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Abstract: Polycrystalline diamond (PCD) prepared by the high temperature and pressure method
often uses Co as a binder, which had a detrimental effect on the cutting performance of PCD, thus Co
needed to be removed. However, the removal of Co would cause residual holes and also make the
cutting performance of PCD poorer. To address this issue, hot filament chemical vapor deposition
(HFCVD) was used. During deposition, the residual holes cannot be filled fully, and Co would
diffuse to the interface between CVD diamond coatings and the PCD substrate, which influenced
the adhesive strength of the diamond coating with the PCD substrate. In order to investigate the
influencing mechanism, both experiments and the density functional theory (DFT) calculations
have been employed. The experimental results demonstrate that Co and the holes in the interface
would reduce the interfacial binding strength. Further, we built interfacial structures consisting
of diamond (100), (110), (111) surfaces and PCD to calculate the corresponding interfacial binding
energy, charge density and charge density difference. After contrast, for Co and the holes located on
the (110) surface, the corresponding interfacial binding energy was bigger than the others. This means
that the corresponding C-C covalent bond was stronger, and the interfacial binding strength was
higher. Based on this, conducting cobalt removal pretreatment, optimizing the PCD synthetic process
and designing the site of Co can improve the performance of the PCD substrate CVD diamond
coating tools.

Keywords: DFT calculations; polycrystalline diamond; diamond coating; adhesive strength

1. Introduction

Polycrystalline diamond (PCD) is a kind of superhard material with excellent per-
formance. It is formed by sintering micron-sized diamond particles and binder under
high temperature and high-pressure conditions. Thus, the PCD can be widely used in
the processing field of non-ferrous metals alloys, ceramics, difficult-to-machine composite
materials, etc. [1–4]. In the sintering process of PCD under high pressure, Co is often
used as the metal binder [5–8]. Co makes diamond easy to transform to graphite, which
greatly reduces the adhesive strength between PCD and films [9–13]. Therefore, in order to
improve the performance and service life of the tool, it is imperative to remove Co from
PCD [14–17]. After the removal of Co, the original position of Co will produce holes. To ad-
dress the issue of PCD’s poor cutting performance, the holes remaining on the PCD surface
after cobalt removal were filled using hot filament chemical vapor deposition (HFCVD).
During deposition, some of the holes were full of diamond, but some holes deep in PDC
still exist [18]. Besides, the Co element would diffuse to the interface between the PCD and
CVD diamond coatings. Both would affect the adhesive strength of diamond coatings.

There are many factors that affected the adhesive strength of CVD diamond coatings,
from the materials of substrate, pre-treatment of substrate [19–21], to deposition parame-
ters [22,23] and post deposition treatment [24], all of which could improve the adhesive
strength of CVD diamond coatings. Xiaogang Jian [25–29] used first principles based upon
density functional theory (DFT) to investigate the influence of cobalt binding phase, crystal
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orientation and line defect in cemented carbide substrate on the adhesive strength of the
diamond coating. He found that the Co element can transfer the charges near the interface
of WC/diamond model when the magnetic Co element exists at the WC/diamond inter-
face. As a result, the cobalt binding phase in cemented carbide substrate can weaken the
adhesive strength of diamond coating. And the adhesive strength of the model of (100)
crystal orientation is maximal. Besides, the surface energy of cemented carbide substrate
increases at first and then decreases as the line defect ratio in the substrate surface grows.
Based on the conclusions above, it was necessary to study the influence of Co in PCD
substrate and holes on adhesive strength of diamond coating with PCD substrate.

In this article, we firstly performed the indentation experiments and found that the Co
and holes would reduce the adhesive strength of diamond coatings. Then, in order to ex-
plain the influence mechanism from an electronic perspective, the first-principles projector
augmented wave (PAW) pseudopotential method within the generalized gradient approx-
imation (GGA) based on the density functional theory (DFT) was employed. We used
Device Studio software (2023A) to build different PCD/diamond and PCD-holes/diamond
interfacial structures based on different crystal surfaces ((100), (110), (111)). The DS-PAW
software (2023A) package was used to obtain the most stable interfacial structure [30].
Further, the corresponding interfacial binding strength, charge density and charge density
difference were calculated. The calculation results in this article demonstrated that during
the synthesis of PCD, we could regulate the site of the Co binding phase in PCD, or to
remove the Co elements on a certain crystal surface during the pretreatment process, or to
fill the holes in some sites when depositing, thus the interface binding strength between
the PCD substrate and the diamond coatings could be improved. In addition, it could also
reveal the theoretical mechanism of the adhesive strength of CVD diamond coatings.

2. Experiments, Geometric Model, and Calculation Method
2.1. Experiments

The experimental process is shown in Figure 1. All the parameters were based on the
experiments performed by the research team before [18]. In this experiment, we used PDC
as a substrate. Then we soaked the PDC substrate in the corrosive acid reagents. Table 1
displays the acid agents and the parameters employed in this study.
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Table 1. Etching pretreatment parameters of PDC substrate.

Acid Reagents Concentration Ratio Temperature/◦C Time/h

H2SO4 VH2SO4 (AR):VH2O2(30%) = 1:5 25 48

The substrates (both the original and after soaking) were then placed in hot filament
CVD (HFCVD) equipment that had been developed by the research team for depositing a
diamond coating. We used tungsten filaments(Φ1.0 mm, 4 wires), and chose acetone as
the carbon source, and hydrogen as the auxiliary gas. Table 2 displays the parameters of
filament carbonization and deposition.

Table 2. Parameters related to filament carbonization and deposition.

Subject Filament Carbonization Deposition

gas flow/(mL/min) 1000 1000
carbon concentration/% 4 2

temperature of filament/◦C 2100 ± 100 -
distance between filament and substrate/mm - 9

filament power/kW 3 -
reactive pressure/kPa 6 3

time/h 2 4

The SEM-S-3400 was used to examine the morphology of all the tools utilized. The
samples’ hardness was assessed using the HBRVU-187.5 Brovey hardness tester (produced
by Jinan Fangyuan Testing Instrument Company, Jinan, China), which used a square cone
diamond indenter with an opposite surface angle of 136◦. The indentation patterns were
observed by collecting their SEM images and comparing the bonding strengths between
the coating and substrate of the different tools. All the tests were performed under room
temperature(about 20 ◦C) and the humidity was 50% RH [31].

2.2. Geometric Model

In this article, we used PCD as a substrate, and deposited a layer of diamond film on
its surface after a certain depth of cobalt removal pretreatment. After the removal of Co,
the Co in the surface layer of the substrate was removed, but during the deposition, the Co
deep in the substrate would diffuse to the surface of the substrate under high temperature.
The remaining holes caused by the removal of Co would not be filled with diamond, and
some holes still existed. Therefore, in the modeling process, Co atoms were added to the
diamond for doping. Additionally, we deleted the added Co atoms, leaving holes that were
similar to the remaining holes after the pretreatment and deposition on the PCD substrate.
We used Device Studio software (2023A) to establish the PCD/diamond coating interfacial
structures. The addition of Co was achieved by replacing the C atoms in the diamond
model, and the holes were added by deleting the atoms in the substrate model.

The modeling process is shown in Figure 2. First, we established a diamond single
crystal cell model based on the lattice information in Table 3 (Figure 3), then cut the crystal
surfaces (100), (110), (111), and added a vacuum layer (with a thickness of 1.3 nm), and
finally, we created a 2 × 2 × 1 supercell model. This model was a CVD diamond coating
geometric model. In the same way, we cut out the crystal surfaces (100), (110), (111),
added a vacuum layer, and made a supercell, finally randomly replaced 2 C atoms with Co
atoms(1#, 2#, 3# samples), this model was a PCD substrate model with different position of
Co. When we deleted the Co atoms, we obtained a PCD substrate model with a different
position of holes. We combined the CVD diamond coating model with the PCD substrate
model with a different position of Co and holes to establish the relevant interface model
(Figure 4).
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Table 3. Diamond lattice parameters.

Material Lattice Parameters Lattice Type

diamond a = b = c = 3.567 Å, α = β = γ = 90◦ face-centered cubic
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(b) Co(110) (2#); (c) Co(111) (3#); (d) hole(100) (4#); (e) hole(110) (5#); (f) hole(111) (6#).

2.3. Calculation Method

We used DS-PAW software (2023A) package based on the first principles to obtain
the most stable structure, then calculated the interficial binding energy, charge density
and charge density difference of the diamond-coating interfacial structure with a different
position of Co and holes. The exchange potential and the correlation potential were
approximated by PBE function modification under the framework of generalized gradient
approximation. This used the DFT method combined with the PAW method to explain
the interaction between the atomic nucleus and valence electrons. The k-point mesh of the
Brillouin zone automatically was set to 4 × 4 × 1 by using the Gamma Center method.

3. Results and Discussion
3.1. Experimental Results and Discussion

Figure 5 shows the indentation images of the CVD diamond coatings when there was
Co and holes on the PCD substrate. It could be seen from Figure 5 that both the indentations
were relatively obvious, with an obvious pit and clear edges of the indentations. And
when the Co was added, the coating indentation was more obvious, indicating that the
Co element had a greater impact on the adhesion of the coatings than the holes. This was
because the expansion coefficient of cobalt and diamond was large. The higher the cobalt
content, the greater the residual stress in the coating, and the easier it was to crack and peel
off the coating. However, the effects of the Co elements and holes on the coating adhesion
of the different crystal surfaces could not be obtained through experiments.
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3.2. Calculation and Analysis of Interfacial Binding Energy

Generally, the interfacial binding strength can be quantitatively explained by the
interfacial binding energy. The larger the interfacial binding energy, the more stable the
interface structure, and the higher the interfacial binding strength. According to article [32],
we define the interfacial binding energy between the PCD substrate and diamond coating
as follows:

Wad =
EPCD + EDiamond − EPCD−Diamond

A
(1)

where Wad is the interfacial binding energy between the PCD substrate and diamond
coating, EPCD is the total energy of the PCD substrate, EDiamond is the total energy of the
diamond coating, EPCD-Diamond is the total energy of the diamond coating deposited on
the PCD substrate, and A is the cross-sectional area of the interface. Table 4 shows the
calculated results of the interfacial binding energy between the PCD substrate and diamond
coating with different sites of the Co and holes.

Table 4. PCD/diamond model’s energy and interfacial binding energy.

Model Wad/(eV/nm2)

1#(100-Co) 26.76
2#(110-Co) 35.17
3#(111-Co) 29.84

4#(100-hole) 0.07
5#(110-hole) 22.62
6#(111-hole) 20.78

The results in Table 4 show that when the Co and holes were located on (110) crystal
surface, the interfacial binding energy were 35.17 and 22.62 eV/nm2, respectively. Obvi-
ously, the corresponding adhesive strength of diamond coatings on the (110) surface was
the highest, the second was the (111) surface, and the lowest was the (100) surface. This
means that the Co and holes had the minimum effect on the interfacial binding energy
when on the (110) crystal surface, because the (110) surface was the close-packed faces of
diamond crystal. Hence, during the process of preparing PCD, we should make Co exist on
the (110) crystal surface of the diamond as much as possible, so that the interfacial binding
strength of the tool material can be the highest.

3.3. Analysis of Charge Density of Interface

In order to describe intuitively the interfacial interactions, we calculated the charge
density of the most stable structure [33]. Figure 6 shows the interficial charge density
between the CVD diamond coating and the PCD substrate with different surfaces. From
Figure 6a–c, it could be seen that the charge density was mainly concentrated in the
interface for (110) and (111) surface, which means the formation of a typical covalent bond
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structure. However, for (100) surface, the charge density obviously tended to concentrate
around the Co atom of the PCD substrate and C atom of diamond coatings, indicating
that the corresponding interfacial binding strength was week. Because there were certain
differences in the ability of Co elements on different crystal surfaces to transfer the charges
of its surrounding atoms [34]. Due to the different arrangement of atoms on different crystal
surfaces, the number of electrons that Co element can transfer was limited by distance.
Further analyzing Figure 6d–f, we could see that when the holes were on the (110) crystal
surface, the interfacial charge density was higher than (100) and (111) surfaces. Therefore,
the adhesive strength of the diamond coating was the highest. This was consistent with the
calculation results of the interficial binding energy.
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3.4. Analysis of Charge Density Difference of Interface

In order to intuitively characterize the transfer of the charge around the atom, the
charge density difference of the interface is usually calculated [35]. Figure 7 shows the
charge density difference of the interface between the CVD diamond coating and the PCD
substrate with different surfaces. The red and blue regions denote charge accumulation and
depletion, respectively. From Figure 7b,e we can clearly see that the upper and lower layers,
form a new C-C covalent bond. Furthermore, Co atoms could transfer the charge around
C atoms at the interface, when the Co atoms were on the (110) crystal surface, and the
phenomenon of charge transfer was the most obvious. At this time, the C-C covalent bond
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was the strongest. When the holes were on the (110) crystal surface, the bond strength of the
C-C was significantly enhanced. In short, in order to improve the interface binding strength
between the PCD substrate and the CVD diamond coating, we must make the Co atoms
stay on the (110) crystal surface. The holes were best located on the (110) crystal surface.
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4. Conclusions

1. When the Co atoms existed on the (110) crystal surface, the binding energy of the
interface between the PCD substrate and the CVD diamond coating was 31.4% higher
than the (100) crystal surface and 17.9% higher than the (111) crystal surface. While
the holes existed on the (110) crystal surface, the number was 322.1% and 8.9%.

2. Both the Co atoms and holes would affect the charge density and charge transfer of the
interface. When the Co atoms and holes were located on the (110) crystal surface, the
charge density concentrated mainly in the interface, and the phenomenon of charge
transfer was the most obvious. At this time, the C-C covalent bond was the strongest.

3. During the synthesis of PCD, we could regulate the site of the Co binding phase
in PCD in the (110) crystal surface, or to remove the Co elements on (110) crystal
surfaces during the pretreatment process, or to fill the holes on the (100) and (111)
crystal surfaces when depositing, thus the interface binding strength between the
PCD substrate and the diamond coatings could be improved.
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