a role in the mechanical behavior in
which the deformation of the pores gave more elasticity, as can be seen in the fractured
images in Figure 10b,d. Meanwhile, the dense shell gave a high resistance, as suggested by
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the fracture path in Figure 10a,c. This analysis assumes that the microstructure of samples
is composed of the typical α + β lamellar in both porous and dense layers. Figure 10e
illustrates the configuration of the β lamellae inside the α grains, which is obtained after
sintering of the samples. Moreover, Figure 10f shows the X-ray pattern of the samples in
which the α phase is predominant, although the main peak of the β phase is also detected.
Therefore, the mechanical properties are mainly associated with the induced porosity in
the samples.

From the results obtained and discussed above, it can be said that the bilayer samples
with a volume ratio of core to shell of 50/50 and beyond can be used for bone implants
since their microstructure, permeability, and mechanical characteristics can better mimic
those of human bones.

4. Conclusions

A pressing and sintering process was successfully developed to fabricate porous-core
materials that mimic the microstructure of human bones. The main findings are as follows:

No cracks were formed during sintering because the porous core and the dense shell
were composed of the same kind of particles, which generated interparticle bonds at the
interface of both layers.

The stiffness of the bilayer components was driven by the porous core, while their
strength resulted from the combination of both layers. This gave materials their permeabil-
ity and mechanical properties as well as a high admissible strain (σy/E) similar to that of
human bones.

To specifically obtain the mechanical or permeability values, the quantity of pores or
the porous-core diameter should be adjusted for optimization according to the proposed
power law.
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