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Abstract: Nanobubbles represent a special colloidal system, as they have high stability and large
specific surface areas. The preparation of nanobubbles is currently a hot research topic, as it crucial to
investigate their characteristics and expand their applications. This article explains the mechanism of
generating nanobubbles based on chemical and physical methods, introduces their basic composi-
tion’s structure and properties, summarizes the methods of preparing bulk nanobubbles (BNBs) and
surface nanobubbles (SNBs), and clarifies the preparation principles and techniques. Seven practical
applications of nanobubbles are cited in this paper, including their use as ultrasonic contrast agents
in medical imaging, drug delivery systems in drug transportation, promoters of plant growth by
affecting plant respiration and water absorption at the roots, tools to remove dirt from surfaces by
generating energy during nanobubble bursting, producers of high-density negative ions and free
radicals to react with pollutants in wastewater, tools to reduce the resistance of the fluid flow through
channels by lowering the internal friction, and means of improving the mineral flotation recovery
rate by enhancing the absorption capacity of bubbles to minerals. Finally, the future development of
nanobubble preparation technology is discussed, including their roles in optimizing equipment and
preparation methods; improving the quantity, efficiency, stability, controllability, and homogeneity of
nanobubble generation; and promoting the industrial production of nanobubbles.

Keywords: nanobubbles; colloidal system; preparation method; generation mechanism; contrast
agent; drug transport

1. Introduction

Bubbles are commonly found in nature and typically refer to spherical or hemispherical
bodies that form on the surface of a liquid due to gas dispersion. In engineering, they are
usually formed by introducing gas into a liquid layer through small apertures, but they
exhibit low stability and are prone to explosion [1]. Bubbles are commonplace in daily
life, such as soap bubbles formed via rubbing during laundry, bubbles generated during
soup boiling, and water bubbles formed when raindrops hit the surface of a body of water.
Although scientists have thoroughly studied bubbles visible to the naked eye, nanobubble
research is still ongoing. As research into nanobubbles deepens, it has been discovered that
compared to larger bubbles, nanobubbles exhibit ultra-high stability and represent a unique
colloidal system [2]. The lifespan of bubbles commonly found in daily life is typically a
few seconds to several minutes, while nanobubbles can survive for several days and even
stably exist for over a month under certain conditions [3]. Nanobubbles are categorized into
surface nanobubbles and bulk nanobubbles, as illustrated in Figure 1. Surface nanobubbles
refer to nanoscale bubbles attached to solid surfaces at solid–liquid interfaces, which
typically have cap-like shapes. The contact line radius of surface nanobubbles generally
ranges from 50 to 500 nm, as well as heights between 10 and 100 nm. Bulk nanobubbles
represent spherical bubbles uniformly dispersed in water or other liquids, which have
diameters smaller than 1000 nm [4].
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Figure 1. Surface and bulk nanobubbles: (a) surface nanobubbles; (b) bulk nanobubbles.

Currently, nanobubbles have widespread applications in various fields, including
medicine [5], agriculture [6], and industry [7]. In the medical field, nanobubbles are often
utilized in medical imaging [8] and drug delivery [9] due to their excellent contrast and
material transport capabilities. In the agricultural sector, nanobubbles are often utilized
to promote plant growth by enhancing water permeability [10]. In industry, nanobubbles
not only enhance a solution’s oxidation capacity, but also undergo chemical reactions with
pollutants; therefore, they are widely applied in wastewater treatment [11] and surface
cleaning [12] fields. With the development of nanobubble research and the improvement in
preparation technology, nanobubbles will become more widely used. Therefore, developing
and improving methods of producing efficiently and stably nanobubbles will become
increasingly important. Robust methods used for the large-scale production of nanobubbles
can provide a vital basis for their application in fields such as medicine, agriculture, and
industry. This review introduces the current preparation methods and applications of both
BNBs and SBNs, with the hope of raising awareness among researchers and encouraging
them to engage in nanobubble research, thereby promoting its application in various fields.
With a deeper understanding of the properties and applications of nanobubbles, we believe
that this field will become extremely important, providing a more effective means of solving
various real-world problems.

2. The Composition and Stability of Nanobubbles
2.1. The Composition of Membrane Nanobubbles

Membrane nanobubbles consist of three basic elements: a gas core, a shell layer, and a
liquid phase. The gas core comprises gas, while the shell layer is primarily composed of
surfactants, polymers, or lipids. The liquid phase consists of water and either inorganic salt
solutions or organic small-molecule solvents [13], as illustrated in Figure 2a. The stability
of membrane nanobubbles primarily depends on the shell layer, wherein a dense molecular
layer can protect the gas core and slow down its diffusion [14].
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2.2. The Composition of Non-Membrane Nanobubbles

Non-membrane nanobubbles are composed of two basic elements: a gas core and a
liquid phase [14], as illustrated in Figure 2b. The classic Epstein–Plesset theory predicts
that the smaller the size of the filmless bubble, the shorter its life expectancy. However, re-
searchers have found that non-membrane nanobubbles exhibit high stability, even without
a membrane [15].

2.3. The Stability of Nanobubbles

The stability of nanobubbles refers to their ability to persist under specific conditions.
Various factors influence their stability, including the surface charge of the bubbles, surface
tension, and properties of the solution. The primary reason for the stability of nanobubbles
lies in their possession of surface charge [16]. Nanobubbles with a high zeta potential
exhibit greater stability. However, the zeta potential of nanobubbles decreases over time.
Although gas diffusion suggests that the bubble size should decrease, research indicates
that the bubble size actually increases. This phenomenon is attributed to the combined
effects of zeta potential reduction and Brownian motion, causing bubble coalescence to
occur and larger bubbles to be formed [17].

3. Preparation Methods of BNBs

BNBs can be formed in a liquid by manipulating gas pressure, ultrasonic intensity, or
stirring intensity. Common methods used to prepare BNBs include mechanical stirring,
gas dissolution release, pressure variation, and cavitation. In addition, microfluidic and
nanoporous membrane methods can be used to prepare BNBs. This chapter provides an
introduction to the methods of preparing BNBs and concludes by providing a summary of
the advantages and disadvantages of each method, as shown in Table 1.

Table 1. The advantages and disadvantages of the methods of preparing bulk nanobubbles.

Methods Advantages Disadvantages

Mechanical Stirring Method The principle is simple and easy
to implement

Only a small number of nanobubbles can
be prepared

Nanoscale pore membrane method Enables control over bubble size and
distribution

Requires specialized membranes with
accurate pore sizes. Potential blockage or

fouling of pores may reduce efficiency
over time

Microfluidic method

Enables precise control of bubble size and
distribution. Offers a high degree of

automation and integration with
other processes

Requires complex microfluidic devices
and fabrication techniques

Acoustic cavitation method Efficient and rapid generation
of nanobubbles

Requires specialized equipment and
ultrasound sources. Control over bubble

size and distribution may be limited

Hydrodynamic cavitation method High energy efficiency, low cost,
and scalability

Efficiency can be influenced by factors
such as the flow rate and pressure.

Dissolved gas release method Easy and straightforward to implement.
Low cost

Limited control over bubble size and
distribution. May result in larger bubble

sizes compared to other methods

Periodic pressure variation method

A more uniform bubble can be prepared,
and the size of the bubble can be

controlled by controlling the pressure
and period.

Only a small number of nanobubbles can
be prepared

Hydraulic air compression method Nanobubbles can be produced on a large
scale at low cost and with high efficiency.

Limited control over bubble size
and distribution



Coatings 2023, 13, 1510 4 of 18

3.1. Mechanical Stirring Method

The goal of the preparation of BNBs using mechanical agitation involves subjecting a
liquid phase containing surfactants to iterative rotational stirring through a mechanized
mechanism. The resultant high shear, intense turbulence, collision effects, and hydrody-
namic cavitation induced during agitation facilitate interactions between the gas and liquid
phases, leading to bubble generation. These bubbles, which are subjected to multiple cycles
of agitation, undergo continuous shearing, resulting in the formation of progressively
smaller bubbles, ultimately giving rise to BNBs [18]. Etchepare et al. [19] conducted ex-
periments regarding the preparation of BNBs using the mechanical stirring method, using
the experimental setup shown in Figure 3. BNBs were formed using a pump and circular
column under various pressures and air–liquid interfacial tensions. The results showed
that this method can rapidly generate BNBs, which can remain stable for over 60 days.
Senthilkumar et al. [16] used mechanical stirring to generate nanobubbles in heat transfer
oil. The results showed that the nanobubbles generated had diameters of less than 200 nm,
and their presence was able to improve the thermal conductivity and viscosity of the heat
transfer oil. Jadhav et al. [20] conducted a study using various hollow-shaped rotating
mechanisms to explore the impact of different hollow shapes, rotational speeds, operating
times, and temperatures on the generation of BNBs in pure water. The results revealed
that while density significantly varied across different hollow shapes, the size distribution,
average bubble diameter, and zeta potential remained relatively consistent. Moreover,
increasing the rotational speed, prolonging the operating time, and raising the temperature
allowed the generation of higher concentrations of bubbles, as these actions facilitated the
release of more air from the water.
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Figure 3. Schematic of the goal of the mechanical stirring method for nanobubble preparation.

3.2. Nanoscale Pore Membrane Method

The goal of preparing BNBs via the nanoporous membrane method is to press gas
into the nanoscale pores of the membrane under a certain pressure. At the beginning of
gas entering the liquid phase, the diameters of the nanobubbles are the same as that of the
pore. However, as the BNBs expand, the diameters of the nanobubbles gradually increase,
and the drag force caused by the water flow also increases. Under the action of the drag
force, the nanobubbles will detach from the pore, obtaining BNBs larger than the pore
diameter. Additionally, the smaller the liquid flow rate, the smaller the size of the resulting
BNBs [21]. The process of generating BNBs is shown in Figure 4. The SPG (Shirasu Porous
Glass) membrane is a new type of inorganic membrane developed by SPG Corporation,
Japan, in 1981. SPG membrane has a uniform and uniform micropore size, and the size
of pore is easily changed. Kukizaki et al. [22] used SPG membranes with nanoporous
membranes to prepare nanobubbles. The experimental setup is shown in Figure 5. Air was
compressed and introduced into a sodium dodecyl sulfate solution with a concentration
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ranging from 0.05 to 0.5 wt.%. The solution was then passed through a SPG membrane,
which had a transmembrane/bubble point pressure ratio of 1.1–2.0. Under these conditions,
monodisperse nanobubbles with average diameters of 360–720 nm were stably prepared.
The average diameter of the resulting BNBs was found to be 8.6 times larger than that of
the pore, and its size was not significantly affected by the air velocity and liquid surface
tension. Therefore, the size of BNBs could be controlled by adjusting the pore size of the
membrane. Ahmed et al. [23] used tube ceramic membranes to prepare BNBs and found
that the size of BNBs could be directly influenced by injecting air at different pressures into
the water through the tube. The size of BNBs under the same injection pressure was related
to the pore size of the tube ceramic membrane, which was similar to the experimental result
of Kukizaki et al. [22]. Zhang et al. [24] developed a membrane-based physical sieving
method to prepare BNBs of controllable sizes. The goal of this method is to adjust the
size range of generated BNBs by controlling the gas filtration rate and the quality of the
membrane. BNBs sieving experiments were conducted using three types of membranes,
and the results showed that the membrane could not only crush larger bubbles into smaller
bubbles, but also fuse small bubbles into larger bubbles when filtering BNBs.
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3.3. Microfluidic Method

The goal of the preparation of BNBs via microfluidics involves the utilization of
microfluidic chips to regulate the flow of mixed gas and liquid [25]. The gaseous mixture is
introduced through a gas inlet and, when passing through the liquid phase, it experiences
viscous forces exerted by the liquid, resulting in the formation of microbubbles. Some of
the gas within these microbubbles dissolves into the aqueous phase and eventually shrinks,
giving rise to BNBs. Xu et al. [26] were the first group of researchers to utilize a microfluidics-
based approach for the preparation of BNBs, using the experimental setup illustrated in
Figure 6. This method employs a mixed gas composed of water-soluble nitrogen and
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water-insoluble perfluorocarbon (PFC) as the gaseous phase for the microfluidic bubble
generator. Initially, monodisperse microbubbles are generated, which gradually shrink
during the dissolution process of the water-soluble nitrogen, ultimately resulting in BNBs
of a certain size. The degree of bubble contraction can be controlled by adjusting the ratio of
water-soluble nitrogen and water-insoluble PFC. The most significant advantage of using
this method is its precise control over the size and uniformity of the resulting BNBs.
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Figure 6. Schematic diagram of the experimental setup used for the preparation of BNBs
via microfluidics.

3.4. Acoustic Cavitation Method

The goal of BNB preparation via the acoustic cavitation method is to induce local
negative pressure in the liquid by means of a high-speed propeller rotation or negative
pressure half-cycle generated via high-intensity sound waves, ultimately leading to the
formation of micro- and nano-scale bubbles near tiny gas nuclei [27]. Nirmalkar et al. [28]
conducted BNB preparation experiments via the acoustic cavitation method, using the
experimental setup depicted in Figure 7. The study found that BNBs existed in pure water
but not in organic solvents, and they disappeared at a certain ratio of organic solvent to
water. This outcome is attributed to the electrostatic charge on the surface of the BNBs,
which stabilizes them via the adsorption of hydroxyl ions produced via water’s auto-
ionization. Pure organic solvents, however, do not undergo auto-ionization.

Coatings 2023, 13, x FOR PEER REVIEW 7 of 20 
 

 

       

~ ~
      

N2

C3F8

Lipids

Lipid Solution

Gas

Microbubble Smaller 
Microbubble

Nanobubble
 

Figure 6. Schematic diagram of the experimental setup used for the preparation of BNBs via 
microfluidics. 

3.4. Acoustic Cavitation Method 
The goal of BNB preparation via the acoustic cavitation method is to induce local 

negative pressure in the liquid by means of a high-speed propeller rotation or negative 
pressure half-cycle generated via high-intensity sound waves, ultimately leading to the 
formation of micro- and nano-scale bubbles near tiny gas nuclei [27]. Nirmalkar et al. 
[28] conducted BNB preparation experiments via the acoustic cavitation method, using 
the experimental setup depicted in Figure 7. The study found that BNBs existed in pure 
water but not in organic solvents, and they disappeared at a certain ratio of organic 
solvent to water. This outcome is attributed to the electrostatic charge on the surface of 
the BNBs, which stabilizes them via the adsorption of hydroxyl ions produced via 
water’s auto-ionization. Pure organic solvents, however, do not undergo auto-ionization. 

①

⑤

③

②

⑥

④

 
Figure 7. Schematic diagram of the experimental setup used for BNB preparation via the acoustic 
cavitation method: ① retort stand and clamps; ② ultrasonic transducer; ③ titanium probe; ④ 
glass beaker; ⑤ recirculating cooler; ⑥ ultrasound processor [28]. 

3.5. Hydrodynamic Cavitation Method 
The hydrodynamic cavitation technique boasts several advantages, including high 

energy efficiency, low cost, and scalability. Its goal is to induce cavitation in a medium 
by altering the flow velocity of the medium, thereby causing pressure fluctuations. This 
outcome is analogous to that produced via acoustic cavitation techniques [29]. Therefore, 

Figure 7. Schematic diagram of the experimental setup used for BNB preparation via the acoustic
cavitation method: 1© retort stand and clamps; 2© ultrasonic transducer; 3© titanium probe; 4© glass
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3.5. Hydrodynamic Cavitation Method

The hydrodynamic cavitation technique boasts several advantages, including high
energy efficiency, low cost, and scalability. Its goal is to induce cavitation in a medium
by altering the flow velocity of the medium, thereby causing pressure fluctuations. This
outcome is analogous to that produced via acoustic cavitation techniques [29]. Therefore,
hydrodynamic cavitation can be utilized instead of acoustic cavitation to generate nanobub-
bles. Alam et al. [30] conducted an experiment regarding the preparation of nanobubbles
via hydrodynamic cavitation. The experimental apparatus employed was a two-chambered
swirling jet nozzle, which generated nanobubbles in a saturated or supersaturated so-
lution via a circulation system, as illustrated in Figure 8. The results indicated that the
device successfully produced nanobubbles with diameters of less than 200 nm, and these
nanobubbles carried a negative charge when present in water. Wu et al. [31], in their study,
refined the cavitation reactor, employing numerical simulation to investigate the influence
of various geometric parameters on the flow field structure. They successfully identified the
optimal design, subsequently fabricating a laboratory-scale vortex-type micro-nanobubble
generator. Flow experiments were conducted, resulting in the generation of bubbles with
diameters as small as 301 nm. This endeavor provided valuable insights into the explo-
ration of the methodologies of micro-nanobubble generation and the quest for their optimal
structural configuration.
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3.6. Dissolved Gas Release Method

The goal of preparing BNBs via the gas dissolution release method is to increase the
pressure available to dissolve the gas, before reducing the pressure required to make the
dissolved gas molecules precipitate and form bubbles [32]. The average size of the bubbles
is related to the solubility of the gas present in the solution, and the diameter of the bubbles
is inversely proportional to the solubility of the gas [17]. The solubility of CO2 in pure water
without hydrates is inversely proportional to the temperature and directly proportional to
the temperature in the presence of the hydrates [33]. Wang et al. [34] used CO2 as the gas
source and prepared BNBs via the gas dissolution release method. The experimental setup
is shown in Figure 9. They found that the optimum gas–liquid ratio for preparing BNBs
was 2.87%, the optimum operation time of the generator was 28.47 min, and the optimum
inlet water temperature was 25.52 ◦C.
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gauge; 6© throttling nozzle for the released gas [34].

3.7. Periodic Pressure Variation Method

The goal of BNB preparation via the periodic pressure variation method is controlling
gas dissolution and precipitation by carrying out periodic pressure adjustments to a gas-
saturated solution [35]. Wang et al. [36] utilized the periodic pressure variation method
to perform BNB preparation, using the experimental setup illustrated in Figure 10. The
study successfully produced stable N2 nanobubbles and determined that given a constant
frequency of pressure changes, longer times of exposure to pressure led to the formation of
smaller nanobubbles.
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3.8. Hydraulic Air Compression Method

Yang et al. [37] conducted an experiment regarding the preparation of nanobub-
bles via the hydraulic air compression method, using the experimental apparatus illus-
trated in Figure 11. This experiment proved, for the first time, that the hydraulic air
compression method could be utilized for the generation of nanobubbles. The authors em-
ployed nanoparticle tracking analysis to assess the size distributions and concentrations of
nanobubbles, and their results indicated that the concentrations of nanobubbles increased
as the height of the outlet pipe increased. The hydraulic air compression method not only
allows the large-scale production of nanobubbles, but is also cost-effective and highly effi-
cient. In the future, the application of hydraulic air compression method technology may
prove to be instrumental to the use of nanobubbles in industrial and agricultural settings.
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4. Preparation Methods of SBNs

SNBs are small bubbles that form at the interface between a liquid and a solid. Their
preparation not only requires consideration of the liquid surface tension and gas solubility,
but also takes into account the hydrophobicity or hydrophilicity of the solid surface, as all
three factors can affect the generation and stability of SNBs. This chapter presents common
methods used to prepare SNBs, including water electrolysis, the cold water method, solvent
exchange, vacuum methods, and microwave radiation, and its concludes with a summary
of the advantages and disadvantages of using each method, as shown in Table 2.

Table 2. Advantages and disadvantages of preparation methods for solid-liquid surface nanobubbles.

Methods Types Advantages Disadvantages

Aqueous solution
electrolysis method Chemistry Allows precise control over the

generation of nanobubbles
Requires specialized

electrolysis equipment

Cold water method Physics
Simple and easily accessible method.

Can produce nanobubbles without the
need for complex equipment

Limited control over bubble
size and stability

Solvent exchange method Physics Easy and straightforward to implement.
Low cost

Control over bubble size and
distribution may be limited

Depressurization method Physics Allows the controlled and rapid
generation of nanobubbles.

The resulting nanobubbles
are unstable

Microwave irradiation
method Physics

No impurities are introduced, and the
output of nanobubbles can

be controlled

Requires specialized
microwave equipment that
has precise power control

4.1. Aqueous Solution Electrolysis Method

Electrolysis of water produces hydrogen and oxygen molecules. When the concen-
tration of molecules reaches the critical concentration required to carry out nucleation,
bubbles will form. The average size of the bubbles generated decreases as the voltage
during electrolysis increases [38]. Conductive materials, such as highly ordered pyrolytic
graphite (HOPG), can be used as electrodes to obtain SNBs on their surfaces. When the
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HOPG surface acts as the anode, oxygen nanobubbles are obtained. The sizes and quantities
of bubbles can be controlled by adjusting the voltage and duration of electrolysis. Yang
et al. used water electrolysis to prepare SNBs. The experimental setup used is shown in
Figure 12; the HOPG surface was used as the electrode, and the AFM was used to detect
the resulting bubbles. It was found that as the voltage increased, the volume and coverage
of HPOG SNBs also increased. In addition, the yield of the oxygen nanobubbles was much
lower than that of the hydrogen nanobubbles [39].
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4.2. Cold Water Method

As per Henry’s law, under constant pressure and comparable conditions, the solubility
of a gas within a liquid diminishes due to an elevation in temperature [40]. The cold
water method is a relatively simple approach used in the preparation of SNBs, which
involves using heated graphite surfaces and cold water as the essential materials. An
et al. [41] utilized the cold water method to prepare SNBs in their experiment, as illustrated
in Figure 13. Specifically, they maintained pure water at a temperature of 4 ◦C or below
for at least 12 h and baked HOPG at different temperatures (40 to 80 ◦C) for two hours in
an oven. During the experiment, they rapidly distributed a certain amount of pure water
(at 4 ◦C) onto the HOPG surface after removing it from the oven. Finally, they mounted
the sample onto the atomic force microscopy (AFM) stage and employed AFM to carry
out detection. Using multiple experiments, they detected the presence of SNBs each time
and observed that as the HOPG temperature increased, the accumulation of SNBs became
denser, and their lifespans lasted over five days.
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4.3. Solvent Exchange Method

The solvent exchange method used to prepare nanobubbles mainly includes the
ethanol–water substitution [42] and the sodium chloride solution–water substitution meth-
ods [43]. The basic principles of both methods are similar, as a liquid with high gas solubility
replaces a liquid with low gas solubility. Taking the ethanol–water substitution method as
an example, ethanol is first injected into the container, followed by the slow addition of
pure water to the container containing ethanol. Finally, a mixed solution of ethanol and
water is obtained. Qiu et al. [44] conducted a nanobubble preparation experiment using
the ethanol–water exchange method, as illustrated in Figure 14. The study found that this
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approach yields abundant nanobubbles, and their sizes and concentrations were measured
using a nanoparticle tracking analyzer. It was observed that the higher the amount of gas
dissolved in the solution, the greater the number of nanobubbles that formed.
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ethanol with deionized water; (c) Bubbles are created when ethanol replaces the water solution [44].

4.4. Depressurization Method

The goal of preparing nanobubbles via the depressurization method is to alter the
gas solubility by controlling the pressure exerted on the liquid within the container. When
the pressure is reduced, the gas solubility decreases, causing precipitation and the forma-
tion of nanobubbles [36]. Fang et al. [45] dripped unsaturated pure water onto HOPG
and performed a five-minute depressurization test, which resulted in the detection of the
nanobubbles through AFM. This result indicates that a short-term reduction in pressure
locally saturates the gas concentration on the surface of the HOPG and generates nanobub-
bles. However, when the depressurization time was extended to 20 min, no nanobubbles
were detected, suggesting that some gas molecules had escaped from the liquid.

4.5. Microwave Irradiation Method

The electromagnetic wave irradiation method provides a convenient and impurity-free
approach to preparing SNBs. Its principle is based on the photons of the electromagnetic
wave irradiating the hydrophobic surface of the water, where the energy-carrying photons
increase the probability of gas escaping from the interface. Under microwave radiation,
the solubility of the gas in water decreases, which favors the nucleation of nanobubbles.
The schematic diagram of bubble generation via microwaves is shown in Figure 15. Wang
et al. hypothesized the mechanism of nanobubble generation via microwave irradiation,
as shown in Figure 16. They also conducted a nanobubble preparation experiment using
microwave irradiation, in which they used highly pure oxygen (99.995%) as the gas source
to inflate deoxygenated pure water and HOPG as the substrate. The newly cut HOPG was
then fixed in the oxygenated water, and microwave radiation was applied to the solution to
generate SNBs. The study found that adjusting the gas concentration, irradiation time, and
working power could control the yield of the nanobubbles [46]. Yuan et al. [47] utilized
accelerated electron irradiation to synthesize bulk nanobubbles (BNBs) in pure water.
The outcomes demonstrate a direct correlation between nanobubble formation and the
escalating irradiation dose rates. Moreover, with an elevated irradiation dose, the initial
augmentation of the nanobubble concentration is followed by subsequent attenuation.
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There are various methods for preparing SNBs, with each method having its character-
istics. Water electrolysis, which generates gas through the electrolysis reaction generated in
the liquid by applying an electric field, is a simple method suitable for large-scale produc-
tion, but it has some limitations in terms of the choice of electrode materials and requires
energy consumption. Cold water, solvent exchange, and vacuum methods change the
gas solubility by changing the solution’s temperature, composition, and pressure, respec-
tively, causing the gas to precipitate on the substrate surface to obtain SNBs. Among these
methods, the cold water method is only suitable for the preparation of a small number
of SNBs, while the solvent exchange and vacuum methods can prepare a larger quantity
of nanobubbles. Microwave radiation induces the generation of SNBs by acting on the
interface with the energy-carrying photons. The advantage of this method is that it does
not introduce any impurities during the entire process.

5. Applications of Nanobubbles

Nanobubbles, which are also known as ultrafine bubbles, have garnered extensive
application across various domains due to their distinctive properties. This chapter ex-
pounds the utilization of nanobubbles within fields encompassing medicine, agriculture,
and industry, outlining specific instances of use, as depicted in Figure 17. In the realm
of healthcare, nanobubbles find utility as contrast agents for ultrasound imaging and
carriers for the dispensing of medical compounds. Given the medical sector’s stringent
requirements regarding nanobubble size distribution, their preparation necessitates the
employment of microfluidic techniques and nanoporous membrane methodologies. In
the agricultural sphere, nanobubbles have the ability to stimulate plant growth. As preci-
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sion regarding nanobubble dimensions and distribution is less significant in agriculture,
relatively straightforward mechanical agitation methods can be employed. Within the
industrial milieu, nanobubbles not only enhance wastewater treatment and surface cleans-
ing efficiency, but also find application in the mitigation of channel resistance and foam
flotation processes. Diverse circumstances within the industrial domain warrant distinct
nanobubble preparation techniques, as outlined in Table 3.
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Table 3. Methods used in the field of nanobubble applications.

Application Areas Applicable Nanobubble Preparation Methods

Ultrasound imaging Microfluidic method
Nanoscale pore membrane method

Drug delivery Microfluidic method
Nanoscale pore membrane method

Plant growth Mechanical stirring method

Wastewater treatment Acoustic cavitation method

Surface cleaning Mechanical stirring method

Channel flow resistance reduction Aqueous solution electrolysis method
Microwave irradiation method

Foam flotation Acoustic cavitation method

5.1. Ultrasound Imaging

Ultrasound imaging is a medical tool that can diagnose various diseases, and it has
several advantages, such as high biological safety, free availability, dynamic observation,
and real-time detection. It plays an extremely important role in medical diagnosis, being
one of the most important techniques used in medical diagnoses [48]. In the ultrasound
field, nanobubbles undergo alternating compression and expansion, generating unique
echo signals. These echo signals are stronger than the signals from surrounding tissues;
hence, nanobubbles are frequently used as contrast agents in ultrasound imaging. Com-
pared to other ultrasound contrast agents, nanobubbles have smaller sizes and higher
stability, making them better able to penetrate the blood vessels’ walls and enter specific
regions to carry out imaging [49]. Liu et al. [50] prepared nanobubbles containing two
consecutive lipophilic dyes by combining fluorescence resonance energy transfer (FRET)
and bioluminescence resonance energy transfer (BRET). They found that the microvascula-
ture of perfused tissue could be depicted using high spatial resolution through ultrasonic
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contrast-enhanced imaging using BRET–FRET nanobubbles. This BRET–FRET nanobubble
contrast agent was also applied to the imaging of breast cancer animal models.

5.2. Drug Delivery

The high mass transfer efficiency of nanobubbles confers upon them the ability to
act as therapeutic carriers to carry out drug delivery in medicine. Nanobubbles exhibit
magnetic responsiveness under the action of a magnetic field and explosive behavior
under ultrasound energy irradiation, which can promote self-destruction and changes
in cell membrane permeability. These prerequisites are needed to achieve targeted drug
delivery using nanobubbles, as illustrated in Figure 18. Sanlıer et al. [9] developed a novel
dual-drug system using nanobubbles to carry out targeted therapy against non-small cell
lung cancer, which is a new type of magnetic-targeting and ultrasound-responsive system.
The release of drugs from the nanobubbles is achieved under the action of a magnetic
field and ultrasound energy in order to achieve therapeutic effects. Cavalli et al. [51]
prepared chitosan nanobubbles using perfluoropentane core and chitosan shell, enhancing
the stability of the nanobubbles by adding polyvinylpyrrolidone. These nanobubbles
possess excellent oxygen-carrying capacity, are non-toxic to cells, and can continuously
release oxygen when injected into a low-oxygen solution following oxygenation preparation.
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5.3. Plant Growth

Nanobubbles have significant impacts on plant growth, as water containing nanobub-
bles can provide more dissolved oxygen to plants. Higher levels of oxygen promote plant
respiration, while nanobubbles can increase the surface tension between water molecules,
making it easier for water to penetrate into the soil and, thus, improving the absorption of
water by plant roots [52]. On the other hand, nanobubbles possess high surface energy and
active sites, which enable them to disrupt the external structures of pathogenic bacteria
upon contact, achieving a bactericidal effect and reducing the risk of plants contracting
diseases [10]. Liu et al. [53] conducted seed germination experiments using nanobubbles,
and the results showed that water containing nanobubbles had a promoting effect on
seed germination.

5.4. Wastewater Treatment

Nanobubbles contained in wastewater can enhance the efficiency of oxidants and
cleaning agents. Moreover, the relatively high concentrations of negative ions and free radi-
cals generated by nanobubbles can undergo chemical reactions with organic compounds
or heavy metals in wastewater, achieving the desired effect of treating wastewater [54].
Ahmadi et al. investigated the effects of nanobubbles on oxygen transfer and sludge yield
in a sequencing batch reactor used to carry out activated sludge. The results showed that
nanobubble aeration increased the oxygen content in the reactor solution, improved the
oxygen transfer efficiency, and significantly reduced sludge production [11].
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5.5. Surface Cleaning

Nanobubbles are capable of having stable existence in liquids and possess small
size and high surface area characteristics. These characteristics enable them to effectively
penetrate the crevices on surfaces, and when nanobubbles burst, they release energy that
forms tiny liquid jets on the surface. These liquid jets can effectively remove surface dirt and
impurities [55]. Wu et al. [12] proposed a method to remove dirt using nanobubbles formed
via electrochemical methods, and the results showed that nanobubbles can significantly
reduce surface dirt.

5.6. Channel Flow Resistance Reduction

Nanobubbles can form a stable dispersion system in fluids, which can reduce the vis-
cosity and internal friction of the fluid, thereby reducing resistance. Moreover, nanobubbles
can form a protective film on the surfaces of pipes or equipment, reducing the solid–liquid
contact area during flow and, thus, reducing flow resistance [56]. Gao et al. [57] gener-
ated nanobubbles on the surface of polydimethylsiloxane microchannels using a vacuum
method, and they quantitatively measured the slip length of the bubble surfaces in the mi-
crochannels using particle image velocimetry. Their research found that the flow boundary
conditions on the surface covered by bubbles transitioned from no slip to slip, resulting in
a significant drag reduction effect.

5.7. Foam Flotation

Froth flotation is an important mineral separation technology that uses the adhe-
sion and lift of bubbles in solution to separate target minerals from other impurities [58].
Nanobubbles are widely used in froth flotation due to their large surface areas and stability,
which can improve the adsorption capacity of bubbles found on mineral particles and in-
crease their adhesion to the mineral surface [59]. Nanobubbles are also stable, meaning that
they are less likely to burst and disappear during the flotation process, which ensures the
effectiveness of froth flotation [2]. Chen [60] studied the effect of nanobubble pre-treatment
on the flotation of fine dolomite and found that the recovery rate of fine dolomite increased
by 7%, while the reagent dosage was reduced by 25% under the same recovery rate. Zhang
et al. [61] studied the effects of nanobubbles on the flotation of ultrafine graphite and found
that compared to traditional flotation, nanobubble flotation increased the average size of
hydrophobic aggregates of ultrafine graphite, effectively recovered finer graphite particles,
and increased the recovery rate of ultrafine graphite.

6. Summary and Outlook

In recent years, the practicality of nanobubbles has been demonstrated in many fields.
Their high stability, mass transfer efficiency, large surface area, strong controllability, drug
loading capacity, and good biocompatibility have shattered traditional perceptions of
bubbles. In the field of agriculture, nanobubbles can promote the absorption of water and
nutrients, increase crop yields, and reduce the usage of chemicals. In the medical field,
nanobubbles have the potential to be used in advanced drug delivery systems, ultrasound
imaging enhancement, and targeted therapy. Furthermore, researchers are exploring the
uses of nanobubbles in environmental restoration areas, such as wastewater treatment,
groundwater purification, and soil remediation. In summary, nanobubbles hold immense
potential for use in a wide range of applications, revolutionizing various industries and
contributing to sustainable solutions.

This article introduces the specific applications of nanobubbles in various fields,
providing an overview of the principles and methods used to prepare both BNBs and
SNBs. These methods can be selected and optimized according to specific application
requirements. Despite the significant domestic and international progress made in the
creation of technology to prepare nanobubbles, most methods yield a relatively small
quantity of nanobubbles, and their size lacks uniformity, making large-scale production
challenging. Future research can delve deeper into methods used to improve nanobubble
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stability, controllability, uniformity, and production efficiency. For instance, improvements
can be made to the structures of preparation devices, the optimization of the bubble
generation process, and the exploration of new material combinations that are more suitable
for use in bubble generation, thereby enhancing their application in agriculture, industry,
medicine, and other fields. Additionally, the scope of nanobubble applications can be
expanded to include areas such as energy storage and catalytic reactions in the energy sector,
aiming to improve energy conversion efficiency and promote sustainable development.
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Abbreviations

BNBs Bulk nanobubbles
SNBs Surface nanobubbles
SPG Shirasu Porous Glass
PFC Perfluorocarbon
HOPG Highly ordered pyrolytic graphite
AFM Atomic force microscopy
FRET Fluorescence resonance energy transfer
BRET Bioluminescence resonance energy transfer
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