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Abstract: Microbial deterioration as one of the widespread problems in archaeological site museums
significantly affects their safety and exhibits. This paper systemically investigated the environments
and conditions of microbial outbreaks in the Dadiwan No. F901 site museum, which is a representative
archaeological site of prehistoric Yangshao culture. The morphology and harmful characteristics of
the outbreak microorganisms were analyzed by microscopic techniques. The ultraviolet resistance
of harmful microorganisms was also studied. Combining these findings with the original facilities
of the site museum, a scientific and reasonable project was proposed to control and prevent the
activity of harmful microorganisms. In addition, a 1% OIT/DCOIT biocide concentration was applied
to inhibit microorganism-caused deterioration, in combination with mechanical removal based on
laboratory tests and screening in situ. The effectiveness of microbial control was assessed using a
portable microscope, ATP bioluminescence assay, and color difference detection. As a long-lasting
preventive measure for microbial deterioration, an ultraviolet sterilization system can efficaciously
prevent the re-outbreak of microbial deterioration to form a relatively stable dynamic balance for the
surroundings of the site. This study is a resultful exploration in terms of microbial control and plays
an important role in the sustainable protection of archaeological site museums.

Keywords: Dadiwan site; microbial deterioration; microbial elimination; environmental control;
prevention and conservation

1. Introduction

The construction of a site museum is a primary method for the in situ conservation of
cultural sites [1–3]. However, in situ conservation remains challenging work influenced
by various factors, including climate, environment, and the vulnerability of relics. Among
them, the outbreak and contagion of harmful microorganisms, particularly prominent
in environments with high relative humidity [4], have seriously negative impacts and
exacerbate the deterioration process of sites in site museums. This poses a disadvantage for
the conservation and exhibition of historical information in cultural sites.

In the early 1980s, mold deterioration broke out on the murals in the Takamatsuzuka
Tomb of Japan due to irreversible changes in indoor environmental conditions, high-
temperature and humidity environments, and the aging of restorable materials. The
deterioration was so severe that the Takamatsuzuka Tomb had to be dismantled and
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relocated after 2000 years [5]. The prehistoric rock paintings in the Lascaux Cave in France
have been subjected to erosion by various microorganisms since discovery to date. Bastain
F et al. have reported that the main factors contributing to the microbial outbreak were
large-scale archaeological excavations and numerous tourists [6]. Similar to the Lascaux
Cave, Altamira prehistoric rock art was forced to close because of microbial erosion [7,8].

As relevant studies about heritage conservation are gradually being produced by
experts, it is suggested that microorganisms are one of the vital factors detrimental to the
conservation and sustainability of heritage sites. Currently, microbially induced calcite
precipitation as a preservation method has been applied in earthen sites for site consolida-
tion [9,10]. However, in recent years, microbial deterioration has been widely threatening
the preservation and display of earthen sites. It has been reported that the organic acids
produced by microorganisms could react with metal ions to crystalize on the surface of
sites, leading to cracks, efflorescence, desquamation, etc. Meanwhile, the mycelium from
fungi could penetrate the substrate of the site to result in cracks that impact stability [11,12].
The diversity and distribution of microorganisms have been researched in many earthen
sites [13–15], and related control and preventive measures have been proposed to han-
dle microbial deterioration [16–20], but they are rarely put into practice in large-scale
conservation projects of earthen sites as study achievements.

The Dadiwan Neolithic site is located at the east of Shaodian Village, Wuying Town,
45 km northeast of Qin’an County, Gansu Province, Northwest China. It dates back
approximately 7800 to 4800 years and covers a total area of 2.75 million square meters. The
discovery of the site is of great significance for establishing the sequence of prehistoric
culture in the upper reaches of the Wei River, studying the emergence and development of
neolithic culture in the Yellow River basin, and exploring the historical process of the origin
of Chinese civilization, especially the No. F901 palace site, which represents the greatest
achievements of Shaoyang cultural buildings [21,22]. Since 2018, after the construction of
the new site museum building and the installation of an internal glass curtain wall, the
site has been in a relatively closed state of preservation. In 2019, the site managers found
white colonies on the surfaces of the site and surrounding buildings where the amounts
of microbial colonies had been seen to increase and extend to threaten the long-term
preservation of the site over time. Therefore, the aim of this study is to propose a complete
and long-term effective technique process and conservation project to solve the current
microbial deterioration problems existing in the Dadiwan F901 site museum and provide
scientific support for the construction and sustainable management of site museums in
the future.

2. Materials and Methods
2.1. Study Site and Environmental Monitoring

The Dadiwan No. F901 site museum is located in Yanjiagou Village, at the southwest
corner of the Dadiwan Neolithic Site Protection area (35◦0′45.9′′ N, 105◦55′10.2′′ E), with
an altitude of about 1673 m. The F901 site covers an area of about 420 square meters
and is a well-preserved multi-room complex. The layout of the entire site is regular and
symmetrical. The site sets a precedent for later palace architecture as the largest magnificent
building discovered so far in the archaeological exploration of the Neolithic age in China.
Notably, the earliest concrete floor and the earliest building of fire-prevention technology
fully reflect the superb wisdom and exquisite skills of our ancestors over 5000 years ago. In
1988, the Dadiwan F901 site was designated as a National Key Cultural Relic Protection
Unit [23,24].

In this study, environmental monitoring was specifically conducted to explore the
relationship between microbe outbreaks and relevant environmental factors. Temperature
and relative humidity (RH) outside the site museum were continuously monitored hourly
using a HOBO® U-30 data logger (Onset Computer Corporation, Bourne, MA, USA)
installed in the meteorological station and another HOBO® U23-001 data logger (Onset
Computer Corporation, Bourne, MA, USA) attached to the top of the middle of the north
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wall of the F901 site. Temperature, RH, and air dew point temperature were automatically
recorded at intervals of 10 min. Detailed monitoring locations are shown in Figure 1.
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Figure 1. The location of the Dadiwan F901 site museum (A) and detailed monitoring site (B) at the
inner of the F901 site (C) and outside the Dadiwan site museum (D).

2.2. Morphology of Harmful Microorganisms
2.2.1. In Situ Observation

Representative locations were selected on the surfaces of site F901, including the
main site (walls, exterior walls from the pillar hole, and ground), backfill soil and cement
outside the site, surface of the glass curtain wall, and surroundings. A portable microscope
(3R-MSA620WF, Anyty, Beijing, China) was used to observe microbial growth in the field
at these locations and capture pictures for the record.

2.2.2. Profile Characteristics of Samples

Small particle residues attached to the obvious microbial colonies were collected from
the debris of the site ground and cement ground of peripheral buildings. To preserve
structural relationship information between the microorganisms and the site surfaces, these
residues were embedded in situ using epoxy resin and a curing agent (Epo Thin TM,
Buehler, Lake Bluff, IL, USA). Subsequently, they were transferred to the laboratory for
polishing with a polisher (BUEHLER metaserv 250, Lake Bluff, IL, USA) for microbial
observation with a polarizing microscope (DM2200P, LEICA, Wetzlar, Germany) to analyze
the growth situation and the interaction between microbial filaments and soil [25].

2.3. Removal Methods of Harmful Microorganisms

In line with the characteristics of the soil structures and materials, microbial attach-
ment, and microenvironmental conditions at the Dadiwan F901 site, a combination of
mechanical removal and biocides was utilized to eliminate microorganisms for site preser-
vation. A negative-pressure dust suction device equipped with various types of soft
brushes and other mechanical cleaning methods was used to eliminate microbial colonies
and residues from the surfaces of the site [26]. Subsequentially, a biocide was applied to
inhibit microorganisms, targeting microbial spores and filaments in the pores or cracks of
the site soil.

2.3.1. Screen of the Mechanical Removal Tools

Dadiwan F901 site, constructed from sandy soil, features a coarse surface with nu-
merous cracks and loose wall structures, creating an environment where detrimental
microorganisms are widely distributed. Consequently, the use of sharp tools, such as metal
tweezers and scalpels, is impractical. Considering the growth characteristics of harmful
microorganisms and the surface structure characteristics of the site, three kinds of cotton
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swabs and seven kinds of brushes with different materials and shapes were selected as
mechanical removal tools for in situ experiments. This approach aimed to determine more
suitable tools for the site’s condition. Besides mechanical removal, modified negative-
pressure dust-removal equipment capable of creating a small range of negative-pressure
environments (−21 KPa) was employed to effectively remove diffuse microorganisms in
the air, meeting the sterilization requirements within the construction environment of the
site museum (Figure 2).
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Figure 2. Testing the in situ removal efficiency of harmful microorganisms distributed on the site
surfaces using different tools.

2.3.2. Screen of Chemical Biocides in the Laboratory and In Situ

In this study, five kinds of biocides, MD (Dimethyl Fumarate) [27], BC (Benzalko-
nium Chloride) [28–30], OIT (2-octyl-4-isothiazolin-3-one), DCOIT (4, 5-dichloro-N-octyl-4-
isothiazolin-3-one) [26,31], and EUXYI K100 (active ingredient is methyl chloroisothiazoli-
none, hereinafter called K100) [28,32], were selected to examine the elimination effectiveness
of the samples which were collected from the Dadiwan F901 site using a bacteriostatic zone
experiment. For the experiment, 0.5% concentrations of the aforementioned biocides and a
0.5% OIT/DCOIT compound were prepared as the experimental groups. In contrast, 75%
ethanol and ddH2O were prepared as the control and blank group, respectively. In the
bacteriostatic zone experiment, approximately 0.1 g of collected soil samples with microbial
filaments was put into centrifuge tubes with 1 mL of sterilized water. After vortexing for
10 min, the supernatant was collected and diluted to 10−1. The diluted microbial solution
was then spread on an R2A solid medium (yeast extract 0.5× g, peptone 0.5× g, casein
hydrolysate 0.5× g, glucose 0.5× g, soluble starch 0.5× g, dipotassium hydrogen phosphate
0.3× g, and DDH2O 1000 mL) [27]. Circular drug susceptibility papers with a diameter of
6 mm were placed on the solid medium, and 10 µL of the prepared biocide solution was
applied when the microbial solution dried on the solid medium. There were three pieces of
drug susceptibility paper placed on each plate as triplicates. The experimental plates were
incubated at room temperature for 7 days for observation.

To examine the effective concentration of chemical biocides, typical soil samples from
the site were selected as follows: the coarse mud layer on the west side inside the exterior
northern wall (A), the smooth mud layer on the east side outside the exterior northern
wall (B), the ground of the southern side (C), and the cement wall of the northern side
peripheral building N6 (D), shown in Figure 3. The test areas were divided into four test
parts, each with a side length of 10 cm × 10 cm. OIT, DCOIT, OIT/DCOIT compound,
and K100 with concentration gradients of 0.25%, 0.5%, 0.75%, and 1.0% were used as
experimental treatments [33]. Distilled H2O and 75% ethanol were regarded as a blank
group and control group, respectively. The treatment of each test area was carried out
according to the operation process of the first mechanical removal, an initial spraying by
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the biocide and an identical second spraying as the second step. A nebulizer was used to
spray the corresponding type and concentration of biocides in each test area, and it was
continuously applied twice with an interval of 48 h. Each time, approximately 1.7 mL of
biocide was sparged to penetrate around 2 mm depth from the surface.
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The coarse mud layer on the west side inside the exterior northern wall, (B) the smooth mud layer
on the east side outside the exterior northern wall, (C) the ground of the southern side, and (D) the
cement wall of the northern side peripheral building N6.

2.4. Inhibition of Ultraviolet Light (UV Light) to Harmful Microorganisms
2.4.1. Inhibition of UV Light to Culturable Microorganisms

Culturable fungi and bacteria isolated from the F901 site were used to test the resistance
to UV light. Approximately 0.1 g of soil samples with filaments was added to a 5 mL
centrifuge tube with 1 mL of sterilized distilled water. The samples were vortexed for
10 min and the supernatants were then transferred and diluted to 10−4 using sterilized
distilled water in 1.5 mL tubes. A 200 µL solution was evenly spread on a PDA medium
(potato 200× g, glucose 20× g, agar 15× g, and ddH2O 1000 mL) and R2A medium; PDA
and R2A are commonly utilized to isolate microorganisms that grow on cultural heritage
sites [27,33]. All the inoculated plates were placed on a clean bench and individually
irradiated by UV light for varying durations: 0 min, 30 min, 60 min, and 120 min, as
illustrated in Figure 4A.
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Figure 4. Experiment of UV light irradiation for inhibition of microorganisms. (A) Microbial
inhibition by UV light at the laboratory; (B) field examination of the UV light inhibition effect on the
microorganisms on site surfaces.

2.4.2. Test of Microbial Inhibition by UV Light In Situ

The wall of the site and cement walls of peripheral buildings were selected as ex-
perimental objects because the surfaces of these walls are nearly smooth, with uniformly
distributed microbial colonies. A simple UV light box was made, with aluminum foil
attached to the inner wall. In the box, a 16 W lamp was installed with a distance of 40 cm
from the open surface of the carton, which was 15 cm × 42 cm. This simple box was aligned
to the tested point and gently leaned against the wall, as in Figure 4B. The irradiation time
was set for four periods of 0 min, 60 min, 90 min, and 180 min, based on the impact of the
coarse surfaces of the site walls on the effectiveness of UV light irradiation.

2.5. Evaluation of Removal Effect on Harmful Microorganisms
2.5.1. Microscopic Observation

The morphologies of sample areas, which were treated by mechanical removal, bio-
cides, and UV light, were observed and recorded by a portable microscope. For each
treatment, the effects of microbial elimination before and after treatment needed to be
observed and recorded for evaluation.

2.5.2. ATP Bioluminescence Assay

ATP bioluminescence assay used an ATP bioluminescence detector (Lumitester TM
PD-30, Kikkoman, Noda, Japan) and pen (LuciPacTM Pen, Kikkoman, Noda, Japan) for
detection. For sampling, after a sterilized swab was soaked in sterilized water for 4 s, it was
applied to slightly dip the surface of a 2 cm × 2 cm area for microbial collection. The swab
for sampling was put into a swab tube and shaken sufficiently to completely solubilize the
sample on the swab with cell lysate and fluorescent compound. The amount of fluorescence
could be obtained after 10 s when the swab tube was inserted into the bioluminescence
detector. The eliminated ratios were calculated by the following formulas, respectively:

For mechanical removal: eliminated ratio (%) = [(C0 − C)/C0] × 100% (1)

For biocide elimination: eliminated ratio (%) = [(C − C1)/C] × 100% (2)

where C0 is the value of ATP fluorescence before treatment. C represents the value of ATP
fluorescence after treatment by mechanical removal. C1 is the value of ATP fluorescence
treated by biocides.

2.5.3. Color Difference Detection

Color change of the surface with microbial deterioration was detected using a col-
orimeter (NR60CP, 3NH, Shenzhen, China). The color difference value was obtained by
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detecting the color difference value before and after treatments by mechanical removal,
chemical biocides, or UV light, using the following formula:

∆E*ab = ((∆L*)2 + (∆a*)2 + (∆b*)2)1/2 (3)

where L* stands for lightness, a* is the red–green parameter, and b* is the yellow–blue
parameter. ∆L*, ∆a*, and ∆b* were calculated from the formulae ∆L* = L*before − L*after,
∆a* = a*before − a*after and ∆b* = b*before − b*after (“before” represents the values before
the treatments or before biocide treatment when treatments of mechanical removal fin-
ished, and “after” stands for the values after the treatment of mechanical removal or after
two-step treatment with biocides, respectively). To reduce the measurement error, nine
measurements were made in the range of this experimental area for each test. The results
were the average of the nine measurements.

3. Results and Discussion
3.1. Changes in Environmental Factors

During the one-year monitoring period, the temperature of the external surroundings
fluctuated with the seasons from −14.31 ◦C to 34.86 ◦C. The annual mean temperature was
9.25 ◦C. The monthly average temperature reached its lowest point in December 2019 at
−2.38 ◦C and peaked in August 2019 at 19.35 ◦C. The annual RH varied from 5.5% to 100%.
The annual average RH was 74.5%. The monthly average RH was the lowest in March 2020,
while the highest occurred in September 2019.

In comparison to the temperature of the external surroundings, the ambient tempera-
ture inside the F901 site experienced a slight fluctuation throughout the seasons, ranging
from 4.92 ◦C to 20.32 ◦C, with an annual average temperature of 12.48 ◦C. The highest and
lowest monthly average temperatures were recorded in August 2019 and February 2020,
respectively. The annual RH was from 63.5% to 100%, with an annual average RH of 97.1%.
Additionally, the monthly average RH consistently exceeded 80% (Figure 5).
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In recent years, some Chinese site museums have also encountered biodeterioration
problems. For example, shortly after the Tanjiapo Relic Museum of Tongguan Kiln in
Changsha, Hunan Province was built, a huge number of plant roots remained, which
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became a source of saprophytic microorganisms under the catalysis of high temperatures
and high humidity, leading to an outbreak of mold deterioration [34]. The Shanghai Zhi-
danyuan Yuan Dynasty Sluice Site Museum is characterized by a semi-open building with
prominent fluctuations in indoor environmental temperature and humidity, so the surfaces
of the earthen and wooden structures exhibit shrinkage, cracking, and microbial activities
in the frequent state of a dry and wet cycle [35]. In the early excavations of No. 1 pit of Qin
Shihuang’s Terracotta Warriors and Horses in Xi’an, Shaanxi Province, mold deterioration
broke out because of high temperatures, humidity, and a mass of tourist activities. Conse-
quently, the quantity of microorganisms in the indoor environment of the Qin Mausoleum
has been a significant environmental concern for cultural relic experts [36–38]. As for the
Hanyang Mausoleum Museum, the burial pit site is connected to the ground and com-
pletely enclosed by the museum buildings, resulting in continuous upward evaporation
of underground water with 100% relative humidity indoors throughout the year, thereby
aggravating the growth of mold [39,40]. Hence, it is evident that environmental factors
have a great impact on microbial growth and biodeterioration to cultural heritage sites.

3.2. Morphological Characteristics of Harmful Microorganisms
3.2.1. In Situ Morphology and Distribution of Harmful Microorganisms

In this study, the inner environment of the Dadiwan F901 site museum was systemi-
cally investigated (Figure 6A). According to the field investigation, the microbial colonies
on the wall surfaces of the Dadiwan F901 site could be visible to the naked eye and dis-
played white filaments, part of which were mixed with soil dust particles or white particles,
under microscopic observation (Figure 6C, D). There were no visible white filaments on
the ground of the site and backfill area outside the main site (Figure 6E,F), but the microor-
ganisms covered by dust on the surfaces could be observed with a portable microscope,
which has been widely applied in the conservation of heritage sites with the advantages of
non-destruction, efficiency, simple operation, etc., for microbial observations, especially
when it is challenging to assess the deterioration situation on the surfaces of a site when
the microorganisms could not develop into complete colonies observable by the naked
eye [41–44]. Not only can the portable microscope observe in situ for quick diagnosis of
situations caused by microbial deterioration, but it also generates archival data through
pictures. These data help evaluate cultural protection effects by comparing the microbial
situation on the surfaces of the site before and after implementing protective measures [41].
Savković Ž. et al. have found that soil particles were often embedded in microbial filaments
on the surfaces of ancient Roman stele in Serbia by in situ observation with a portable
microscope [43]. A similar situation has been found at the Dadiwan F901 site. Therefore,
this indicates that microorganisms have covered the entire environment of the site mu-
seum, including the cement building wall (Figure 6B) and the glass curtain wall as well
(Figure 6G). The growth of plentiful microorganisms on the surfaces of cement walls was
probably caused by the provision of nutrients which originated from oil materials on the
surface of molds for pouring concrete. Areas of microbial plaques were mainly distributed
on the surface of the glass curtain wall where fingerprints were visible. It was speculated
that sweat and lipids were inadvertently left on the glass by field workers as nutrients
supplied to microorganisms. Therefore, exogenous materials, especially organic materials,
possibly provide nutrients for microbial growth.
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Figure 6. Distribution of microorganisms in Dadiwan F901 site. (A) Panoramic ichnography
of Dadiwan F901 site; (B–G) microbial growths on different surfaces of the site observed by
portable microscope.

3.2.2. Morphologic Characteristics of Residues’ Profile Structures

A polarizing microscope was utilized to observe microbial growth and the interaction
between microbial filaments and the site soil. Microbial filaments were observed on the
surfaces or inside the pores of residues collected from surfaces of the exterior walls of
pillar holes (Figure 7A), particles on the ground (Figure 7B), and the cement particles of
peripheral buildings around the site (Figure 7C). These filaments displayed a gray color
with 50 µm to 400 µm thickness on different surfaces. Additionally, it was also investigated
whether microbial filaments stretching into cracks of the samples on the pillar holes could
easily lead to the destruction of the site.
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Figure 7. The growth situation of harmful microorganisms from different locations at site F901
by polarizing microscope. (A) Pillar holes, (B) ground, and (C) cement residues from peripheral
buildings. The red arrows point to the harmful microorganisms.

3.3. Evaluation of Prevention Effectiveness against Harmful Microorganisms
3.3.1. Removal Tools and Instructions

After testing in situ, four different lengths of man-made fiber brushes were chosen for
clearing away microorganisms and dust particles (Figure 8A). An approximately 4.6 cm
contour brush was employed for the first sweep. The brush could effectively remove loose
microbial filaments and dust particles on the surface due to its soft and resilient properties.
Microbial colonies that were difficult to remove could be eliminated using a cheek brush as
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it is as soft as but more resilient than a contour brush. Both the 0.9 cm circular brush and
blade brush were effective in removing microorganisms closely attached to the surfaces of
the site. Additionally, according to the surface characteristics of the clean area, the circular
brush was used on smooth surfaces, while the blade brush was used on coarse surfaces.
To prevent the extensive diffusion of microbial filaments and spores to the surrounding
environment, a mechanical removal method was designed by combining the brush with a
sterilized vacuum device (Figure 8B).
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3.3.2. Effectiveness Evaluation of Mechanical Removal and Biocide Inhibition

Figure 9 shows the topographic characteristics of coarse and smooth surfaces of the site
wall (A and B), the site ground (C), and the peripheral cement wall (D). Microscopic investi-
gation revealed a significant decrease in microbial filaments after using brushes on the sur-
faces of these positions, compared to the initial state (see Figure 9A1–D1). However, a small
number of residual filaments were observed in cracks and depressions (Figure 9A2–D2).
Following two rounds of continuous biocide spray, no obvious microbial filaments were
observed on the site surfaces. The microscopic topographies showed no differences when
using different biocides or varying concentrations of the same biocide (Figure 9A3–D3).

Microscopical observation showed that mechanical removal had a better effect on
smooth and flat surfaces, such as smooth surfaces of the site and cement wall surfaces of
peripheral buildings, where no obvious microbial filaments were present due to a stable
structure. However, for cracks and depressions on the coarse surfaces and ground of sites
with a loose structure, it is necessary to be careful to control the strength used when using
a soft brush to remove microbial filaments on the surfaces. The selection of brushes with
different shapes was based on the surfaces of the site and proximity to microorganisms.
Earthen sites have been subjected to natural and artificial influences for a long time, and
some surfaces have different degrees of destruction, cracks, and erosion, which mainly lead
to the looseness of earthen site structures. In terms of the situation, any mechanical force
has the potential to damage structures, so the selection of tools is an important process
for mechanical removal [45–47]. The microscopical results suggested that mechanical
removal could hardly effectively remove microorganisms causing deterioration on the site
surfaces, and it is necessary to use relevant biocides to compensate for the shortcomings
of mechanical removal; biocides can cover the entire surface of the site, including cracks
and depressions, and penetrate a certain depth. Presently, the results indicated that the
combination of the two methods could more effectively control microbial deterioration on
the surfaces at the Dadiwan F901 site.
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Figure 9. Removal effectiveness of harmful microorganisms growing on the surfaces of site walls
and peripheral cement walls. (A–D) show the surfaces of samples in this study. The red boxes
mean the eliminated area; (A1–D1) exhibit microcosmic situation of the original surfaces with
microorganisms before treatment; (A2–D2) and (A3–D3) display microcosmic topographies after
physical and chemical treatments, respectively.

To examine the elimination effectiveness of microbial deterioration in the site fur-
ther, both ATP bioluminescence detection and color change difference were utilized for
evaluating the efficiency of mechanical removal and biocide application.

ATP bioluminescence assay operates on the principle that ATP in living microorgan-
isms reacts with fluorescein catalyzed by luciferase in a swab tube to release fluorescence,
and the number of photons is captured by the instrument to obtain the ATP fluorescence
value. A linear relationship exists between the number of living microorganisms allowing
an indirect reflection of the microbial count in the sample [48]. Due to its ease of use,
non-destructiveness, and fast operation, this assay has been used for microbial investi-
gation on many building surfaces and materials of sites [27,49–53]. In this study, ATP
bioluminescence assay was utilized to indirectly detect the number of microorganisms
before and after treatments on the site surfaces, respectively. The results showed that the
concentration of active microorganisms on the surfaces of the site had been greatly reduced
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with mechanical removal and biocides, but removal efficiency was affected by the degree
of coarseness, cracks, and other factors on the surfaces of the site.

Similar to microscopic observation, the elimination effectiveness of mechanical re-
moval, as tested by ATP bioluminescence detection, revealed that mechanical removal had
a low impact on the elimination of microbial filaments on coarse surfaces with many cracks
and depressions, showing an average eliminated ratio of only 24.30% based on Formula (1),
followed by the site ground and smooth surface for which the eliminated ratios are 37.70%
and 38.00%, respectively. This is in contrast to the effectiveness observed on the surfaces
of stone heritage sites by Mascalchi et al., likely due to material differences [41]. The
best-eliminated area by mechanical removal is the cement wall surface, with a ratio of
58.86% on average (Table 1).

Table 1. The effectiveness evaluation of mechanical removal at different surfaces in site F901 based
on ATP bioluminescence assay and color change difference.

Evaluation Methods Coarse
Surface Smooth Surface Site Ground Cement Wall

Eliminated ratio (%) 24.30 ± 13.14 38.00 ± 17.29 37.70 ± 15.08 58.86 ± 15.19
Color difference value

(∆E*ab) 3.64 ± 1.83 2.80 ± 1.47 2.86 ± 1.55 1.93 ± 1.40

As is well known, the five biocides are all broad-spectrum. Therein, MD and OIT have
higher inhibition abilities against fungi, while DCOIT can effectively suppress bacterial
growth [54]. In contrast, BC and K100 are able to inhibit both fungal and bacterial growth.
According to a bacteriostatic zone experiment (Figure 10), the results showed that MD
and BC had a lower ability to inhibit the growth of culturable microorganisms from the
Dadiwan F901 site. Compared to MD and BC, the OIT/DCOIT compound displayed
the highest inhibitory effectiveness against microbial growth, with the largest inhibition
zones on an R2A solid medium, followed by OIT, DCOIT, and K100, for which there
were no significant differences in the strength of inhibition effectiveness, illustrating that
OIT, DCOIT, the OIT/DCOIT compound, and K100 could effectively function against the
culturable microorganisms of the Dadiwan F901 site.
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Regarding harmful microorganisms in the Dadiwan F901 site museum, based on
relevant international literature, the standard of low-toxicity, broad-spectrum disinfec-
tion, solubility, and identification of the microbial communities of the site samples with
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high-throughput sequencing in which genera Nocardiopsis and Saccharopoispora are dom-
inant bacteria, while the fungal genera of Penicillium and Aspergillus had higher relative
abundance (unpublished data), and the combination of the use of biocides screened by a bac-
teriostatic zone experiment and the anti-mildew practice of ancient wall paintings [26,27],
OIT, DCOIT, K100, and the OIT/DCOIT compound were ultimately confirmed to be used
to examine in situ. OIT, DCOIT, and K100, all belonging to isothiazolinone, are efficient and
broad-spectrum agents known for inhibiting cell oxygen consumption and enzyme synthe-
sis, oxidizing and destroying cell compounds, etc.; thus, they have been widely applied
to prevent microbial deterioration in the preservation of cultural heritage sites. Previous
studies have demonstrated the efficacy of OIT in preventing microbial deterioration in the
murals of the Majishan Grottoes [26] and the ancient Roman archaeological site of Luni [31].
Additionally, studies of microbial resistance by K100, which was used in murals in the Xu
Xianxiu Tomb of Northern Qi Dynasty in Taiyuan [27], a terracotta figurine unearthed in
Sun Dayuan Han Tomb in Heze, Shandong [32], the wooden hull of China’s “Nanhai No. 1”
ancient shipwreck [55], and tomb bricks of the Ding Pottery Han tomb [56], demonstrated
that K100 had efficient effect of disinfection of cultural heritage sites.

The elimination effectiveness of OIT, DCOIT, the OIT/DCOIT compound, and K100
was assessed by ATP bioluminescence detection and color change difference. The four
types of biocides with four different concentrations could effectively eliminate harmful
microorganisms and suppress the microorganisms for one month at least. Figure 8 shows
that the OIT/DCOIT compound had highly effective disinfection, and the eliminated
ratio could be over 50% compared with the other three biocides after mechanical removal.
Because of the different degrees of cracks and depressions on the surfaces or ground of the
site over time, the eliminated ratio with various concentrations of the same biocides has
significant differences except for the OIT/DCOIT compound, which exhibited almost the
highest eliminated ratio compared to the other three biocides in the same concentration.
Moreover, the eliminated ratio of the compound could be over 94%, with 97.43% being
the highest ratio when a 1% concentration of the compound was used to clear up the
microorganisms of the site, making it the most suitable choice for microbial control at the
Dadiwan F901 site, followed by OIT and DCOIT, for which the elimination effectiveness of
OIT was better on the coarse surface and smooth surface of the site, but lower than the site
ground and cement walls of peripheral buildings compared to DCOIT. K100 displayed the
lowest elimination effectiveness (Figure 11A–D). This result indicated that K100 was not
suitable for microbial control at the Dadiwan F901 site.

The basic criterion for the protection and restoration of cultural relics is to keep their
original appearance, which is required to not change from their original state during the
protection process. Therein, color change analysis is one of the important criteria to evaluate
the reasonability of construction techniques [57] and acts as a portable way to monitor
the degree of microbial deterioration on the surfaces of cultural sites [58–62]. Microbial
growth could produce a color change in site surfaces, affecting visual appreciation. The
carotene produced by microbial colonization appeared rosy on site surfaces in European
castles, churches, and underground tombs [63–65]. Moreover, microbial growth could
lead to a color change in pigments on site murals [12,66]. Prieto et al. have indicated that
color change displayed an increased tendency with microbial coverage and the difference
could decrease after dealing with the microorganisms [59]. The current studies reported a
criterion for the color difference, which is that when the color difference value (∆E*ab) is
over 3, this indicates that the color difference is large and the change could be distinguished
by the naked eye, while the value is slight and not easy to perceive with values in the range
of 1.5 to 3. When the color difference value is lower than 1.5, it is hard to observe a color
change by the naked eye [67,68]. However, there are still some controversies about the
range of acceptable color difference values from different researchers. Huang and Camerini
et al. suggested that the acceptable color difference value (∆E*ab) should not be greater
than 3 [69,70], but Zhang thought that it was acceptable that the value was lower than
6 [71].
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In the study, it was discovered that the color difference value ∆E*ab using Formula (3)
at different sites in the test area did not exceed 5; the highest color change was on the coarse
wall of the site, with a value of 4.9 after using a 0.75% concentration of K100 (Figure 11A1),
and the color on the surface of the cement wall showed the lowest change with 1% OIT,
with a value of 0.5 (Figure 11D1). Compared to the spray of biocides, mechanical removal
resulted in a more apparent color change, because the colors of microbial plaques on the
surfaces of the site are different from the color of the site wall after mechanical removal
(Table 1). For the different concentrations of the four biocides, the biocide OIT produced the
lowest change in color regardless of concentration, followed by the OIT/DCOIT compound.
K100 had the highest effect on the color difference. It was also found that the color difference
values on the coarse wall surfaces of the site were larger than the values for the smooth
surfaces. Due to the coarse surfaces of the site wall, the colorimeter inevitably produced
more systematic errors during the measurement and resulted in large differences in the
difference values of chromatism. Therefore, the effects on the color differences of the
four biocides are within the acceptable range of less than 6 according to the principles for
cultural heritage conservation and without prominent influence on the sense of vision [72],
so all four biocides are suitable to eliminate harmful microorganisms in the F901 site.

In conclusion, as to microorganisms causing deterioration at the Dadiwan F901 site,
it is suggested that OIT/DCOIT with 1% concentration is the most suitable choice for the
prevention of microbial deterioration based on the efficiency of microbial inhibition and
color change differences on the surfaces of the site.

3.4. Study of Microbial Inhibition by UV Light
3.4.1. Eliminated Effectiveness of Culturable Microorganisms under UV Light

Ultraviolet sterilization as one of the physical sterilization methods is characterized
by its simplicity of operation, high spectral efficiency, and low secondary pollution and
has been commonly used to eliminate microorganisms in the food and medical industry
but is rarely used in the conservation of cultural relics [73–75]. With the rolling out of
novel ultraviolet light sources, it is gradually gaining popularity as one of the methods for
eliminating harmful microorganisms on the surfaces of cultural sites [76,77]. The principle
of ultraviolet sterilization involves the destruction and alteration of the molecular structure
of DNA in microbial cells by UV irradiation so that the microbial cells die or cannot
reproduce to achieve the effect of sterilization [78].

UV light has proven to be effective in suppressing the growth of culturable microor-
ganisms from the Dadiwan F901 site. The effect of inhibition under UV light showed an
increased tendency with an extension in irradiation time. There was no microbial colony on
the R2A and PDA medium after irradiating for 60 min and 120 min, respectively (Figure 12).
Therefore, UV light has significant potential for the long-term prevention of microbial
growth in the preservation environment of the Dadiwan F901 site museum.

3.4.2. Effect of UV Light on Harmful Microorganisms In Situ

A portable microscope was used to observe the growth situation of microorganisms
causing deterioration before and after UV light treatment, as shown in Figure 13. The mi-
crobial filaments were fluffy on the surface and extended to the surroundings (Figure 13A).
After irradiating for 60 min by UV light, the filaments were wizened (Figure 13A1). A simi-
lar phenomenon of microbial filaments treated by UV light appeared on the cement wall
surfaces of peripheral buildings outside the site. The raised microbial colonies collapsed
and appeared faviform with the inhibition of microbial activities (Figure 13B,B1). This
result illustrated that UV light irradiation could affect microbial growth on the surfaces of
the Dadiwan F901 site.
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Figure 13. Comparison of microscopic morphologies to the harmful microorganisms in site F901
before and after treatment by UV light. (A,A1) show the microbial morphologies before and after
treatment on the wall surface of the site. (B,B1) display the microbial characteristics before and after
treatment on the cement wall surface of peripheral buildings outside the site.

3.4.3. Effectiveness Evaluation of UV Light

The ATP fluorescence value on the surfaces of the site gradually reduced with an
increase in irradiation time by UV light, as shown in Figure 14. This indicates that UV
light caused prominent inhibition of the detrimental microorganisms growing on the site
surfaces, since the microbial activity exhibited a tendency to decrease. The value measured
on the 10th day after irradiating for 180 min decreased to 1/10 of the original value at
0 min. This result revealed that microbial inhibition by UV light could last for a period of
time, while the effect of UV light on the microorganisms is limited because the value could
not decrease to a safe value (≤3000 RLU) [79], which might be related to the ultraviolet
penetration ability. The disinfection effect on the surface of the cement wall outside the
site irradiated by UV light was essentially the same as that on the site. This is because
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the biofilm produced by microbial filaments will block the effective penetration of UV to
deeper layers, preventing UV light from acting deep in microbial colonies. Previous studies
have shown that the disinfectant effects of UV light were affected by installation positions,
effective distance, and exposure time [80–85]. It has been reported that viruses show the
lowest resistance to UV light, followed by bacteria, and disinfection of fungi exposed to
UV light requires much more time compared to bacteria [86–88]. In the Dadiwan F901
site museum, it has been identified that bacteria are dominant microorganisms, indicating
that UV light has a significant inhibitory effect in daily life. Additionally, an increase in
the layout density of UV light to guarantee the cover of the ultraviolet rays to the site in
the Dadiwan F901 site museum could improve disinfective efficiency with an increase in
ultraviolet time and indoor air ventilation. Therefore, in the later preventive protection of
sites, multiple factors such as irradiation intensity, irradiation time, and possible effects
on organic matter cultural relics need to be comprehensively considered to determine
the appropriate installation location [89]. Moreover, in the conservation and restoration
of cultural heritage sites, it is still necessary to provide mechanical removal and biocide
treatment, which can be used together to achieve the ideal effect for microbial control.
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Using UV irradiation, the values of the color difference (∆E*ab) on the wall surfaces
of the site and peripheral buildings are both lower than 5, without obvious color change
(Figure 14). Because the microbial cover produced a significant effect on the color of the
cement wall, the change of microbial plaque caused an increased tendency for cement
chroma. When the cement wall was irradiated for 180 min, the color difference value was
4.6 after 10 days, but this was still lower than 5 and without obvious change to the naked
eye. At the same time, in contrast to the cement wall surface, cracks and depressions on
the site surface generally existed. The existence of these could produce larger systemic
errors in the measurement of chroma, so the color difference had a greater change in its
acceptable range.

The data suggested that UV light could be regarded as a preventive measure for
the protection of the Dadiwan F901 site. It is the first time that the effect of ultraviolet
sterilization on an earthen site and the killing of microorganisms for a long time has been
explored as a routine sterilization measure.
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4. Conclusions

Due to changes in the preservation environment of the Dadiwan F901 site and the
influence of high temperatures and humidity after the closure after the installation of
glass and the construction of a new building, extensive growth of microbial filaments
appeared on the site surfaces. Therefore, it is urgent to find some scientific protection
methods to control microbial activities, which may support the sustainable preservation
and ability of the public to visit this site. This study employed physical and chemical
methods to eliminate the microorganisms that caused deterioration in a large-scale project
and systematically evaluated the effectiveness of treatments using mechanical tools, types
and concentrations of biocides, and irradiation time of ultraviolet sterilization by non-
destructive methods such as a portable microscope, ATP bioluminescence assay, and color
difference analysis. The results provide scientific data to support conservation techniques
and the optimization of process screening for microbial control in earthen sites. The results
indicate that the main factor affecting the mechanical removal effect was the smoothness of
the wall surface. The clearance rate of the cement wall was the highest (73.62%), but the
clearance rate of the thick wall of the site was the lowest at 8.44%. Among the four types of
biocide, the best elimination effectiveness was by using the OIT/DCOIT compound biocide,
with an elimination rate as high as 97.43%, followed by DCOIT and OIT, while K100 had
a poor effect, with a minimum value of only 23.13%. In addition, the biocide K100 had a
greater impact on the color difference of the site, so K100 was not used at this earthen site.
Although the sterilization of UV light has a limited ability for the site due to the coarse
surfaces of the site wall and spatial range, it has long-term effectiveness in microbial growth
inhibition. Consequently, comprehensive cover and regular irradiation of ultraviolet rays
in the site museum could efficiently prevent microbial growth while maintaining indoor air
ventilation. The results of the examination provide scientific data to support conservation
techniques and optimize process screening for microbial control in large-scale projects of
earthen sites. The development of related protection techniques will be beneficial for the
long-term preservation and sustainable utilization of similar archeological site museums.
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