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Abstract: Disturbances caused as a result of the misalignment and axial motion of the journal affect the
characteristics of the rotor-bearing system. This paper aims to propose an algorithm for the theoretical
analysis of a rotor-bearing system that considers these disturbances. A theoretical model for a journal
bearing considering disturbances is given. The dynamic equations for a rigid rotor-bearing system
are introduced. A detailed algorithm that can simultaneously solve the rotor-dynamic equations
and the Reynolds equation is proposed. The static performance, such as the bearing attitude angle
and the fluid film pressure, are given, and dynamic characteristics such as the nonlinear dynamic
responses and the axial orbits of a rigid rotor-bearing system are presented. The hydrodynamic effect
of the bearing is enhanced by the axial disturbance. Disturbances in the circumferential and radial
directions lead to variations in the fluid film thickness distribution in the axial direction and the
offset of the fluid film pressure distribution in the axial direction. When these disturbances work
together, the variation trend is more obvious and affects the capacity and dynamic characteristics of
the bearing. When the L/D value of the bearing increases, the clearance between the journal and the
bearing decreases rapidly. When the value reaches a certain limit, contact and collision might occur.
The theoretical analysis method and the algorithm proposed for a rotor-bearing system considering
several disturbances could enhance the design level for a bearing and rotor-bearing system.

Keywords: disturbance; journal bearing; fluid film pressure; rotor-bearing system; nonlinear response

1. Introduction

Journal bearings are widely used in rotating machinery such as steam turbines, gas
turbines, water turbines, and compressors, among others. The static and dynamic charac-
teristics of the journal bearing affect the dynamic behaviors of the rotor-bearing system
significantly. When working conditions such as the working parameters of both the bear-
ing and the rotor vary, the characteristics of the bearing vary accordingly. Many studies
concentrate on these topics.

The disturbances caused by serious working conditions contribute many variations
to the bearing performance and the influence of dynamic behaviors on the rotor-bearing
system. Some possible explanations for the disturbances include the effects of transmission
parts, load variation, the Morton effect, deformation, a rotor with a large unbalanced mass,
and the structure of the single bearing support. When the rotating machinery is used on
ships or vehicles, disturbances such as axial motion and misalignment might occur. These
disturbances can cause the fluid film characteristics of the bearing to vary, which might
influence the dynamic behavior of the rotor-bearing system.

Many studies have focused on plain journal bearings, tilting-pad bearings [1], four-
pocket bearings [2], and air bearings [3] without considering the effects of rotor mis-
alignment. The characteristics of journal bearings and rolling bearings considering this
misalignment were discussed mainly through theoretical analysis. The influences of tur-
bulent effects [4,5], textured surfaces [6,7], and THD (thermo-hydrodynamic) [8–10] were
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considered. The characteristics of rolling bearings considering an inner ring misalignment
were also researched [11]. For a new kind of MR (Magnetorheological) journal bearing,
misalignment and surface irregularities were considered [12]. Misalignment also has sig-
nificant effects on the thrust bearings [5,13]. An experiment and numerical research was
carried out in order to explain mixed lubrication when considering misalignment [14].

The linear [15] and nonlinear [16–18] effects on the bearing characteristics caused
by rotor disturbances were also researched. The axial motion [19–21] was also taken
into consideration. The effects of misalignment of the rotor-bearing system on the fault
diagnosis was also a hot topic [22,23]. However, there is less research concentrating on the
comprehensive effects, including axial motion and radial and circumferential disturbances
of the rotor. There is a lack of discussion of the dynamic characteristics of rotor-bearing
systems [24] due to the complex theoretical analysis.

This paper aims to explain the influences of several disturbances on the journal
bearings and the rotor-bearing system and to enhance the design level for a bearing and
rotor-bearing system. In order to explain the influences of several disturbances on the
journal bearings and the rotor-bearing system, especially for the bearings with a larger
length-to-diameter ratio, detailed work related to the theoretical modeling and simulation
analysis of a rigid rotor-bearing system is proposed. The theoretical models of both the
bearing and the rotor-bearing system are given in Section 2, and detailed explanations of
the algorithms are also presented in this section. Section 3 presents the simulation results
of the bearing and rotor-bearing system with a detailed discussion. The brief conclusions
are shown in Section 4.

2. Model and Algorithm
2.1. Journal Disturbances

Disturbances can affect the capability and dynamic characteristics of journal bearings.
Therefore, the journal bearing model with disturbances considered should be given more
attention. A rotor-bearing system with certain disturbances is shown in Figure 1. When
the journal is disturbed, it may rotate around the x-coordinate axis, rotate around the
z-coordinate axis, or translate along the z-coordinate axis. When the disturbances appear,
the axial center will move near a balance point. Assuming that O′(e0x, e0z) is the initial
position of the mass center of the rotor, the coordinates’ relationship to the balance point
can be expressed by the following: 

e0x= e0sin θ0
e0y= e0cos θ0

tan θ0= e0x/e0y

(1)

where e0 is the distance between O and O′, while θ0 is the angle between line OO′ and the
x-axis positive direction.
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Figure 1. Schematic diagram of journal disturbances. (a) Front view; (b) side view; (c) top view. 
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Assume that Oi(e ix, eiy
)

is the i-th point on the rotor axis related to the z-coordinate.
The journal rotates around the x-coordinate axis and the y-coordinate axis, which can be
denoted by γ and β, respectively. Then, eiy and eix can be written as follows:{

eiy= e0y ± ∆yi
eix= e0xi ± ∆xi

(2)

where ∆yi and ∆xi can be expressed as

∆yi =


(

L
2 − zi

)
tan γ ≈

(
L
2 − zi

)
γ , zi ∈ [0, L

2 ](
−L

2+zi

)
tan γ ≈

(
−L

2+zi

)
γ, zi ∈ [L

2 , L]
(3)

∆xi =


(

L
2 − zi

)
tan β ≈

(
L
2 − zi

)
β , zi ∈ [0, L

2 )(
−L

2+zi

)
tan β ≈

(
−L

2+zi

)
β, zi ∈ [L

2 , L]
(4)

So, the new balance position, Oi
(
eix, eiy

)
, is written as

ei =
√

eix
2 + eiy

2=

√[
e0sin θ0 +

(
−L

2
+ zi

)
β

]2
+

[
e0cos θ0 +

(
−L

2
+ zi

)
γ

]2
(5)

tan θi =
eix

eiy
=

e0sin θ0 +
(
−L

2 + zi

)
β

e0cos θ0 +
(
−L

2 + zi

)
γ

(6)

where ei is the distance between O and O′, while θ0 is the angle between OOi and an x-axis
positive direction.

Furthermore, Ol and Or are the intersection points between the rotor axis and the left
and right end faces of the bearings. The position can be found in Figure 1.

2.2. Model of Journal Bearing

A hydrodynamic bearing considering the journal disturbances is presented in Fig-
ure 2a. The dimensionless fluid film thickness, considering journal disturbances, is written
as follows:

H = 1 + ei cos(θ− θi)/c (7)

where c is the difference between the bearing radius and the shaft radius, also known as
the radial clearance of the journal bearing.
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The boundary conditions of these equations are as follows: 

Figure 2. Schematic diagram of a hydrodynamic bearing and a rigid rotor system: (a) bearing;
(b) rotor-bearing system.
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Without taking into consideration the viscosity variation with respect to temperature
and turbulence, the hydrodynamic journal bearing is described by the following:

∂

∂x

(
h3

µ

∂p
∂x

)
+

∂

∂z

(
h3

µ

∂p
∂z

)
= 6 U

∂h
∂x

+6 W
∂h
∂z

+12 V (8)

where x and z are the coordinates of the rotor rotating direction and axial direction, respec-
tively, and h, p, µ, U, W, and V are the thickness of the fluid film, the distribution of
pressure, the viscosity of the fluid, the normal velocity, the axial velocity, and the tangential
velocity of the rotor, respectively.

2.3. Model of Rotor-Bearing System

A rigid rotor with an unbalanced mass is taken as an example to analyze the dynamic
characteristics shown in Figure 2b. The rotor is supported by the same two journal bearings.
The rotor mass is 2 m and the unbalance radius is ξ = O′A. The values Fx and Fy are the
nonlinear fluid film forces. Due to the nonlinear characteristics of the fluid film forces and
the rotor unbalance at higher rotor eccentricity, the nonlinear effects of the rotor-bearing
system should be considered.

The rotor is affected by the fluid film forces at both sides, as shown in Figure 2a. The
dynamic model of the rigid rotor-bearing system can be expressed as{

2m
..
x = −2Fx+Funbalancesinωt

2m
..
y = −2Fy+2W + Funbalancecosωt

(9)

where Funbalance = 2ξmω2, x and y are the responses of the journal along the x- and
y-directions, and 2W = 2 mg is the rotor weight. The model can be rewritten as{

m
..
x = −Fx+ξmω2sinωt

m
..
y = −Fy+W + ξmω2cosωt

(10)

which is expressed with the state equation and output equation as follows:

∑ :




.

Y1.
Y2.
Y3.
Y4

 =


Y2

1
m

(
−Fx+ξmω2 sinωt)

Y4
1
m

(
−Fy+W + ξmω2 cosωt){
x
y

}
=

{
Y1
Y3

} (11)

The boundary conditions of these equations are as follows:
Y1(0)= x0
Y2(0)= 0
Y3(0)= y0
Y4(0)= 0

(12)

where (Y1(0), Y3(0)) is the initial equilibrium position of the journal bearing and Y2(0) and
Y4(0) are the initial velocities along the x-direction and y-direction of the mass center of the
journal bearing.

2.4. Algorithm

The Reynolds equation is solved using the finite difference method. The proce-
dures of calculating the bearing with journal disturbances can be concluded in two steps:
(1) Input the initial parameters of the bearing to solve the steady Reynolds equation; then,
the equilibrium position is obtained, which can be expressed with the eccentricity ratio and
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the attitude angle. (2) Using the eccentricity ratio and the attitude angle obtained in the
previous step, the Reynolds equation considering the disturbances is solved to obtain the
fluid film pressure, fluid film thickness, and the capability of the bearing. The details can
be found in Figure 3.
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Figure 3. Flowchart for the calculation of the journal bearing.

In order to analyze the nonlinear dynamics characteristics of the rigid rotor-bearing
system considering the journal disturbances, an algorithm is proposed. The algorithm is to
solve the dynamic equations and the Reynolds equation simultaneously. In other words, the
algorithm is to solve the second-order differential equations and the second-order partial
differential equation simultaneously. The details are provided in Figure 4. The aim of this
algorithm is to avoid the errors that come from two possible aspects: (1) when solving the
stiffness and damping coefficients of the journal bearings, the linear hypothesis is used;
(2) the linearized stiffness and damping coefficients are usually obtained by solving the
perturbed Reynolds equation. However, the bearing performance considering the journal
disturbance is obtained by solving the unsteady Reynolds equation. If the perturbation
equation is used on this basis, the errors will be superimposed.
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3. Results and Discussions

In this section, the characteristics of a bearing considering the journal disturbances are
given. The nonlinear dynamic analysis of a rigid rotor-bearing system is also presented.
The discussion of these results is given in detail.

3.1. The Characteristics of the Bearing

Table 1 gives the main parameters of a bearing considering the journal disturbances.

Table 1. Main parameters of the bearing and rotor.

Parameters Value

Bering

Diameter/mm 100.8
Width/mm 100

Clearance ratio 0.008
Eccentricity 0.1~0.9

Rotor

γ/deg 0.01–0.04
β/deg 0.01–0.08

W/m·s-1 0–6
Speed/rpm 3000

Viscosity 0.009

Figure 5 shows the equilibrium position variation law with the variation in the bearing
eccentricity. Figure 5a is the equilibrium position variation when the rotor rotates around
the y-axis with a range of 0.01–0.04 degrees. The results indicate that the equilibrium
position varies slightly when the eccentricity is less than 0.7 and changes greatly when the
eccentricity is large. Figure 5b presents the equilibrium position variation law with the axial
velocity of the journal. With the same eccentricity, the larger the axial velocity is, the lower
the equilibrium position is. With the same axial velocity, the equilibrium position becomes
lower with the increase in eccentricity. The variation law of the equilibrium position when
the rotor rotates around the x-axis is given in Figure 5c. When the angle is small, the
equilibrium position variation is not obvious, and the larger the angle is, the more obvious
the variation. Figure 5d presents the equilibrium position variation law with the axial
velocity of the journal when the angle with respect to the x-axis is constant. The results
indicate that when the axial velocity varies, the eccentricity is larger, and there is a slighter
effect on the equilibrium position variation.

The fluid film pressure distribution of the bearing is presented in Figure 6 under the
parameters in Table 1. Figure 6a,b show the variation trends of the dimensionless pressure
distribution of the bearing with the dimensionless bearing length when the rotor rotates
around the y-axis and the x-axis, respectively. These two variation trends are similar. The
results indicate that compared with the normal situation, the pressure distribution is not
symmetric around the vertical line λ = 0. The maximum pressure becomes large with the
increase in the angle. The position where the maximum pressure occurs also shifts as the
angle increases. When the angle with respect to the y-axis varies from 0 to 0.04 degrees, the
maximum pressure value increases by 10%, and the position where the maximum pressure
occurs offsets by nearly 0.5 dimensionless bearing length. When the angle with respect
to the x-axis varies from 0 to 0.04 degrees, the maximum pressure value increases by 7%,
and the position where the maximum pressure occurs offsets by nearly 0.5 dimensionless
bearing length. Figure 6c shows the dimensionless pressure distribution variation with the
axial velocity when the angle with respect to the y-axis is constant. It can be concluded
that the maximum pressure increases as the axial velocity increases, and it exhibits more
than a 26% increase when the axial velocity varies from 0 to 8 m/s. However, the position
where the maximum pressure occurs has little variation with respect to the axial velocity.
Figure 6d presents the dimensionless pressure distribution variation with the length-to-
radius (L/D) ratio of the bearing. As the L/D value increases, the maximum pressure value
increases, and the position of the maximum pressure offsets. When the L/D value varies
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from 1 to 4, the maximum pressure value increases by nearly 90%, and the position where
the maximum pressure occurs offsets to the right by nearly 60%.
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The possible reasons for this are as follows: (1) when the rotor rotates around the y-axis,
the fluid film thickness is a function of the z-coordinate, which results in the distribution
variation of the fluid film pressure; (2) when the journal has a disturbance along the z-axis,
the axial velocity will affect the hydrodynamic effects when the variation in the fluid film
pressure distribution is considered, though the effect is slight when the rotating angle is
small; and (3) the angle at which the rotor rotates should be limited to a certain range,
especially when the eccentricity is much smaller or much larger. When the angle is too
large, contact between the rotor and bearing might occur. Compared with the angle with
respect to the y-axis, the angle with respect to the x-axis will affect the equilibrium position
when the eccentricity is smaller, which may be a result of the fact that the attitude angle is
generally larger when the eccentricity is smaller.

3.2. The Characteristics of a Rigid Rotor-Bearing System

Table 2 presents the main parameters of a rigid rotor-bearing system considering the
journal disturbances.

Table 2. Main parameters of the rotor-bearing system.

Parameters Value

Bearing

Diameter/mm 100.8
Width/mm 100

Clearance ratio 0.008
Eccentricity 0.75

Rotor

γ/deg 0.01–0.08
β/deg 0.01–0.08

W/m·s−1 0–6
Speed/rpm 3000

Unbalance mass/Kg·m 1.2
Rotor mass/kg 400

Figure 7 shows the rotor responses and axis orbits under three working conditions:
(a) different angles with respect to the y-axis; (b) different L/D values; and (3) different
axial velocities. Because the influences on the angles concerning the x- and y-axes on the
bearings are similar, the angles with respect to the y-axis are taken as an example.

Figure 7a shows that (1) as the angle with respect to the y-axis increases, the influence
on the response of the x-direction is more obvious than that of the y-direction, though the
most significant difference is the initial value in different conditions; (2) the influence on
the response of the y-direction occurs on the positions with maximum vibration; the larger
the angle value, the more obvious the variation; and (3) the axis orbit shape varies and the
orbit offsets. When the angle value is 0.08, the orbit shape is obviously different compared
with the shape at the small angle value.

The possible reason why these phenomena occurred in Figure 7a is that the fluid
film dynamic characteristics vary due to the axis misalignment. The difference in the
axis misalignment angle also causes equilibrium position variation, which results in the
difference in the initial response value in both the x- and y-directions.

Figure 7b indicates that the influences on the responses and the axis orbit are much
more obvious as the L/D values increase. The response in the x-direction is noticeably
affected by the L/D value. The amplitude of the response increases as the L/D values
increase, and the response contains multiple frequency components. Similarly, the response
in the y-direction varies significantly with the change in the L/D values. The axis orbit
shape varies greatly as the L/D values increase, which reflects the axis misalignment level.

These distinguishing features shown in Figure 7b may be caused by the different abso-
lute displacements due to the divergence of the L/D values with the same misalignment
angle. When the L/D value increases, the clearance between the journal and the bearing
decreases rapidly. When the value reaches 5, contact and collision might occur.
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The responses and axis orbit of the rotor-bearing system with the variation of the
journal axial velocity are presented in Figure 7c. The response in the x-direction is affected
less by the journal axial velocity, and the influences are mainly concentrated on the positions
where the responses are large. There are fewer influences on the responses in the y-direction
as the journal axial velocity increases, but the differences are obvious at the position where
large responses occur. The axis orbit shape variation is not distinct, though the range of the
axis orbit is significantly increased.

The possible reason for these features shown in Figure 7c is as follows. The hy-
drodynamic effect of the bearing is enhanced with the axial disturbance. The journal
misalignment leads to a variation in the fluid film thickness distribution in the axial di-
rection and the offset of the fluid film pressure distribution in the axial direction. When
the axial disturbances and the misalignment work together, the variation trend is more
obvious, which affects the capacity and dynamic characteristics of the bearing. Therefore,
the variation range of the rotor equilibrium position increases.

4. Conclusions

A theoretical model using the dynamic equations for a journal bearing considering
disturbances and a rigid rotor-bearing system is developed. A detailed algorithm that can
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simultaneously solve the rotor-dynamic equations and the Reynolds equation is proposed.
The main conclusions are as follows:

(1) The disturbances in the circumferential and radial directions lead to the variation in
the thickness distribution of the fluid film in the axial direction and the offset of the
fluid film pressure distribution in the axial direction.

(2) The hydrodynamic effect of the bearing is enhanced with the axial disturbance. When
disturbances in circumferential, radial, and axial directions work together, the varia-
tion trends of the fluid film thickness and pressure are more obvious.

(3) When the L/D value increases, the clearance between the journal and the bearing
decreases rapidly.

(4) In future work, the efficiency of the algorithm needs to be improved according to
different kinds of rotor-bearing systems.
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