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Abstract: In this work, ethyl cellulose was used as a wall material, propanetriol as a core material,
polyvinyl alcohol as a stabilizer and gelatin as an emulsifier. Self-healing microcapsules with a slow-
release effect were prepared using the solvent evaporation method. Various analytical techniques,
such as 3D confocal microscopy (LCSM), optical microscopy (OM), scanning electron microscopy
(SEM), infrared spectroscopy (FT-IR), energy dispersive spectroscopy (EDS), thermal weight loss
analysis (TGA), laser particle size tester and electrochemical impedance polarization, are utilized. The
morphology, distribution, particle size, corrosion resistance and self-healing ability of the prepared
microcapsules and resin-based coatings were characterized and analyzed. The results show that the
cross-sectional core–shell structure is clearly seen in the LCSM, showing a smooth, hollow, spherical
shape. OM and laser particle size testers have shown that the size of the microcapsules decreases
over time. Also, in OM, the microcapsules are uniformly distributed in the emulsion with a smooth
and non-adherent surface. In SEM, the microcapsule particle size is about 150 µm, the shell wall
thickness is about 18 µm, and the hollow structure of ruptured microcapsules is obvious. FT-IR and
TGA confirmed the successful encapsulation of the formulated microcapsules. The results show that
when the core-wall mass ratio is 1.2:1 and the amount of microcapsule is 10% of the coating amount,
the prepared microcapsule has high thermal stability and certain wear resistance. By electrochemical
and immersion experiments, it was found that a 3.5 wt % NaCl solution has the best impedance,
the lowest corrosion current density, and good adhesion and tensile toughness. The results showed
that glycerol was successfully released from the broken microcapsules and self-healed, forming an
anticorrosive coating with excellent corrosion resistance and self-healing ability.

Keywords: microencapsulation; E-51 epoxy resin; self-healing; corrosion resistance; AZ91D
magnesium alloy

1. Introduction

Magnesium alloy has shown high application value in various applications in today’s
society. In the field of lightweight alloys, it is of great significance as a benefit mankind
and to the promotion of further developments in science and technology. Magnesium
alloys are also the lightest structural metal materials in the world [1–3]. They have the
advantages of having a high specific strength sufficient toughness, and being lightweight
and easy to transform, hence their pivotal in the development of society from ancient times
to the present [4–7]. Therefore, magnesium alloys play an indispensable role in the fields
of construction, aerospace, smart wearable, portable home, and so on, as well as in the
energy and chemical industries. [5–8]. However, China is a large consumer of magnesium
resources, it is not difficult to predict that under the development trend of today’s world,
further research and application of magnesium alloys will increase in significance [6–10].
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Therefore, in this context, the poor corrosion resistance of magnesium alloy itself restricts the
development of magnesium alloys. This situation urgently needs to be addressed [11–14].
The surface of magnesium alloys is similar to that of aluminum alloys; it also has a layer
of magnesium oxide coating. However, the coating itself is loose, porous, soft and thin,
and it is difficult to provide good corrosion protection [15–19]. This requires a layer of
organic coating on the surface to prevent corrosion and improve its utilization. However,
considering that it is not easy to dispose of the coating after the application or recycling
of magnesium alloys, it is necessary to consider more environmentally friendly, highly
efficient and long-lasting corrosion-resistant coatings [20–24]. In this context, coatings with
self-repairing abilities and added microcapsules have emerged.

In recent years, self-healing microcapsules have achieved remarkable advantages in
terms of biocompatibility and environmental friendliness, which has attracted much atten-
tion in various fields, such as materials chemistry, biopharmaceuticals and environmental
sciences [25–29]. In particular, microencapsulation technology, with a core–shell structure
and the synergistic effect of self-healing and slow release, has started to be explored for
the corrosion and protection of alloy surfaces [30–34]. This is because microcapsules act as
fillers in the preparation process to provide a good slow-release refinement and significantly
improve the coating microstructure [34,35]. The self-healing ability of microcapsules is a
very promising method for repairing microgaps in epoxy-resin-based magnesium alloy
materials. There are two general types of self-healing microcapsules: One is the general
type of microcapsule, and the other is the slow-release type of microcapsule. White SR [36]
et al. attempted to design a general-type self-healing microcapsule by means of in situ
polymerization. The microcapsules were composed of polyurea-formaldehyde resin-coated
dicyclopentane, which is a general microcapsule of the resin-coated dicyclopentadiene
type. The slow-release self-healing microcapsules are released from the wall material by
controlling the core material within the core–shell structure. They can be used in alloy
corrosion protection, chemical production as well as in the agricultural and food industries.
Chen [37] designed a structurally robust microcapsule with a slow-release synergistic effect
using a face complex of mesoglycan and chitosan from pectin as well as latex proteins.
Cunha [38] studied bifunctional polyurea-formaldehyde microcapsules and successfully
prepared microcapsules by mixing linseed oil and benzotriazole. Wang [39] prepared
slow-release microcapsules that can act as a vitamin supplement using spray technology,
while the natural antioxidant capacity and release rate of the microcapsules were tested
for modulation. Amand [40] prepared a capsule structure with a synergistic effect of self-
healing and slow release by varying the acetone content. The generated content of the
core wall was also investigated, and when the microcapsules produced an effect, the core
material flowed out, which in turn diffused to fill and bind the cracks.

Compared to existing literature reports, the uniqueness of this research lies in the fact
that PVA itself has bonding, emulsification and dispersion properties, while gelatin itself is
a macromolecular hydrophilic colloid, which can also be used for bonding. Therefore, the
simultaneous addition of poly (vinyl alcohol) and gelatin provides stabilization as well as
enhances aqueous phase viscosity to form a thin film, thereby increasing the encapsulation
rate of the microcapsules. The wall material, ethyl cellulose, has the functions of bonding,
filling and coating forming. However, there is limited research on the emulsifiers used in
compounding. We analyzed the morphology of the microcapsules using a single emulsifier,
as well as the lack of a certain heart–wall ratio and optimal mass fraction between the
entire composition and the coating. This is the focus of this work. Finally, LCSM was
used to observe the macroscopic morphology of the microcapsules, and the existence of
core–shell structure was preliminarily determined. The particle size distribution and dis-
persion uniformity of the microcapsules in emulsion were evaluated using OM and a laser
particle size analyzer. The micromorphologies of the microcapsules and the self-healing
coatings were observed by scanning electron microscopy. In addition, FT-IR and TGA were
used to verify that the microcapsules were successfully encapsulated. The basic proper-
ties of microcapsule coatings are tested via electrochemical Nyquist diagrams and Tafel
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analyses, immersion experiments, adhesion tests and coating tensile tests. The purpose
of this experiment was to show that the self-repairing coating with added microcapsules
has excellent self-healing properties, corrosion resistance characteristics, adhesion, and
self-healing tensile ductility under the action of a compounded emulsifier. Meanwhile, the
impedance value in 3.5 wt.% NaCl solution was 8.242 × 104, which reached the optimum
value. And it had the lowest corrosion current density and good adhesion and tensile
toughness. Through the above corresponding series of experiments, it was able to be thor-
oughly analyzed that the glycerol was successfully released from the broken microcapsules
for self-heal. The AZ91D magnesium alloy anticorrosive coating with excellent corrosion
resistance and self-healing ability was formed. Compared to other experiments, the wall
material, ethyl cellulose, itself is easy to degrade, green and has good biocompatibility as
well as the function of bonding and filling. Finally, new theoretical support and empirical
methods are provided for the corrosion and protection of magnesium alloy surfaces in
this field.

2. Materials and Methods
2.1. Materials and Instruments

Main raw materials: AZ91D magnesium alloy (density 1.82 g/cm3); ethyl cellulose
(density 1.07 g/cm3); propanetriol (relative molecular mass 92.09, colorless, odorless, sweet,
clear and viscous liquid appearance; Sinopharm Chemical Reagent Co., Shanghai, China);
polyvinyl alcohol (relative molecular mass 44.05, white flake, flocculent or powdery solid);
Shanghai Sinopharm Chemical Reagent Co., Ltd., Shanghai, China); gelatin (also known as
animal gelatin, gelatin belongs to a large molecule hydrocolloid; Tianjin Damao Chemical
Reagent Factory, Tianjin, China); OP-10 (white and milky white paste; Shanghai Aladdin
Biochemical Technology Co., Ltd., Shanghai, China); dichloromethane (relative molecular
weight 84.93, colorless and transparent liquid; Tianjin Damao Chemical Reagent Factory,
Tianjin, China); n-butanol (relative molecular weight 74.12, colorless and transparent liquid;
Tianjin Damao Chemical Reagent Factory, Tianjin, China); xylene (relative molecular weight:
106.165; Tianjin Damao Chemical Reagent Factory, Tianjin, China); anhydrous ethanol
(colorless liquid, with special fragrance; Tianjin Damao Chemical Reagent Factory, Tianjin,
China); and E-51 Epoxy resin and supporting curing agent (Zhongtian Fine Chemical Co.,
Ltd., Zhoushan, Zhejiang Province).

Main experimental instruments: HH-S2 digital thermostatic water bath (Changzhou
Yineng Experimental Instrument Factory, ChangZhou, China); DZF vacuum drying oven
(Nanjing Suenrui Production Plant, Nanjing, China); 85-2 digital thermostatic magnetic
stirrer (Changzhou Jintan Jingda Instrument Manufacturing Co., Ltd., Changzhou, China);
CHINALAB 20 electronic balance (Anhui Tianping Machinery Co., Ltd., Chizhou, China);
CHI660E-type electrochemical workstation (Gongyi Kerui Instrument Co., Ltd., Gongyi,
China); VEGA3 XMU scanning electron microscope (Guangzhou Dongrui Technology Co.,
Ltd., Guangzhou, China); 3D confocal microscope (Xiamen Maina Optical Technology
Co., Ltd., Xiamen, China); NMM-800TRF optical microscope (Dongguan Ruixian Optical
Instrument Co., Ltd., Dongguan, China); FBS-50KNW tensile tester (Jinan Tianhua Testing
Equipment Co., Ltd., Jinan, China); GD26-FTIR-650 Fourier transform infrared spectrometer
(Zhongke Ruijie (Tianjin) Technology Co., Ltd., Tianjin, China); and TGA55 thermal weight
loss analyzer (Nanjing Nanda Wanhe Technology Co., Ltd., Nanjing, China). The main
experimental instruments are shown in Figure 1 below.

2.2. Sample Preparation

An AZ91D magnesium alloy with the size of 15 mm × 15 mm × 25 mm was selected
And sanded with 600#, 800#, 1500# and 2000# sandpaper, in this order, until a metallic
luster appeared. After, it was rinsed with deionized water for 3 minutes and put into a
beaker filled with absolute ethanol. Ultrasonic shaking treatment was carried out for 5 min
for the purpose of de-oiling. It was then removed, rinsed again with deionized water for
2 min, and put in alkaline washing solution. After rinsing with deionized water for 2 min,
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it was degreased with acetone. Then, it was removed and rinsed with deionized water for
3 min and put in an acid washing solution. After rinsing with deionized water for 3 min, it
was put into the vacuum drying oven and dried at 50 ◦C for use.
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2.3. Experimental Content
2.3.1. Preparation of Microcapsules

Stirring was continued at 200 rpm for 5 min to obtain 250 mL of 0.8 wt.% PVA with
1 wt.% gelatin as a microencapsulated stabilizer. Next, 20 g of ethyl cellulose was fully
dissolved in 100 mL of dichloromethane. 8 mL of propanetriol was added to the mixture
of ethyl cellulose and dichloromethane. It was mechanically emulsified at 600 rpm in a
constant temperature water bath at 45 ◦C and fully reacted for 4 h until the dichloromethane
was completely evaporated. After the reaction, the microcapsules were isolated by filtering
and rinsing with deionized water and were dried in a vacuum drying oven at 60 ◦C for use.

2.3.2. Preparation of Self-Healing Coatings

In the process of adding microcapsules into the coating, the influence of the amount
and dispersion of microcapsules on the properties of the coating was researched. The
designs are no add, 5% addition, 10% addition, and 20% addition. Twelve 25 mL beakers
were taken and divided into three groups, a, b and c, resulting in three groups of 3 beakers
each. 3.75 g of epoxy E-51 was put in each beaker. 1.25 g of hardener b was put in a beaker.
The organic solvent in beaker c was put into a and b in an appropriate amount and stirred
with a magnetic stirrer to mix thoroughly. Among them, 0 g, 0.5 g, 1 g, 2 g were added to
each component and stirred for 30 min using a magnetic stirrer. Finally, the epoxy resin
self-healing coating containing microcapsules with different mass fractions was uniformly
coated on the surface of the magnesium alloy and then cured at 25 °C for 12 h and then at
60 °C for 24 h in a vacuum drying box.

2.4. Testing and Analysis
2.4.1. Electrochemical Test

The electrochemical impedance spectrum and polarization curves of the self-healing
coatings were obtained using a CHI660E electrochemical workstation. The experimental
tests were performed using a conventional three-electrode system. The specimen was the
working electrode (exposed area of 1 cm2), the saturated glycerol electrode (SCE) was
the reference electrode, and the platinum electrode was the auxiliary electrode. The test
solution was 3.5% N saturated aCl solution, and the test temperature was (25 ± 5) ◦C.
The electrochemical impedance spectrum was scanned from 0.01 Hz to 100,000 Hz, the
polarization curve was scanned at a voltage range of ±0.5 V relative to the open circuit
potential, and the scan rate was 5 mV/S. To ensure accuracy and reproducibility, three sets
of parallel tests were performed for each test.
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2.4.2. Scanning Electron Microscopy and X-ray Diffraction Spectroscopy

A VEGA3 XMU scanning electron microscope (SEM) (Guangzhou Dongrui Technology
Co., Ltd., Guangzhou, China) from TESCAN, with an accompanying energy spectrom-
eter (EDS), was used to observe the prepared microcapsules as well as the microscopic
morphology and microscopic characterization of the coatings, with a scanning voltage of
20 kV.

2.4.3. Microcapsules Particle Size and Macroscopic Morphology Analysis

3D confocal microscope (LCSM) (Xiamen Maina Optical Technology Co., Ltd., Xiamen,
China), optical microscope (OM) (Dongguan Ruixian Optical Instrument Co., Ltd., Dong-
guan, China), and laser particle size tester (Kunshan Lugong Precision Instrument Co., Ltd.,
Kunshan, China) were used to characterize the macroscopic morphology, distribution in the
compounded emulsion, particle size, and the aggregation of the prepared microcapsules.
Among them, LCSM uses a 405 nm laser as the light source to initially determine the
microcapsule roughness and core–shell structure.

2.4.4. Fourier Infrared Spectroscopy and Thermal Weight Loss Testing

The GD26-FTIR-650 Fourier infrared spectrometer (Zhongke Ruijie (Tianjin) Technol-
ogy Co., Ltd., Tianjin, China) was used to view the organic functional group profile of
the microcapsules. Among them, about 0.3 mg KBr was weighed and fully ground with
microcapsules in an agate mortar, pressurized to 15–20 MPa and kept for 1 min for testing.
The TGA55 heat loss tester (Nanjing Nanda Wanhe Technology Co., Ltd., Nanjing, China)
was used for testing, and the sample was tested by opening the pure nitrogen valve and
adjusting the outlet pressure to 0.1 MPa.

3. Results and Discussion
3.1. Characterization of Microcapsules
3.1.1. Microstructure and Particle Size Distribution

Figure 2 shows the SEM morphology and particle size distribution of the microcapsules
and microstructure. Figure 2a shows the SEM image of microcapsules loaded with glycerol
at 500 µm. It can be seen from the figure that the microcapsules are relatively uniform in
both distribution and size. Local rupture appears, and the core–shell structure can be seen
initially from the rupture. Figure 2b shows the SEM image of the microcapsules at 200 µm,
and further magnification shows that the surface of the microcapsule is smooth and round
and that the size distribution is relatively uniform. Figure 2c shows the SEM image of a
single microcapsule, which is the moment when the magnification could be maximized
and a clear image could be taken under the right conditions. At 100 µm, the synthesized
capsule appears spherical, then becomes very round and smooth again. The core and wall
states of the core–shell structure can be seen under reflection, in addition to the compact
distribution of the capsule-forming structure. Figure 2d shows the SEM cross-section of the
microcapsules rupture. The total thickness of the outer and inner walls of the capsule is
about 15 µm, and Figure 2e shows the SEM image at a magnification of 100 µm. At this
time, not only can the core–shell structure be clearly seen, but also the change distribution
of microcapsule particle size can be seen. The observed results correspond to the particle
size distribution detected by the laser particle size tester. Figure 2f shows the particle size
distribution of the microcapsules, ranging from (150.424 ± 3.756) µm, which is consistent
with the Gaussian nonlinear fitting results.
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3.1.2. Macroscopic Structure and Particle Dispersion

Figure 3 shows the macroscopic structure and particle size morphology of the micro-
capsules prepared under the 3D confocal microscopy (LCSM), optical microscopy (OM),
and camera 2a. Figure 3a,b show the morphology of the capsule emulsion prepared under
optimal conditions and the capsule emulsion dried in a vacuum drying oven, respec-
tively. It can clearly be seen that the emulsions are green and transparent, the viscosity is
moderate, and the dry powder is milky and delicate, which preliminarily indicates that
the preparation method and process were successful. Figure 3c shows the dispersion of
the emulsion under an optical microscopy (OM). It can be seen that the surface of the
microcapsule obtained after mixing the water phase with oil is smooth and has no adhe-
sion. The uniform distribution in the emulsion is attributed to the use of a gelatin and
PVA compound emulsifier. The deposition rate of the polymer on the wall slowed down,
forming a smooth-surfaced microcapsule. The microcapsule particle size is about 152 µm,
as shown in Figure 3d. The inner capsule wall, outer capsule wall, and hollow of the
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microcapsule are clearly seen in Figure 3e. Figure 3f shows the three-dimensional structure
of the microcapsule measured under 3D confocal microscope. It can be seen that the outer
capsule wall is locally depressed, indicating that the interior is hollow. The reason for the
depression is that the outer capsule wall is resistant to friction and has toughness, which
can undergo some deformation. As can be seen in Figure 3d–f, this is consistent with the
results from scanning electron microscopy (SEM) and the laser particle size tester tests.
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Figure 3. Macrostructure of prepared microcapsule and particle size under core–shell structure:
(a) optimal emulsion; (b) microcapsule powder; (c) emulsion dispersion under optical microscope
(OM); (d) particle size under 3D confocal microscope (LCSM); (e) inner capsule wall under 3D
confocal microscope (LCSM); (f) capsule structure under 3D confocal microscope (LCSM).

3.1.3. Chemical Structure of Microcapsules

Figure 4a shows the FTIR spectrum of ethyl cellulose in the wall material. In the above
peaks of organic functional groups, the tensile vibration of C-C aromatic ring ranges from
1586 to 1467 cm−1. The characteristic peak corresponding to the microcapsules in Figure 4c
is 1439 cm−1. Meanwhile, the O-H-O asymmetric tensile vibration ranges from 1316 to
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1289 cm−1. The peak value of C-O-C stretching vibration is 1227 cm−1. This corresponds to
microcapsules at the characteristic peak of 1240 cm−1. Figure 4b shows the FTIR spectrum
of glycerol. There is a stretching vibration at the 3248 cm−1 peak for the -OH bond and
an asymmetric stretching vibration at the 2913 cm−1 peak for the -CH2 bond. There is a
symmetric stretching vibration for the -CH2 at the 2867 cm−1 peak and a bending vibration
for the -CH2 bond at the 1407 cm−1 peak. The symmetric stretching vibration peak of C-O
ranges from 1132 to 1030 cm−1, and that of the secondary alcohol is at 839 cm−1. These
peaks coincide with those of the microcapsule at 2964 cm−1. The results showed that the
characteristic peaks of ethyl cellulose and glycerol reacted in microcapsules. This also
confirmed that glycerol was successfully encapsulated in the microcapsules.
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Figure 4. FTIR spectra of microcapsules, glycerol and ethyl cellulose: (a) ethyl cellulose; (b) glycerol;
(c) microcapsules.

3.1.4. Conversion Efficiency of TGA and Microcapsules

Figure 5a,b show the heat weight loss curve and the conversion rate curve of mi-
crocapsules, respectively, and the initial decomposition temperature of ethyl cellulose is
shown in Figure 5a at 465 ◦C. It has a higher initial decomposition temperature than the
wood carbon structure, and the residue content is 29 wt.% at 800 ◦C, which easily forms
a heat-stable carbon material. This is inherently because of the presence of the aromatic
hydrocarbon skeleton structure in ethyl cellulose. Therefore, the initial decomposition
temperature of glycerol is 150 ◦C, and the final decomposition temperature is 284 ◦C. The
initial thermal degradation temperature of the microcapsules is 360 ◦C. It can be seen from
the figure that the slope of the microcapsule curve is smaller than that of the ethyl cellulose
curve. Combined with the Fourier infrared spectroscopy in Figure 4, it can be seen that
glycerol is well encapsulated into the microcapsules. In Figure 5b, the thermogravimetric
analysis of the figure shows that the microcapsule structure is synthesized by glycerol
and the wall material. It can be seen from the TGA diagram of the microcapsules that
the encapsulation rate of the microcapsules is 12 wt.%. This further indicates that the
preparation of microcapsules was successful.
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3.2. Characterization of Optimal Core-to-Wall Ratio of Microcapsules and Corrosion Resistance of
Self-Healing Coatings

Figure 6 shows the optimal core–wall ratio and corrosion resistance test of self-healing
coatings after the microcapsules with different mass fractions are soaked. In Figure 6a,
when the core–wall ratio of microcapsules is 1:1, the proportion of spherical microcapsules
with regular morphology is low in the total number of microcapsules. The surface is not
polished, and there are more impurities attached. Due to the low core material ratio, the
microcapsules adhere to each other, causing excess wall polymers to accumulate on the
already formed microcapsules. In Figure 6b, when the core-to-wall ratio of 1.2:1, it is
easily seen that the microcapsules are uniformly dispersed. The spherical structure of the
microcapsule formed is smooth and more regular, and the surface is not adhered to anything.
Figure 6c When the core–wall ratio is 1.5:1, the wall content is too low. During the mixing
process, the microcapsule capsule is easy to break due to its thin wall shell. Therefore, when
the mass ratio of core material to wall material is 1.2:1, the microcapsules synthesized with
high sphericity have a regular shape and clear structure. There is no adhesion between
microcapsules. The best results were prepared at this ratio. In Figure 6d–f, the scratch
corrosion morphologies of magnesium alloys soaked in non NaCl solution, 3.5% NaCl
solution for 24 h and 3.5% NaCl solution for 48 h, respectively, can be seed. The analysis
showed that the corrosion of the epoxy coating without microcapsules was more significant
than that of epoxy coating with microcapsules. And relative to the epoxy coatings with 5%
and 20%, the epoxy coating with 10% microcapsules has good corrosion resistance. This
indicates that there is an optimal concentration range for self-healing microcapsules to
achieve maximum corrosion resistance. Excessive microcapsule content may compromise
the water repellency of the coating, resulting in reduced corrosion resistance.

3.3. Characterization of Self-Healing Ability of Coating by Microcapsules with Different Mass
Fraction Addition

Figure 7 shows the corrosion effect of the coated samples with different amounts of
microcapsules in artificial seawater. For pure epoxy resins without microcapsules. With
the increase in soaking time, corrosion appeared in the scratch area, and the corrosion
outside the scratch was more obvious. As can be seen from figure b, when the microcapsule
content is 5%, compared to the pure epoxy coating, the scratches become shallower and
lighter under the same soaking time. This indicates an initial ability to self-healing, and
when the microcapsule content is 10%, only a small amount of corrosion occurs around the
coating. This indicates that the microcapsules will release the core material, propanetriol,
over time when the coating is scratched or broken. However, glycerol is a polar molecule,
and the unshared electron pair of the oxygen element on the polar group combines with
the hydrogen ion. This causes cations to adsorb on the substrate surface, which changes the
structure of the double electric layer on the surface of the substrate, producing a covering
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effect, forming a hydrophobic coating and weakening the movement of hydrogen ions,
chloride ions and water molecules. In turn, this weakens the access to the solution substrate
and hinders charge transfer. Moreover, anode polarization occurs, thereby reducing the
corrosion rate and self-healing, and hindering further corrosion. When the microcapsules
content in d is 20%, the ratio between microcapsules and epoxy resin becomes larger. As a
result, the epoxy resin inside the microcapsule cannot be evenly dispersed and cannot be
scratched at the scratch site, and the corrosion resistance is weakened as the soaking time
increases. It can be seen that when the microcapsule content is 10%, the self-healing ability
is the best, which is consistent with Figure 6.
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Figure 6. In the impregnation corrosion resistance test, the best core–wall ratio of microcapsules and
self-healing coatings with different mass fractions are the following: (a) core-to-wall ratio of 1.5:1;
(b) core-to-wall ratio of 1.2:1; (c) core-to-wall ratio of 1.5:1; (d) no sodium chloride solution immersion;
(e) 3.5% sodium chloride solution immersion for 24 h; (f) 3.5% sodium chloride solution immersion
for 48 h.
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Figure 7. Corrosion effect of coatings with different self-healing microcapsule additions in artificial
seawater: (a) no microcapsule addition (a1 0d, a2 1d, a3 3d); (b) microcapsule content 5% (b1 0d, b2
1d, b3 3d); (c) microcapsule content 10% (c1 0d, c2 1d, c3 3d); (d) microcapsule content 20% (d1 0d,
d2 1d, d3 3d).

3.4. Electrochemical Test Characterization of Self-Healing Coatings
3.4.1. Electrochemical Impedance Spectroscopy

Figure 8 above shows the electrochemical impedance spectra of different self-healing
microcapsules added to the 3.5% NaCl solution. Figure 8a shows the Nyquist diagram.
The impedance modulus values in the low frequency region are 2.8 × 104, 3.6 × 104, 7.8 ×
104, and 5.3 × 104, respectively. As the radius of the capacitive resistance of the capacitive
arc in solution gradually increases, the corresponding resistance of the solvation layer also
increases. The charge transfer resistance becomes more pronounced, which in turn hinders
further erosion of the coating by the solute in solution. Moreover, when the microcapsule
addition amount is 10 wt.%. The coating has the best self-healing ability, indicating that
it has the best corrosion resistance at this moment. Compared to the pure epoxy coating
without the addition of microcapsules, its corrosion resistance is poor. Also in the Byrd
plot in Figure 8b, it can be seen that the |Z| value increases continuously in the absence
of the microcapsules up until they are added up at 10 wt.%, but the value decreases at
a microcapsule content of 20 wt.%. This indicates that the self-healing coating exhibits
optimal impedance coating volume with a stable passive response at 10 wt.% microcapsule
content [40]. The self-healing epoxy coating successfully prevented the electrolyte solution
from penetrating into the substrate and coating surface. The corrosion inhibitor released
by the microcapsule is adsorbed at the corrosion site. It successfully inhibits the corrosion
process. The appearance of double peaks can clearly be observed in Figure 8c, indicating
that the self-healing coating was successfully coated at this time and has a double-layer
structure. This indicates that the corrosion resistance of the coating is optimal when the
microcapsule content is 10 wt.%. In Figure 9, the error between the data fitted in the figure
and the experimental data is minimal, so the equivalent circuit can be used to fit the coating
data of the optimal microcapsule addition amount, where CR and CP are, respectively,
the annual corrosion rate and anti-corrosion efficiency on the Tafel curve. Ecorr mainly
describes the corrosion thermodynamic trend of the coating, and Icorr is the corrosion
current density. In general, the main criterion of corrosion resistance is determined by
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the corrosion current density. The lower the current density, the lower the corrosion
rate accordingly. Epoxy resin varnish coatings and self-healing coatings have orders of
magnitude lower current densities compared to magnesium alloy substrates. In addition,
the self-healing coating worked better in the sodium chloride solution. The reason is that
the coating successfully resists the penetration of the electrolyte solution to the substrate
and the coating surface. The corrosion inhibitor released by the microcapsule is adsorbed
at the corrosion site. The corrosion process was successfully suppressed, which is also
consistent with the polarization curve analysis in Figure 10 below.
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additions in 3.5% NaCl solution: (a) Nyquist plot; (b) impedance vs. frequency Byrd plot; (c) Bode 
diagram of phase angle and frequency. 

 

 

 

Figure 8. Electrochemical impedance spectra of coatings with different self-healing microcapsule
additions in 3.5% NaCl solution: (a) Nyquist plot; (b) impedance vs. frequency Byrd plot; (c) Bode
diagram of phase angle and frequency.
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sule addition.

3.4.2. Electrochemical Polarization Curve Graph Analysis

Figure 10 shows the polarization curves of epoxy resin coatings in 3.5% NaCl solution
at the optimal microcapsule dosage. Table 1 shows the Ecorr and icorr of the epoxy coating
with different microcapsules added in 3.5% NaCl solution. Each set of experiments was
conducted three times in parallel to exclude accidental errors. It can be concluded from the
figure that when the addition of microcapsules reaches 20%, the anode arc can be observed.
The corrosion potential and corrosion current density of magnesium alloy in a bare matrix
are the worst, at −1.125 V and 1.562 × 10−5 A, respectively. With the addition of epoxy
resin varnish, the corrosion potential and corrosion current density showed an obvious
optimization trend. At this time, the corrosion potential and the corrosion current density
are −1.014 V and 1.854 × 10−5 A, respectively. After that, according to the percentage
content of microcapsule additives, the added amounts were 5 wt.%, 10 wt.% and 20 wt.%.
The corresponding electrochemical measurement data showed a trend of first increasing
and then decreasing, and reached the peak value when the microcapsule addition amount
was 10 wt.%; that is, the optimal value was reached. The optimal corrosion potential and
corrosion current density are −0.721 V and 1.86 × 10−7 A, respectively. In general, the
corrosion resistance of self-healing coatings is mainly determined by the corrosion current
density. The lower the corrosion current density, the lower the corresponding corrosion
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rate of the self-healing coating. The self-healing coating without added microcapsules
has a lower order of magnitude current density compared to the added microcapsules.
This indicates that both coatings can provide corrosion protection to magnesium alloy
substrates and slow down the corrosion rate. However, the self-healing coating is effective
because it can release microcapsules, causing the slow-release healing of coating ruptures
and adsorption on the broken parts, which can inhibit the corrosion process well. Table 2
shows the equivalent fitting of impedance using electrochemical fitting software, and the
fitted equivalent circuit diagram of the coating is shown in Figure 9, which shows that
the fitted data and the experimental data are similar. The result error is small, so the
equivalent circuit diagram can be used to fit the experimental data. Rs represents the
resistance of the solution, CPE1 and CPE2 represent the capacitance and resistance of the
self-healing coating, and R1 and R2 represent the charge transfer resistance between the
coating and the reaction resistance of the coating, respectively. Due to the rough surface
and inhomogeneous electrochemical properties of the magnesium alloy substrate, a phase
angle element is commonly used instead of the capacitance for interpreting the behavior of
the high-frequency capacitive arcs. CPE1 and CPE2 represent the phase angle elements of
the reaction interface and the two-layer corrosion products, respectively. The results show
that the higher the fitting resistance of microcapsules, the better the corrosion resistance.
When the mass fraction of the microcapsule is 10 wt.%, its corrosion resistance reaches its
maximum. The results are consistent with those of the polarization curve.

Table 1. Ecorr and icorr of epoxy resin coatings with different microcapsule additions in
3.5% NaCl solution.

Microcapsules Ecorr/V icorr/(A/cm2)

Uncoated −1.125 1.562 × 10−5

Pure epoxy resin coating −1.014 1.854 × 10−5

5 wt.% epoxy-based coating of microcapsules −0.931 1.538 × 10−6

Epoxy-based coating of 10 wt.% microcapsules −0.721 1.86 × 10−7

Epoxy-based coating of 20 wt.% microcapsules −0.903 1.507 × 10−6

Table 2. Tafel curve extrapolation results of epoxy resin coatings with different microcapsule additions
in 3.5% NaCl solution.

Microcapsules Rs
Ω·cm2

CPE1
Ω−1·S−n·cm2 n1

R1
Ω·cm2

CPE2
Ω−1·S−n·cm2 n2

R2
Ω·cm2

R1 + R2
Ω·cm2

Uncoated 19.92 8.32 × 10−6 0.87 8110 4.8 × 10−4 0.61 15,890 24,000
Pure epoxy resin coating 12.13 8.94 × 10−6 0.89 26,450 2.3 × 10−4 0.85 13,150 39,600

5 wt.% epoxy-based coating
of microcapsules 11.2 8.44 × 10−6 0.89 14,080 1.7 × 10−4 0.73 39,820 53,900

Epoxy-based coating of
10 wt.% microcapsules 9.8 1.33 × 10−5 0.82 13,520 2.3 × 10−4 0.85 68,900 82,420

Epoxy-based coating of
20 wt.% microcapsules 13.08 2.49 × 10−5 0.84 28,900 4.4 × 10−4 0.62 24,180 53,080

3.4.3. SEM Image and EDS Image of Self-Healing Coating

Figure 11 shows the planar SEM image, sectional SEM image and the corresponding
sectional EDS spectra of the epoxy resin coating with optimal microcapsule dosage. At the
magnification of Figure 11a, 200 µm, it can be seen that the encapsulated small particles
are uniformly dispersed on the surface of the self-healing coating. This indicates that the
microcapsules at the optimal content are well formed by stirring and curing after being
added to the epoxy resin coating. When the coating is damaged by external forces, the
microcapsules encapsulated in the coating can flow out in time to release the retarding
agent, glycerin. In turn, the coating provides good protection against corrosion. Figure 11b
shows the enlarged view in a. At this time, under the amplification size of 100 µm, the
structure of the microcapsule can be seen increasingly clearly, and the dispersion is very
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good. Figure 11c shows the cross-sectional SEM image of the epoxy resin coating at
the optimal microcapsule dosage. Figure 11d shows the EDS energy spectrum of the
corresponding cross section in Figure 11c, which corresponds to the overall face-swept
element distribution. The thickness of the self-healing coating is 95–100 µm. It is clearly
seen that the incorporation of microcapsules results in a tighter adhesion of the coating to
the magnesium alloy substrate and thus excellent corrosion resistance.
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4. Conclusions

The present work is based on the preparation of loaded propanetriol microcapsules in
micrometer vessels. Because ethyl cellulose is easily decomposed by heat, it is biodegrad-
able and chemically stable. Glycerol itself, due to its lubricating and oiliness, can form a
good hydrophobic coating with hydrogen ions on the surface of magnesium alloys. In turn,
it can slow down hydrogen ions, chloride ions and water molecules from penetrating the
epoxy resin coating, which can effectively reduce the corrosion resistance of the coating
and enhance the self-healing performance of the coating, specifically as follows:

1. Microcapsules containing the corrosion inhibitor propanetriol are added into the
epoxy resin to form a round and smooth spherical structure, which is uniformly
dispersed into the coating.

2. The particle size of the propanetriol-loaded microcapsules was (150.424 ± 3.756) µm
as observed by SEM, laser particle size tester, and 3D confocal microscopy.

3. The results of TGA and FTIR show that propanetriol, as a corrosion inhibitor, was ef-
fectively encapsulated inside the capsule wall as a core material for release retardation
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when rupturing of the microcapsules occurred. The DTG curves of the microcapsules
show that the capsule wall shell are loaded with about 12% of the printing agent.

4. SEM images of the plane and cross-section of the self-healing coating show that
the microcapsules are evenly distributed in the epoxy resin layer, and the incorpo-
ration of microcapsules makes the coating adhere more closely to the magnesium
alloy substrate.

5. The electrochemical experimental analysis shows that the microcapsules are success-
fully added into the epoxy resin coating. Glycerol, as a corrosion inhibitor, is able
to be successfully released. It is adsorbed to the rupture site to form a hydropho-
bic coating layer for self-healing, which in turn attenuates the corrosion rate of the
magnesium alloy.
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