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Abstract: The electrochemical behavior of the Ni5Al coating deposited by an electric arc was evalu-
ated. Its behavior was evaluated in a saline solution as a function of temperature (20 ◦C, 40 ◦C, and
60 ◦C). The variation as a function of time of the Ni5Al coating’s values of open circuit potential, linear
polarization resistance, and the evolution of its electrochemical impedance spectra were analyzed.
With this deposition technique, the rapid formation of thick coatings is achieved, which reduces the
presence of interconnected porosity. Even though the microstructural characteristics showed the
presence of trapped oxides, the electrochemical measurements carried out showed excellent corrosion
resistance of the coating. The coating quickly develops a passive layer that allows it to rapidly reach
thermodynamic equilibrium with the corrosive medium.

Keywords: Ni5Al coatings; corrosion; passive layer; RPL; EIS; electrochemical corrosion

1. Introduction

In aqueous media, the degradation of materials and alloys occurs through electro-
chemical processes that involve the oxidation of one species and the reduction of another,
that is, an electron transfer process. This degradation process is widely known as corro-
sion, and it is one of the main problems that cause significant economic losses in different
industrial processes. [1–6]. The corrosive nature of an electrolyte depends on the dissolved
species it contains as well as environmental conditions such as temperature. These degra-
dation processes contribute to the deterioration of material properties and their premature
failures [7–9].

In order to counteract these thermodynamically spontaneous processes, corrosion
prevention and control techniques have been implemented. Some of them can be corrosion
inhibitors, cathodic protection, selection of materials, and surface modification through
the application of coatings, among others. With the implementation of these actions, it
has been possible to increase the useful life of the materials. However, the choice of
prevention techniques depends on the location and environmental conditions of the surface
to be protected. In particular, the use of metallic coatings is a way of modifying the
chemical composition of a substrate with poor resistance to corrosion. In this way, a coated
system achieves high chemical stability in a corrosive environment. Coatings applied by
thermal spray can be a technical solution for corrosion problems at both low and high
temperatures [2,9–18].

Through thermal spraying, it is possible to modify the chemical composition of the
surface of a substrate. The deposited layers can be made of both metallic and non-metallic
materials (ceramics and polymers). For it, materials in powder or wire form are heated to
or near their melting point and projected at high velocity onto the substrate to produce
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satisfactory bond strength without changing the metallurgical characteristics of the base
metal [9]. These characteristics make thermal spraying one of the most versatile tools for
protecting materials [14].

The protective properties of a coating are also dependent on the thermal spray method
used for its deposition (plasma spray, electric arc spray, cold spray, flame spray, high velocity
oxy-fuel spray, etc.), since it influences the coating’s microstructural characteristics [14,15,17].
To guarantee good corrosion protection, in addition to excellent chemical stability, it is
necessary to minimize defects such as interconnected porosity. This reduces the risk of
diffusion of the electrolyte to the substrate.

Due to its high speeds of spraying, the electric arc thermal projection technique is a
good alternative to carry out the surface modification of a substrate to increase its resistance
to corrosion, recover dimensions, increase its resistance to wear, etc., without affecting the
microstructural properties of the substrate [16].

Regarding corrosion resistance, various studies have shown that Ni-based alloys
deposited as protective coatings show greater chemical stability than those based on
Fe [2,9–21]. Ni5Al coatings are generally used as an anchor layer for the deposition of a top
coating with low bond strength towards the substrate; however, according to their chemical
composition, they may also present excellent corrosion resistance in certain corrosive
environments. Therefore, the objective of this study is to evaluate the electrochemical
performance of the Ni5Al coating deposited by an electric arc. Its evaluation was carried
out in a NaCl solution (3.5 wt.%) at temperatures of 20 ◦C, 40 ◦C, and 60 ◦C, and its
electrochemical performance was obtained through measurements of open circuit potential,
linear polarization resistance, and electrochemical impedance.

2. Materials and Methods

Ni5Al coating. The coatings were generated with a Ni5Al alloy in the form of a wire,
which was deposited by the electric arc spray technique on 304 stainless steel plates. Prior
to the deposition of the coating, the stainless-steel plates were cleaned with acetone, and
their surface was shotblasted with alumina particles in accordance with the recommended
practice of NACE No. 1/SSPC-SP 5. After surface preparation, the metal plates were
cleaned again with dry air and acetone, and the coatings were deposited in that condition.
A copper wire was soldered to each coated plate on the uncoated rear face, and in that
condition, they were encapsulated in epoxy resin. The surface of the coatings was roughed
with abrasive paper from grade 120 to grade 600, and in that surface condition, the corrosion
tests were carried out.

Electrochemical tests. As corrosive medium, a 3.5% NaCl solution (% by weight)
was used, and the corrosion tests were carried out at 20 ◦C, 40 ◦C, and 60 ◦C for 24 h.
An electrochemical cell with three electrodes was used, where the working electrode was
Ni5Al coatings encapsulated in epoxy resin, a saturated calomel electrode (SHE) was
used as a reference electrode, and a graphite rod was used as an auxiliary electrode.
Open circuit potential (OCP), linear polarization resistance (LPR), and electrochemical
impedance spectroscopy (EIS) measurements were performed. OCP values were recorded
as a function of time, and LPR measurements were performed by polarizing the working
electrode ± 10 mV with respect to the corrosion potential at a sweep rate of 10 mV/min.
EIS measurements were evaluated under open circuit conditions by applying a sinusoidal
AC signal with an amplitude of ± 10 mV in the frequency range of 100 kHz to 0.01 Hz.

3. Results and Discussion
3.1. Structural Aspects of the Coating

Figure 1 shows the cross-sectional appearance of the Ni5Al coating. The morphological
aspects observed are consistent with the typical characteristics associated with coatings
deposited by the thermal spray technique, that is, a heterogeneous structure, the formation
of the coating by the overlapping of layers, segregation of phases, the presence of trapped
oxides, and porosity [9–18]. A great advantage of the electric arc coating deposition
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technique is the rapid formation of thick coatings. The thickness of a coating is an important
parameter because the greater the thickness, the lower the probability of interconnected
porosity [9,15]. According to the measurements made, the average thickness of the coating
after the grinding process was 1 mm ± 50 µm.
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Figure 1. Cross-sectional aspect of the Ni5Al coatings.

Figure 2 shows an approach to the cross section of the Ni5Al coating and its element
mapping. It shows details of the structure of the coating formed by the impact and
deformation of the drops of liquid metal and the presence of trapped oxides. The dark
phases correspond to trapped aluminum oxides, and the clear gray phases to the Ni5Al
alloy [15,17].
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3.2. Open Circuit Potential Curves

Figure 3 shows the evolution of the open circuit potential as a function of time for
the Ni5Al coating immersed in saline solution at the different test temperatures. The
observed trend indicates that as the temperature increases, the coating tends to show a
more active behavior.
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Even though the grinding process reduced the heterogeneity of the surface and with
it the presence of active sites, it is observed that at 20 ◦C and 40 ◦C, the coating showed a
stable behavior in the first two hours of immersion, and subsequently an abrupt drop in
potential values was observed. After the abrupt drop in potential values, a steady decline
was observed until the end of the test. The magnitude of the potential drop was lower at
60 ◦C, as was its variation after 5–6 h of immersion, possibly due to the rapid formation of
a passive layer on the coating surface.

The trend of the open circuit potential values provides a clear trend of the active-
passive behavior of the surface under study. In this case, the greatest active behavior was
observed in the first hours of immersion. After that, the fluctuations were minimal or
insignificant, which suggests the establishment or development of a protective layer on the
coating surface.

It has been suggested that the observed behavior may be associated both with the
presence of surface defects (pores and oxides) [10,22–24] and with the absence of a passive
layer [10,13,25]. Both situations activate the metallic dissolution process since they allow
the infiltration of the electrolyte through the superficial defects as well as the direct contact
of the metallic surface with the aggressive environment due to the absence of a protective
layer [10,12,13,22,23,25] or the presence of superficial defects such as porosity, voids, or
oxides trapped [22–24].

3.3. Linear Polarization Resistance Curves

Figure 4 shows the evolution of the resistance values to linear polarization as a function
of time for the Ni5Al coating immersed in saline solution at the different test temperatures.
The figure shows a clear effect of temperature on the corrosion rate; that is, the increase in
temperature reduces the resistance to polarization of the coating.
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At 20 ◦C, at the beginning of the test, in the first three hours of immersion, an increase
in the Rp values was observed, followed immediately by a sharp drop, and after that,
a quasi-stationary behavior where the Rp values oscillated around 3000 ohm-cm2. A
similar behavior was observed at 40 ◦C, with a slight increase in the Rp values followed
by a decrease and a subsequent increase, and after three hours of immersion, a quasi-
stable behavior with Rp values around 2000 ohm-cm2 during the rest of the test. On the
other hand, at 60 ◦C, only a decrease in Rp values was observed during the first hour of
immersion, followed by a quasi-stable behavior with Rp values around 1600 ohm-cm2

during the rest of the test. The evolution of the Rp values is consistent with that of the OCP
values shown in Figure 3. Despite the lower corrosion resistance observed at 60 ◦C, at this
temperature the coating showed the most stable behavior, which may be due to the rapid
development of a protective layer on the surface of the coating.

The evolution of both the OCP and Rp values is due to the anodic and cathodic
processes that occur on the surface of the coating. In general, it can be said that the anodic
dissolution is due to the occurrence of the following reactions [10,26–30]:

Ni + H2O↔ NiOH + H+ + e− (1)

NiOH + H+ ↔ Ni+ + H2O (2)

Ni+ ↔ Ni2+ + e− (3)

Al + 3H2O↔ Al(OH)3,ads + 3H+ + 3e−, (4)

Al(OH)3,ads ↔ Al(OH)3+
3 + 3e−, (5)

Al(OH)3+
3 + 3H+ ↔ Al3+ + 3H2O, (6)
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It has been reported that the formation and accumulation of hydroxides, as well as
oxyhydroxides, can retard the metal dissolution process because their presence limits the
diffusion of aggressive species towards the metal surface [10,31].

However, in the presence of chloride ions, the following side reactions are also possi-
ble [10,32,33]:

Al(OH)3,ads + Cl− ↔ Al(OH)2Clads + OH−, (7)

Al(OH)2Clads + Cl− ↔ Al(OH)Cl2,ads + OH−, (8)

Al(OH)Cl2,ads + Cl− ↔ AlCl3 + OH−, (9)

Similar reactions are possible for Ni hydroxides. Since these reactions occur on the
metal surface, they affect the adhesion of the layer of protective corrosion products, thereby
enhancing the corrosion process [10].

3.4. Electrochemical Impedance Spectroscopy

Figure 5 shows the evolution of the electrochemical impedance spectra as a function of
time for the Ni5Al coating immersed in the saline solution at 20 ◦C. The Nyquist diagram
shows the presence of at least two overlapping depressed capacitive semicircles, whose
diameters vary as a function of immersion time. The Bode diagram in its impedance
modulus format, |Z|, in the high frequency region (>1000 Hz) shows the presence of the
high frequency plateau, and in the intermediate and low frequency regions, the presence of
several slopes in the linear relationship (log f -log |Z|). Each observed slope is associated
with a capacitive semicircle observed in the Nyquist diagram. The presence of the low
frequency plateau is not observed, which suggests that the impedance modulus is greater
than the last recorded value (>3 kHz). From the Bode plot in its phase angle (◦) format,
there is a clear presence of three time constants, each associated with each slope of the
linear relationship, log f -log |Z|, as well as with each capacitive semicircle present in
the Nyquist diagram. The first time constant is observed between 10 and 100 Hz, the
second around 1 Hz, and the third at frequencies less than 0.1 Hz. The first time constant
shows the highest value of the maximum phase angle and may be associated with the
capacitive response of the coating surface. It is observed that at the beginning of the test,
the maximum phase angle decreased until 6 h of immersion (57◦ → 50◦) and subsequently
showed a constant increase until reaching a value of 60◦ at the end of the test. The other
time constants showed a decreasing behavior in their maximum value of phase angle, and
these may be associated either with processes of adsorption or diffusion of species due to
the presence of films of adsorbed metal hydroxides according to the corrosion mechanism
indicated in the previous section.

Figure 6 shows the evolution of the electrochemical impedance spectra as a function of
time at 40 ◦C. From the Nyquist diagram, it is possible to observe the presence of several
depressed capacitive semicircles, which apparently overlap. The Bode plot, in its impedance
modulus format, |Z|, in the high frequency region (>1000 Hz) also shows the presence
of the high frequency plateau, and again in the intermediate and low frequency regions,
several slopes of the linear relationship (log f -log |Z|) are observed. The presence of the low
frequency plateau is not observed, which suggests that the impedance modulus is greater
than the last recorded value (>2.1 kHz). From the Bode plot in its phase angle (◦) format, it
is also possible to observe the presence of three time constants. As observed at 20 ◦C, the
first is located between 10 and 100 Hz, the second around 1 Hz, and the third at frequencies
less than 0.1 Hz. The meaning of the time constants can be the same as that described below.
Unlike what was observed at 20 ◦C, in this case, for the first time constant, it is observed
that the maximum of the phase angle increased constantly throughout the test (46◦ → 57◦).
The other time constants showed a behavior similar to that observed at 20 ◦C.
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Figure 7 shows the evolution of the electrochemical impedance spectra as a function
of time at 60 ◦C. The Nyquist diagram suggests the apparent presence of two depressed
capacitive semicircles, which apparently overlap. Their diameters show little variation
with immersion time. The Bode plot, in its impedance modulus format, |Z|, shows
characteristics similar to those described at lower temperatures. That is, in the high
frequency region (>1000 Hz), the presence of the high frequency plateau is observed, and
in the intermediate and low frequency regions, several slopes are observed in the linear
relationship (log f -log |Z|). Once again, the presence of the low-frequency plateau is not
observed, indicating that the impedance modulus is greater than the last recorded value
(>1.2 kHz). The Bode plot in its phase angle (◦) format also shows the presence of three
time constants in the same frequency regions noted above. The maximum of the phase
angle of the first time constant tends to increase with the immersion time (43◦ → 50◦), and
that of the second and third time constants showed the opposite behavior.
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It is interesting to observe that at the end of the test (24 h), the maximum of the
phase angle of the first time constant tended to decrease with the increase in temperature
(61◦ → 57◦ → 50◦) and also experienced a displacement at higher frequencies (25 Hz→
40 Hz → 50 Hz). It has been reported that the decrease in the phase angle is due to
the decrease in both the corrosion resistance and the capacitive properties of the passive
film formed, in addition to the compactness of the passive film [34–37], and that the
displacement of the phase angle at higher frequencies has been associated with an increase
in the thickness of the protective layer [37]. On the other hand, at the end of the test, the
second time constant did not show significant changes in either the maximum phase angle
or its position, and the third time constant tended to decrease with increasing temperature.
This may be due to the permanent presence of an adsorbed film of metal hydroxides
that is formed during the metal dissolution process and the fact that, with an increase in
temperature, the diffusion rate of aggressive species increases [10].

Based on the above, the impedance spectra were analyzed using the equivalent circuit
shown in Figure 8. The first time constant is associated with the adsorption process of
the metal hydroxide film and is represented by the constant phase element (CPEads) in
parallel with the resistance of the adsorption process (Rads). The second time constant is
associated with the presence of a layer of adsorbed metal hydroxides and is represented by
the constant phase element (CPEf) in parallel with the resistance of the adsorbed film (Rf).
The third time constant is represented by the constant phase element (CPEdl) in parallel
with the charge transfer resistance (Rct).
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The impedance of the CPE is defined by the expression [38]:

ZCPE =

(
1

Y0

)
(jω)−n, (10)

CPE is commonly used instead of capacitance when the capacitive semicircles are
depressed, and this is mainly attributed to surface imperfections. In this case, Y0, also
known as admittance, is a constant whose magnitude is proportional to the active area
in contact with the electrolyte, j =

√
−1,ω = angular frequency (rad/s), and n = α/(π/2),

where α is the phase angle of the CPE [39].
Tables 1–3 show the value and evolution of the electrochemical parameters as a

function of time.

Table 1. Electrochemical parameters of the electrochemical impedance spectroscopy (EIS) at 20 ◦C.

Time
(h)

RCT
(Ω·cm2)

Yodl
(Ω−1·cm−2·sn) ndl

Rf
(Ω·cm2)

Yof
(Ω−1·cm−2·sn) nf Rads

(Ω·cm2)

Yads
(Ω−1·cm−2·sn) nads

0 5230 3.4271 × 10−3 0.62 1185 3.4707 × 10−4 0.7 79.2 6.8921 × 10−5 0.86

3 4787 1.6161 × 10−3 0.58 820.3 4.5659 × 10−4 0.75 236.7 8.7879 × 10−5 0.87

6 4197 1.7331 × 10−3 0.6 783.9 4.8316 × 10−4 0.76 226.9 8.9884 × 10−5 0.87

9 3944 1.9496 × 10−3 0.64 827.5 4.5329 × 10−4 0.76 252.9 8.402 × 10−5 0.89

12 3743 2.112 × 10−3 0.65 863.8 4.3681 × 10−4 0.78 321.8 8.2458 × 10−5 0.89

18 3194 2.1309 × 10−3 0.65 867.1 4.107 × 10−4 0.81 492.4 7.8769 × 10−5 0.89

24 2939 2.0608 × 10−3 0.64 872.8 3.728 × 10−4 0.84 635.5 7.6915 × 10−5 0.9

Table 2. Electrochemical parameters of the electrochemical impedance spectroscopy (EIS) at 40 ◦C.

Time
(h)

RCT
(Ω·cm2)

Yodl
(Ω−1·cm−2·sn) ndl

Rf
(Ω·cm2)

Yof
(Ω−1·cm−2·sn) nf Rads

(Ω·cm2)

Yads
(Ω−1·cm−2·sn) nads

0 2230 1.1607 × 10−3 0.66 481 5.4595 × 10−4 0.75 108.1 1.1827 × 10−4 0.85

3 2174 2.791 × 10−3 0.69 749 5.7519 × 10−5 0.74 166.5 1.1339 × 10−4 0.86

6 1991 2.7736 × 10−3 0.7 725.9 5.5912 × 10−4 0.77 242.6 1.0027 × 10−4 0.87

9 1878 2.8209 × 10−3 0.7 722 5.6178 × 10−4 0.78 294.9 9.553 × 10−5 0.87

12 1804 2.8838 × 10−3 0.7 716.3 5.6666 × 10−5 0.79 338.7 9.3554 × 10−5 0.86

18 1788 3.1535 × 10−3 0.69 722.9 5.8251 × 10−4 0.79 404.4 9.1253 × 10−5 0.87

24 1790 3.669 × 10−3 0.68 756.8 6.2464 × 10−4 0.78 459.6 9.1898 × 10−5 0.86

Analysis of Yodl values shows that they increase with increasing temperature. At 20 ◦C,
these show an increase in the first three hours of immersion and then tend to decrease
slightly as a function of time. However, at 40 ◦C and 60 ◦C, these tend to increase as a
function of time. This suggests that the increase in temperature reduces the corrosion
resistance through an increase in the active reaction surface.

This is in accordance with the trend observed in the ndl values. At 20 ◦C, a decrease is
observed in the first three hours of immersion, followed by an increase that remains practi-
cally constant after 9 h. However, at 40 ◦C and 60 ◦C, the general trend is that ndl values
tend to decrease as a function of time. Since Yo is associated with the effective reaction
area and n with the irregularity and/or surface roughness, this indicates the presence of a
parallel process that is causing the observed changes (see Section 3.5 SEM analysis).
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Table 3. Electrochemical parameters of the electrochemical impedance spectroscopy (EIS) at 60 ◦C.

Time
(h)

RCT
(Ω·cm2)

Yodl
(Ω−1·cm−2·sn) ndl

Rf
(Ω·cm2)

Yof
(Ω−1·cm−2·sn) nf Rads

(Ω·cm2)

Yads
(Ω−1·cm−2·sn) nads

0 1354 6.2125 × 10−3 0.7 931.5 4.8139 × 10−4 0.7 44.89 2.0732 × 10−4 0.87

3 702.6 6.5276 × 10−3 0.69 738.1 5.9689 × 10−4 0.74 91.34 1.8407 × 10−4 0.85

6 667.1 6.8598 × 10−3 0.68 753.6 5.961 × 10−4 0.74 127.8 1.6344 × 10−4 0.84

9 641.9 9.1178 × 10−3 0.67 792.6 5.901 × 10−4 0.73 150.2 1.4968 × 10−4 0.84

12 674.2 1.2367 × 10−2 0.66 812.4 5.9086 × 10−4 0.73 171.1 5.9086 × 10−4 0.73

18 693 1.1406 × 10−2 0.53 778 5.9459 × 10−4 0.73 183.9 1.6432 × 10−4 0.82

24 649 1.0918 × 10−2 0.43 720.2 5.9675 × 10−3 0.74 184.4 1.7161 × 10−4 0.82

On the other hand, since the films formed on the surface act as insulators between the
metallic surface and the electrolyte, their Yof values must be less than those of the metallic
surface, and their nf values must tend towards unity. The analysis of both values shows
that indeed, the presence of oxy-hydroxide films tends to decrease the active area and
reduce the surface roughness. This is because even when this active area exists, the film
formed hides it. It has been reported that this is associated with film thickness and/or low
electrical permittivity [40].

Considering that the sum of the resistances of the time constants is similar to the
Rp values, Figure 9 shows these results. When comparing the results obtained with the
Rp values (Figure 4), it is observed that the trend of the values is similar; however, the
values at 20 ◦C and 40 ◦C are higher than those corresponding with the Rp measurements.
This is consistent with the EIS measurements since in none of the cases was it possible to
define the formation of the low-frequency plateau, and the adjustment of the data with
the equivalent circuit allows us to predict the value of the impedance module where this
would occur. Nevertheless, the electrochemical behavior is much better than that reported
in other studies that use more complex deposition techniques, such as thermal plasma
spraying [41].
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3.5. SEM Analysis

Figure 10 shows the morphological aspects after the corrosion test of the Ni5Al coat-
ing in saline solution at the different test temperatures. Even though the surface of the
coating was roughened to obtain a homogeneous surface, it is evident that the dark phases
corresponding to the aluminum oxides that were trapped during the formation of the
coating are observed on it. It is worth noting that it is still possible to see the marks of
the surface preparation process, which suggests that despite the increase in temperature,
the rate of corrosion experienced by the coating was negligible. The only visible signs
of degradation are in the dark phases that correspond to the trapped aluminum oxides.
This is understandable since these aluminum oxides do not correspond to the formation
of protective films but to trapped oxides. It has been reported that even Al-based passive
films are susceptible to failure in aqueous halide solutions [10,42,43]. The degradation of
these phases caused an increase in the effective reaction area, which could have caused the
variations in the Yodl and ndl values discussed previously.
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Figure 10. Surface morphology of the Ni5Al coating after exposure to the NaCl solution.

The results obtained suggest that the Ni5Al coatings deposited by the electric arc
technique have a high resistance to corrosion in saline solutions at a wide range of tempera-
tures. The OCP, Rp, and EIS measurements showed that the surface of the coating reaches
thermodynamic equilibrium with its environment in a short time since quasi-stable values
of potential, resistance to polarization, and impedance modulus are reached.



Coatings 2023, 13, 1349 14 of 16

4. Conclusions

The electric arc thermal spray technique is a suitable process for the deposition of thick
coatings. The OCP and Rp measurements indicated that the coating rapidly reaches its
thermodynamic equilibrium with the corrosive medium due to the formation of a passive
layer. The EIS measurements showed that the corrosion process can be represented by
three time constants. The first one is the capacitive-resistive response of the metal surface,
while the other two are relaxation processes due to the adsorption of metal hydroxides
formed during the anodic process and the adsorption process of these species. The in-
crease in temperature (as well as the immersion time) causes a decrease in the maximum
phase angle (61◦ → 57◦ → 50◦) and its displacement towards the high frequency region
(25 Hz→ 40 Hz→ 50 Hz). The relaxation process associated with the metal hydroxide
layer (Ni and/or Al) does not undergo changes since it is an intermediate step of the anodic
process, and that associated with the adsorption process decreases its influence with the
increase in temperature, possibly due to the increase in the diffusion rate of the species.
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