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Abstract: In the realm of bridge structural engineering, it is customary to meticulously contemplate
the material’s strength and rigidity attributes during the dimensioning phase. In recent years, there
has been a burgeoning interest in employing Ultrahigh-Performance Concrete (abbreviated as UHPC)
for the construction of bridge decks and wet joints. However, the large self-shrinkage of UHPC can
easily lead to shrinkage cracking and affect its service life. This study delves into the utilization of a
blend of basalt coarse aggregate and high-modulus aggregate (HMA) in the formulation of Ultrahigh-
Performance Concrete (UHPC) with the objectives of achieving exceptional strength (>180 MPa),
superior modulus of elasticity (>56 GPa), and synergistic effect of using prewetted internal curing
aggregate (ICA), metallurgical ore sand (MOS), and calcium–magnesium composite-based expansion
agent (EA) to reduce the shrinkage of UHPC. Furthermore, the mechanical properties, shrinkage,
hydration process, and microstructure of UHPC prepared with EA and ICA were studied. The results
show that UHPC prepared with both 3% EA and 20% ICA had the optimal volume stability (the
shrinkage was only 273 µε at 180 d). In contrast, the 180 d shrinkage of UHPC with 3% EA and
20% ICA separately was 287 µε and 373 µε, respectively. In addition, the incorporation of EA and ICA
can effectively improve the flexural strength of UHPC, although it affects the compressive strength
and modulus of elasticity of UHPC (small decrease).

Keywords: UHPC; shrinkage; mechanical properties; expansion agent; internal curing aggregate;
microstructure

1. Introduction

Ultrahigh-Performance Concrete (UHPC), as an emerging cement-based composite
construction material, has excellent mechanical properties and durability that make it
widely used in road and bridge projects [1]. The high modulus of elasticity guarantees
that UHPC bridge deck panels, even with reduced thickness, will not exhibit substantial
deformation when subjected to external forces, thereby optimizing the outstanding me-
chanical characteristics inherent to UHPC [2]. Due to the extremely low water–cement ratio
and high cementitious material admixture of UHPC, its early self-shrinkage is much larger
than that of normal concrete [3]. Self-shrinkage is considered to be a macroscopic volume
change induced by capillary pressure due to the chemical processes of self-drying and
cement hydration [4]. According to reports, self-shrinkage manifests in concrete when the
water–cement ratio is approximately less than 0.42 [5] and escalates as the water-to-cement
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ratio decreases. The early occurrence of high self-shrinkage can lead to potential cracking,
which can affect the mechanical properties and durability of the hardened cementitious
material. In order to decrease the amount of cementitious material, the high-modulus
UHPC reduces its shrinkage by mixing with coarse aggregates However, in order to ensure
the quality and lifetime of the project, it is still necessary to further reduce the shrinkage of
UHPC and improve its volumetric stability.

At present, several approaches have been explored to reduce the shrinkage of UHPC,
including the use of shrinkage reducers, incorporation of expansion agents, and mixing
of internal maintenance aggregates [6–8]. SRA (Shrinkage-Reducing Admixture) could
reduce the possibility of shrinkage-induced stresses, thereby mitigating the risk of cracking.
SRA comprises nonionic organic surfactants, which effectively lower the surface tension of
the pore solution. Consequently, this reduction in surface tension serves to reduce capillary
stress during the process of water loss [9]. The decrease in capillary stress can reduce early
drying shrinkage and both plastic and autogenous shrinkage [10]. The addition of SRA
also reduces the water evaporation thus reducing the residual stresses [10]. Due to the SRA,
the water evaporation is reduced and can maintain a high internal relative humidity [11].
However, several side effects associated with SRA usage have been reported, including
reduced cement hydration rate, loss of entrained air, delayed setting time, and impact on
early mechanical property development [12].

The chemical reaction between the expansion agent (EA) and water results in macro-
scopic volume expansion. Consequently, the early hydration of concrete produces a large
amount of calcium alumina or calcium hydroxide. Furthermore, the expansion force pro-
duced by the crystallization and expansion pressure compensates for part of the self-
shrinkage of the cementitious material [13]. Based on the primary components utilized,
they are categorized into CaO-based, calcium aluminate-based, and MgO-based types [12].
The use of CaO-based EA can lead to rapid hydration of CaO [14]. Moreover, the addition
of CaO-based EA also enhances the interfacial zone, especially in the early stages of hy-
dration. Meanwhile, the EA also improves the concrete pore structure, thereby effectively
mitigating drying shrinkage [15]. In contrast to traditional expansion agents, the expansion
properties of MgO-based expansion agents are contingent upon the calcination temperature
and residence time [16]. Residence time denotes the duration of calcination for the finely
ground magnesite in the electric furnace. The residence time is the calcination time of the
ground magnesite in the electric furnace. MgO-based expansion agents do not react with
expansion until the concrete is hardened, and expansion has a low water requirement [17].
However, the use of EA can hinder the hydration of cementitious materials, especially in
low water–cement ratio systems, which would reduce the free water available for cement
hydration [18]. Su et al. [19] noted that the addition of a 2% calcium–magnesium compound
EA to UHPC at a water-to-cement ratio of 0.2 resulted in a 10% decrease in its 28 d (concrete
at 28 days denotes the condition of concrete following a span of 28 days of curing and
consolidation) compressive strength.

Using internal curing aggregates (ICAs) to create supplemental moisture maintenance
inside the UHPC also reduces shrinkage. Good candidates for internal curing aggregates
should have high water absorption capacity. Moreover, it can easily release the absorbed
water into the cementitious base before the relative humidity is about to drop. Meng [20]
reported that increasing the volumetric inclusion of prewetted lightweight aggregates from
0% to 25% resulted in a 35% reduction in the self-shrinkage of UHPC with a water-to-cement
ratio of 0.2. In addition, increasing the amount of internal curing aggregate can continue to
reduce the self-shrinkage of UHPC. However, due to the low mechanical properties of the
porous prewetted light aggregate, the compressive strength of UHPC is reduced by 25% at
a prewetted light aggregate volume admixture of 75%. Some researchers found that the
use of appropriate content of porous aggregates not only reduced self-shrinkage but also
slightly increased the compressive strength of UHPC [21,22]. This can be explained by the
formation of a thin and dense interfacial transition zone (ITZ) between the cement paste
matrix and the porous aggregates.
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The joint effect of EA and ICA reduces the self-shrinkage of UHPC when contrasted
with the implementation of a single shrinkage reduction strategy (this may be a more
effective solution). The use of ICA in addition to providing internal curing also allowed the
EA to hydrate and expand more fully [23]. Valipour [24] claimed that UHPC prepared with
7.5% intumescent and 60% prewetted lightweight aggregate had a shrinkage of only 273 µε
at 28 d, whereas UHPC with 7.5% intumescent and 60% prewetted lightweight aggregate
alone had a shrinkage of 350 µε and 580 µε at 28 d, respectively. Most of the previous
studies used prewetted light aggregates as the ICA to reduce the shrinkage of UHPC, but
their low aggregate strength will reduce the mechanical properties of UHPC. In this study,
metallurgical ore sand (MOS) with multiple microfine-connected pores and high strength
was selected. After being prewetted with full water, it replaced part of the high-modulus
aggregate (HMA) in equal volume as the ICA. The high absorption rate and stable water
storage of MOS were utilized to alleviate the shrinkage of UHPC by continuously releasing
water after molding and hardening. Furthermore, the mechanism of the synergistic effect
of EA and ICA on the mechanical properties and volume stability of high-modulus UHPC
was studied for providing a theoretical basis for the promotion and application of UHPC in
bridge engineering.

2. Experimental Procedure
2.1. Materials

P·II 52.5 silicate cement (CEM) was used for cement, with an apparent density of
3.15 g/cm3. The specific surface area of silica fume (SF) was 18,300 m2/kg, and the SiO2
content was 90%. The fly ash microsphere (FAM) 28 d activity index was 113%. The expan-
sion agent was CaO–MgO compound. HMA and MOS were selected as fine aggregates.
HMA had an apparent density of 2530 kg/m3 and a saturated surface dry water absorption
rate of 6.8%, whereas MOS had an apparent density of 3100 kg/m3 and a saturated surface
dry water absorption rate of 10%. The chemical compositions of HMA and MOS are listed
in Table 1. The coarse aggregate (C.A) was basalt crushed stone with a particle size of
5–8 mm, crushing value of 12%, and apparent density of 2900 kg/m3, and the particle
size distribution curve is shown in Figure 1. The superplasticizer is polycarboxylic acid
high-performance superplasticizer agent with 40% solid content and 35% water reduction
rate. Short straight steel fibers were used to enhance bending toughness with an equivalent
diameter of 0.2 mm, a nominal length of 13 mm, and a density of 7850 kg/m3.

Table 1. Chemical compositions of fine aggregates (wt%).

Fine Aggregate SiO2 Al2O3 Fe2O3 CaO MgO V2O5 K2O FeO TiO2

HMA 39.1 52.3 1.8 1.05 0.27 - 0.61 - 2.46
MOS 18.1 14.9 5.2 24.6 8.4 0.22 - 2.55 22.3

2.2. Test Programs

According to previous studies, 8 mixing ratios were used to investigate the effect of
EA and ICA on the performance of UHPC (shown in Table 2). Among them, group N is
the reference control group, group E3 illustrates 3% of the EA in equal mass proportion
to replace the cementitious material, group M10 illustrates 10% of the prewetted MOS in
equal volume proportion to replace the HMA, and group E3M20 is mixed with both 3% of
the expansion agent and 20% of MOS.

Table 2. Mixture proportions (kg/m3).

Mix ID Cement SF FAM EA HMA MOS C.A Fiber SP Water

N 625 165 135 0 800 0 500 160 22.2 166
E3 606 160 132 28 800 0 500 160 22.2 166
E5 594 157 128 46 800 0 500 160 22.2 166
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Table 2. Cont.

Mix ID Cement SF FAM EA HMA MOS C.A Fiber SP Water

E8 575 152 124 74 800 0 500 160 22.2 166
M10 625 165 135 0 720 98 500 160 22.2 166
M20 625 165 135 0 640 196 500 160 22.2 166
M30 625 165 135 0 560 294 500 160 22.2 166

E3M20 606 160 132 28 640 196 500 160 22.2 166
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2.3. Experiment Methods

Preparation Process: MOS was introduced into a 200-mesh container and submerged
in a water tank for 24 h to achieve a saturated surface dry state, after which it was stored.
During the mixing process, the components of the raw materials were weighed in accor-
dance with the prescribed ratios. Firstly, we dry-mixed the cementing material and fine
aggregate for 1 min, added water-reducing agent and 75% water, continued to mix for 3 min
to the flow state, evenly scattered the steel fiber, added the remaining water to continue
mixing for 2 min, and finally added the coarse aggregate and stirred until uniform. The
total mixing time was controlled at about 12 min. Afterward, the molding was placed
on the shaking table for 30 s and covered with cling film for one day. After demould-
ing, normal maintenance procedures were followed, and relevant performance tests were
conducted at the 28-day mark. Test method: The workability of UHPC was measured
according to GB/T50081-2019 [25]. Compressive strength tests, flexural strength tests, and
elastic modulus tests of UHPC were carried out in accordance with GB/T31387-2015 [26].
In addition, the early autogenous shrinkage deformation of UHPC was tested based on
GB/T50082-2009 [27]. The early hydration process of UHPC was studied using an eight-
channel hydration isothermal calorimetry (TAM Air, TA Instruments, Thermo, Waltham,
MA, USA). The morphology of the aggregate microareas was observed by a QUANTA FEG
450 scanning electron microscope (Zeiss, Oberkochen, Germany). The TI-980 nanoindenter
instrument was used to test the micromechanics, and the loading program was selected
as trapezoidal loading with a loading rate of 200 µm/min increasing linearly to 2000 µm.
Then, the load was held for 10 s to reduce the error due to creep and then reduced at the
same rate. In addition, the spacing of indentation points was selected to be 5 mm in order
to avoid the interference between the two indentation points. The experimental procedure
is shown in Figure 2 below.
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shrinkage of high-modulus UHPC.

3. Results and Discussion
3.1. Working Performance

The workability of the high-modulus UHPC is shown in Figure 3. It can be found that
the addition of EA had no effect on the flow of UHPC mixes, whereas the incorporation
of prewetted MOS can effectively improve the flow of the mixtures. Meanwhile, the flow
of the M30 group increased by 34.9% compared to the plain UHPC (N group). This is
because of the porous surface of MOS and its excellent water storage performance. During
the mixing process, the saturated MOS releases partial water during the mixing process,
which increase the free-flowing water in the mix and improves the working performance
of UHPC. However, the higher actual water–cement ratio affects the mechanical properties
of UHPC when the MOS doping is too large. Therefore, taking into account the mechanical
properties and working performance, the E3M20 group is considered to be the optimal
ratio (scales 27.9% better than the N group).
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3.2. Compressive Strength

The compressive strengths of UHPC at different stages are shown in Figure 4. It can
be found that the addition of EA and ICA has a significant impact on the compressive
strength of UHPC. With the increase in proportion of CaO–MgO composite EA, the 28 d
compressive strength of concrete decreases, but its early compressive strength increases.
Compared with plain UHPC, the 3 d (The term ‘concrete at 3 days’ refers to concrete that
has undergone 3 days of curing and solidification.) compressive strength of group E8
increased by 10.1 MPa, but the 28 d compressive strength decreased by 11.3 MPa. This
is due to the fact that the change in compressive strength is related to the EA affecting
the hydration process of the cementitious slurry. Previous research has similarly shown
that the expansion stresses generated by the EA reaction also increase the porosity of the
matrix, leading to a looser internal structure and a reduction in the 28 d compressive
strength [28]. In addition, the 3 d compressive strength of UHPC decreases by 3.8 MPa,
8 MPa, and 9.5 MPa as the doping amount of MOS increases from 0 to 30%. With the
moisture difference formed by the hydration of the slurry, the internal water of MOS is
slowly released to improve the internal relative humidity of slurry. Simultaneously, the
secondary hydration of the cementitious slurry occurs to compensate for the reduction
in strength due to the increase in the actual water–cement ratio. In addition, compared
with the 3 d strength, the 28 d compressive strength of the N, M-10, M-20 and M-30 groups
increased by 86.6%, 88.9%, 91.3%, and 77.7%, respectively. A significant decrease in the
compressive strength of the M30 group may be attributed to the fact that the higher MOS
admixture increased the actual water–cement ratio of UHPC dramatically, whereas its
internal curing effect could not compensate for the decrease in concrete strength.
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3.3. Flexural Strength

The flexural strength of UHPC is shown in Figure 5. The incorporation of EA and ICA
could improve the flexural strength of UHPC. Specifically, the flexural strength of group
E3 was increased by 1.4 MPa compared with group N. But the flexural strength of UHPC
decreased to 19 MPa when the dosage of EA continued to increase to 8%, which might be
related to the interfacial bond strength of the substrate. Le [23] has shown that the reduction
in UHPC shrinkage could enhance the interfacial bond strength of the matrix. Therefore,
when the amount of EA was 3%, the decline in the compressive properties of UHPC was
low and the flexural strength was increased. However, too much EA affected the C–S–H
gel content resulting from the hydration of the slurry, which could damage the flexural
properties of UHPC. In addition, the inclusion of MOS improved the flexural strength of
UHPC, but the flexural strength of the M30 group decreased by 1.4 MPa compared with the
M20 group. This is mainly due to two reasons: (1) the addition of the saturated prewetted
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MOS reduces the viscosity of the slurry, and the steel fibers can be more easily adjusted in
their distribution and orientation during mixing and forming [29]; (2) the internal curing
effect of MOS can effectively improve the interfacial bonding properties of the substrate.
However, the matrix property degradation caused by the high actual water–cement ratio at
30% MOS doping can also weaken the flexural strength of UHPC.
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3.4. Elastic Modulus

The elastic modulus of high-modulus UHPC is shown in Figure 6. It can be clearly
seen that the elastic modulus of the prepared UHPC was higher than 50 GPa, which is
mainly due to the use of high-elastic modulus aggregate basalt and HMA. The elastic
modulus of UHPC would be reduced by either the inclusion of an EA alone or the ICA.
On the one hand, the expansion reaction of the EA affected the hydration degree of the
slurry, which also made the internal structure of UHPC looser. Therefore, as the amount of
expansion agent dosing increased (while dosing alone), the more noticeable the decrease
was in the modulus of elasticity of UHPC. On the other hand, the internal curing effect of
MOS was hardly enough to counteract the decreasing effect of the increase in the actual
water–cement ratio of UHPC and the decrease in the proportion of HMA dosing. As a
result, the modulus of elasticity of the M30 group was significantly reduced. In addition,
the insignificant decrease in the elastic modulus of the M10 and M20 groups was due to
the fact that the porous and high-strength MOS could effectively improve the interfacial
bonding properties of the matrix by means of internal curing.
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3.5. Shrinkage Behavior

The shrinkage of each group of UHPC is illustrated in Figure 7. It can be seen that the
180 d shrinkage of UHPC gradually decreased with the increase in the dosage of expander
(i.e., 211 µε, 281 µε, and 309 µε compared to plain UHPC). Therefore, the EA compensates
for UHPC shrinkage with significant effect, but because of the lack of moisture inside the
UHPC, the high dosage of EA could not be fully hydrated and its role in compensating
for the contraction is limited. In addition, the 180 d shrinkage of UHPC decreased from
596 µε to 373 µε when the prewetted MOS doping was elevated from 0 to 30%. The reason
for this compensated shrinkage is that the prewetted MOS with small and interconnected
pores on its surface can save a certain amount of water, which will not be released in
the mixing. Then, with the hydration and self-drying of the cement paste, at this time,
the humidity difference between the prewetted MOS and the surrounding paste, a large
amount of water in the capillary pores is consumed and the pressure in the capillary pores
is reduced, forming negative capillary pressure. Finally, the absorption force generated
by the negative pressure gradually releases water from the pores of the prewetted MOS,
promotes the hydration of the cementitious material around the aggregate, and reduces the
shrinkage stress of the capillary pores, thus compensating for the shrinkage deformation of
the concrete at all stages.

Coatings 2023, 13, x FOR PEER REVIEW 9 of 13 
 

 

 
Figure 7. The evolution of UHPC shrinkage with time for each mix proportion. 

3.6. Heat Evolution 
The effect of different amounts of EA on the hydration process of UHPC is shown in 

Figure 8. From the exothermic rate curve, it can be seen that the UHPC slurry went 
through an induction period of 6 h. After the dosing of EA was gradually increased, the 
heat flow during the induction period of slurry hydration exhibited a gradual increase. 
After that, the induction period is followed by a period of accelerated hydration for about 
12 h. In this period, the exothermic rate of slurry hydration reached its peak, which was 
followed by a deceleration period lasting about 28 h. Finally, the hydration of the cement 
paste was essentially stable and the exothermic rate steadily decreased [30]. From the 
figure, it can be learned that with the increase in the dosage of the EA, the peak exothermic 
rate of cement slurry hydration, the peak appearance time, and the 72 h exothermic rate 
all show a trend of increasing and then decreasing. When the admixture of the EA was 
raised from 0 to 5%, the hydration of the CaO group in the EA accelerated the hydration 
exothermic rate and peak time of the cement paste and the accumulated exothermic heat 
gradually increased. However, when the amount of EA reached 8%, the hydration of the 
CaO group made the free water inside the slurry decrease rapidly, which slowed down 
the exothermic rate and peak time of slurry hydration, and the slurry hydration showed 
a longer induction period and acceleration period. This indicated that the excessive 
admixture of EA resulted in a significant delay of slurry hydration and a fallback in 
cumulative heat release. 

  

Figure 8. Effect of EA on the heat evolution of UHPC. 

Figure 7. The evolution of UHPC shrinkage with time for each mix proportion.

3.6. Heat Evolution

The effect of different amounts of EA on the hydration process of UHPC is shown in
Figure 8. From the exothermic rate curve, it can be seen that the UHPC slurry went through
an induction period of 6 h. After the dosing of EA was gradually increased, the heat flow
during the induction period of slurry hydration exhibited a gradual increase. After that,
the induction period is followed by a period of accelerated hydration for about 12 h. In
this period, the exothermic rate of slurry hydration reached its peak, which was followed
by a deceleration period lasting about 28 h. Finally, the hydration of the cement paste was
essentially stable and the exothermic rate steadily decreased [30]. From the figure, it can be
learned that with the increase in the dosage of the EA, the peak exothermic rate of cement
slurry hydration, the peak appearance time, and the 72 h exothermic rate all show a trend
of increasing and then decreasing. When the admixture of the EA was raised from 0 to 5%,
the hydration of the CaO group in the EA accelerated the hydration exothermic rate and
peak time of the cement paste and the accumulated exothermic heat gradually increased.
However, when the amount of EA reached 8%, the hydration of the CaO group made the
free water inside the slurry decrease rapidly, which slowed down the exothermic rate and
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peak time of slurry hydration, and the slurry hydration showed a longer induction period
and acceleration period. This indicated that the excessive admixture of EA resulted in a
significant delay of slurry hydration and a fallback in cumulative heat release.
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3.7. SEM

The surface morphology of the UHPC combined with the aggregate is exhibited in
Figure 9. As Figure 9a demonstrates, the interfacial transition zone between MOS and
cement paste, it can be seen that the surface of MOS was rough and porous, and the cement
paste is tightly connected to the aggregate; thus, the interfacial bonding performance
was excellent. Moreover, the MOS aggregate surface is uneven, and the unhydrated
cementitious particles and hydrated paste would gradually fill the pores and grooves on
the aggregate surface during the mixing process of UHPC so as to make up for the increase
in matrix porosity brought about by the porous aggregate. Furthermore, as the concrete
hardens, the hydration products grow inside the aggregate, and it can become the lock
that connects the aggregate to the matrix, making the aggregate and the slurry tightly
anchored into a single unit. In addition, the water released from the pores of the aggregate
would promote hydration of the interfacial transition zone and improve the homogeneity
of the matrix. In addition, the transition zone of the interface between HMA and matrix
is shown in Figure 9b. Due to the microscopic pores on the surface of HMA aggregate, it
would absorb the free water within the mixture during the mixing process. Cement slurry
and some unhydrated cementitious particles were tightly attached to the surface of HMA,
resembling a matrix, thus forming a dense interfacial transition zone.
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3.8. Nanoindentation

Typically, the elastic modulus of the main components of the slurry is porous, with
the elastic modulus below 10 GPa; low-density (LD) calcium silicate hydrate (C–S–H) gel,
with elastic modulus of 10–20 GPa; high-density (HD) C–S–H gel, with elastic modulus of
20–30 GPa; ultrahigh-density (UHD) C–S–H gel, with elastic modulus of 30–50 GPa; and
unhydrated gelled particles, with elastic modulus greater than 50 GPa [31]. The results
of the nanoindentation test are illustrated in Figure 10, and Figure 10a shows the elastic
modulus of each indentation point (each group of indentation points contains aggregate,
interfacial transition zone, and matrix). In summary, the calculated hardness obtained for
each indentation point is shown in Figure 10b.
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In Figure 10a, it can be found that even though MOS has a porous structure, the
aggregate itself still has excellent mechanical properties, and the modulus of elasticity of
the three types of aggregates: basalt, MOS, and HMA are 123.85 GPa, 136.08 GPa, and
164.82 GPa, respectively, of which the nanoelasticity modulus of MOS was slightly reduced
compared with that of HMA. Regarding the interfacial transition zone (ITZ), the average
modulus of elasticity in the ITZ for the three aggregates of basalt, MOS, and HMA are
24.58 GPa, 28.32 GPa, and 28.29 GPa, respectively. In contrast to fine aggregates, the
coarse aggregate ITZ had a lower modulus of elasticity. This occurs because concrete
tends to accumulate water beneath the coarse aggregate prior to setting, creating a water-
filled region. At the same time, the actual hydrogel around the coarse aggregate was
relatively large, weakening the strength of the coarse aggregate ITZ [32]. However, the
nanomechanical properties of the ITZ with the matrix under the effect of MOS internal
maintenance were also not significantly decreased (the enhancement of the actual water–
cement ratio) compared with HMA. Therefore, when the replacement dose of prewetted
MOS was 20%, the better aggregate strength and interfacial bonding properties of MOS
compensated for the decline in mechanical properties caused by the increase in the actual
water-to-cement ratio of UHPC and the decrease in the dosage of HMA. The average
elastic modulus of the cement paste is 43.29 GPa, which indicates that the cement paste
of UHPC is mainly composed of HD C–S–H gels and UHD C–S–H gels. In addition,
some indentation points in the cement paste have a high elastic modulus, which may
be unhydrated cementitious particles in the lower water-to-cement ratio environment of
UHPC. Therefore, the incorporation of porous high-strength aggregate MOS does not lead
to a significant reduction in the strength of UHPC.
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4. Conclusions

(1) The expansion reaction of the expansion agent (EA) can effectively compensate for the
shrinkage of UHPC, but the expansion agent has high hydration activity in the early
stage, which leads to the lack of internal moisture; i.e., the expansion effect can not be
fully exerted, and the slurry is not sufficiently hydrated. In addition, the compressive
strength and elastic modulus of UHPC slightly decreased, and the flexural strength
first increased and then decreased.

(2) The internal curing aggregate MOS can effectively mitigate the shrinkage of UHPC.
Moreover, the porous surface of the aggregate makes it possible to release water
slowly inside the material after prewetting and improve the interfacial properties
of the aggregate and the matrix by internal curing. As a result, its better aggregate
strength and interfacial bonding properties compensate for the decline in mechanical
properties caused by the increase in the actual water-to-cement ratio of UHPC and
the decrease in the HMA dosage.

(3) The volume stability of UHPC can be maximized through the synergistic effect of
expansion and contraction of the EA and the compensatory contraction of the ICA
Moreover, the decrease in compressive strength and modulus of elasticity of UHPC is
not significant, and it is also effective in improving its flexural strength.
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