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Abstract: In order to reduce the noise interference of smart wearable devices, spectral filtering
technology is used to suppress noise. This technology prevents interference signals from entering the
detector from the source, thereby achieving high−precision noise reduction processing. According
to the system requirements, a multi−bandpass filter with a wavelength range of 400~1000 nm
was designed and prepared on a BK7 substrate. Ta2O5 and SiO2 were selected as the high− and
low−refractive−index materials, respectively. By analyzing the −Fabry–Perot narrowband theory,
the bandwidth matching coefficient was computed, and the interference order was calculated
using the interval of the transmission peak wavelengths. Multiple F−P coating systems were
connected through the matching layer to adjust the position of the transmission peak and broaden
the bandwidth range. The design was optimized using Macloed film system design software,
resulting in the design of a wide half−wave and cutoff multi−bandpass filter. The appropriate
preparation process was chosen based on changes in refractive index, surface roughness, and the
temperature gradient of the materials. The filter was then produced using Leybold SYRUSpro1110.
Sensitivity, filter roughness, and the weak absorption of the film system were tested, and the results
met the system requirements.

Keywords: smart wearables; signal noise; spectral filtering; multiband bandpass

1. Introduction

Smart wearable devices can monitor human physiological parameters (biological indi-
cators) in real−time and manage health better [1,2]. A sensor serves as the forefront of smart
wearable devices, directly collecting the user’s biological information and then sending it to
the data processing section for processing [3]. Photoplethysmography (PPG) [4,5] involves
the use of photoplethysmography technology to detect human physiological parameters.
The sensor includes a photodiode (PD) and a light−emitting diode (LED). There are two
types of PPG sensors, transmission [6] and reflection [7,8] sensors, and the reflection type is
commonly used in wearable devices. The light emitted by the LED is reflected by human
blood and tissues and then received by the PD. By detecting the differences in the reflected
light intensity after being absorbed by human blood and tissues, human physiological
parameters are recorded.
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When PPG sensors are installed on the user’s watches, they can be affected by various
internal and external noise sources [9,10], including interference caused by the movement
of the measurement position, natural light, and fluorescent lighting. Therefore, the data
need to undergo various filtering processes. In particular, interference from environmental
light can enter the PD detector through the gap between the skin and the PPG sensor. To
address this issue, it is necessary to filter the received interference signals using digital
signal processing filtering algorithms [11,12]. However, due to limitations such as sampling
frequency and signal processing algorithms, it is challenging to completely eliminate the
interference signal. This can impact the signal−to−noise ratio of the detector and lead to
measurement errors in human physiological parameters.

For the PPG sensor, it is desirable to only receive signals related to the LED light
source, while other unrelated signals are considered interference noise. However, since the
PD detector receives a wide spectral band, in addition to receiving LED light, it will also
receive all light from 400~1000 nm. We propose a multi−bandpass filter structure that can
only allow a LED light source to pass through in the direction of the detector, preventing
interference signals from entering the detector at source and achieving high−precision
noise reduction processing.

The problem of PPG only receiving relevant signals can be solved by using the spectral
filtering method, which is achieved by multiple layers of optical thin film [13]. There
have been many design solutions for multi−bandpass filters in recent years. In 2003,
Li Wang et al. designed a multi−bandpass filter at 487 nm, 550 nm, and 632 nm by
selecting different materials and changing the thickness of the spacing layer [14], but the
half−wave width was narrow. In 2006, Shaowei Wang et al. used a combination of etching
methods to obtain multiple single−channel optical filters, but the structure was complex
and the process was difficult [15]. In 2008, Kamikawa used a shared mirror to form a
rectangular−shaped passband with good passband width [16], but the distance between
the two passbands could not be designed to be very wide. In 2018, Shuaifeng Zhao et al.
fabricated a dual−pass fluorescence filter with 561 nm and 687 nm wavelengths using a
single−substrate double−sided coating structure [17]. In 2019, Yuanqiang Zhu designed a
three−channel optical filter at 480 nm, 550 nm, and 644 nm by increasing the interference
order and improving the reflectivity on both sides [18], but the half−wave width was
narrow. In 2020, Gang Chen et al. prepared a dual−bandpass thin film filter for both visible
light and near−infrared by depositing dielectric films on both surfaces of the substrate [19].
In 2021, Shun Zhou et al. fabricated a dual−channel bandpass thin film−filter for the
mid−infrared region using the lift−off process. However, the lift−off process techniques
are complex [20]. In 2020, Shaopeng Ren et al. proposed a design method based on a
cyclic nesting model. They calculated the adjustment factor of the peak position and
bandwidth matching coefficient and designed a multi−pass filter at 455 nm, 530 nm,
and 631 nm for fluorescence detection [21], but the spectral range was not wide enough.
Therefore, we aim to design a multi−bandpass filter with a wide half−wave and cutoff.
We need to ensure transmission in three spectral bands: 515~545 nm, 645~675 nm, and
925~955 nm. By calculating the interference order of the film system based on the transmission
peak wavelength interval of the narrowband filter, and coupling multiple F−P structures, a
multi−bandpass filter with a wavelength range of 400~1000 nm is designed. The unnecessary
spectral bands can be suppressed, and the required spectral bands can be passed through,
allowing PPG to only receive the desired signals and filter unnecessary noise.

2. Design of Multi−Bandpass Filter

The specific parameter requirements for the multi−bandpass filter are shown in Table 1.
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Table 1. Technical parameters of multi−bandpass filter.

Parameter Specification

Angle 0◦~30◦

Transmission band/nm 515~545, 645~675 and 925~955
Transmittance/% ≥90

Waveband of cut−off region/nm 450~490, 565~625 and 700~900
Transmissivity of cut−off region/% <1

Filter size/mm Φ14.6
Filter thickness/mm 2

RMS/nm <0.05
Weak absorption/ppm <200

2.1. Theoretical Design of Multi−Bandpass Filter

The design methods for multi−bandpass filter membranes include multi−membrane
combinations [19,22], a guided−mode resonance filter [23], and membrane designs based
on the F−P structure. The F−P structure design methods include increasing the interference
order [18], serially connecting multiple F−P cavities [16], and adjusting the bandwidth
matching coefficient [24,25], which can adjust the passband position and passband width
of the basic membrane system. However, due to material’s refractive index limitations,
the phase shift of reflection on both sides of the center wavelength is fixed, and can only
be designed within the width range of the cutoff band, making it impossible to design
a multi−bandpass filter with wider ranges. We aim to design a multi−bandpass filter
with wide a half−wave, wide passband intervals, and long spectral ranges. Based on the
Fabry–Perot narrowband theory [26], we propose using the transmission sub−peaks that
appear on both sides of the main peak at the center wavelength of the narrowband filter for
design. The filter is designed by overlapping multiple F−P cavity struc−tures.

In the F−P structure filter, for a certain membrane system, the characteristic matrix
is [27] [

B
C

]
=

[
M11 iM12
iM21 M22

][
1

ng

]
(1)

Then, the phase shift, ϕ, of the reflection for multiple layers is

tan ϕ =
2n0ng M12M22 − 2n0M11M21

n2
0M2

11 − n2
g M2

22 + n2
0n2

g M2
12 −M2

21
(2)

where n0 and ng are the refractive indices of the incident medium and the substrate.
When the admittance on both sides of the intermediate layer is the same, the transmit-

tance of the filter [20] is

T =
T1 • T2(

1−
√

R1 • R2
)2 •

1
1 + Fsin2 1

2 (ϕ1 + ϕ2 − 2δ)
(3)

F =
4
√

R1 • R2(
1−
√

R1 • R2
)2 (4)

δ =
2πnd

λ
(5)

where T1, T2, R1 and R2 are the transmittance and reflectance of the reflective film system on
both sides of the spacer layer, and ϕ1 and ϕ2 are the reflection phase shifts of the reflective
film system on both sides.

The center wavelength corresponding to the maximum transmittance of the filter
film is

φ =
ϕ1 + ϕ2

2
− 2πnd

λ
= mπ, m = 0, ±1, ±2 . . . (6)
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1
λ
=

1
2nd

(
ϕ1 + ϕ2

2π
−m

)
(7)

where m is the interference order, and m = k + (ϕ1+ϕ2)
2π , (k = 0, 1, 2 . . .)

The channel half−width corresponding to the central wavelength is

∆λ0.5 =
2λ0

mπ
arcsin

((
1−
√

R1R2
)

2 • 4
√

R1R2

)
(8)

Increasing the interference order will result in the occurrence of several transmission
side lobes on both sides of the main peak of the central wavelength, and the wavelength
spacing of these transmission side lobes is as folows:

∆λ = λm − λm+1 =
2nd

m(m + 1)
=

λ0

m + 1
(9)

According to Equation (6), the interference order can be calculated as follows:

m =

(
λ0

∆λ

)
− 1 (10)

When the center wavelength of a narrow−band filter is determined, fixed reflection
bands appear on both sides of it. The bandwidth of the reflection band is only related to the
refractive index of the filter material, and the bandwidth of the reflection band is 2∆g, so,

∆g =
2
π

sin−1(
nH − nL
nH + nL

)
(11)

where nH is the high−refractive−index material’s refractive index; nL is the low−refractive−
index material’s refractive index.

After determining the width of the reflective band, the position of the second peak can
be determined. The high−reflection region, expressed in terms of relative wave number,
∆g, is between 1 + ∆g and 1− ∆g, and the corresponding wavelength range is as follows:

λ1 =
λ0

1 + ∆g
, λ2 =

λ0

1− ∆g
(12)

The wavelength width of the high reflection band is as follows:

∆λ =
λ0

1− ∆g
− λ0

1 + ∆g
≈ 2∆gλ0 (13)

The wavelength width between the main peak and the side lobes is approximately ∆gλ0.
According to the requirements of the spectrum, Ta2O5 and SiO2 were selected as

high− and low−refractive−index materials, respectively. Ta2O5 has a transparent region of
0.35~10 µm, with a high refractive index and low absorption [28,29]. SiO2 has a transparent
region of 0.2~9 µm, with good optical and chemical stability. In addition, Ta2O5 and SiO2
match well, so Ta2O5 and SiO2 were chosen as high− and low−refractive−index materials,
respectively.

According to Equation (2), when the reflectivity of the mirrors at both ends of the F−P
structure is determined, the wavelength−dependent phase shift, ϕ, for reflection is fixed,
and the reflection range cannot be designed to be very wide. As the wavelength intervals
between the 515~545 nm and 645~675 nm bands are relatively small, the first and second
passbands should be designed first.

The basic structure of the dual bandpass membrane system is Sub|(aHbL)ˆs m 2H
(bLaH)ˆs|Air, where Sub represents the substrate, H represents the high−refractive−index
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material Ta2O5, L represents the low−refractive−index material, SiO2, a and b are band-
width matching coefficients, s is the number of cycles of the reflective membrane stack,
and m is the interference order. The values of a, b, and s determine the bandwidth of the
passband, while m determines the number and relative position of the passbands. The
center wavelength is 580 nm. According to the spectral curve changes in Figure 1a–c, it is
analyzed that, as a and b increase, the passband becomes wider, but the cutoff becomes
worse; s can increase the number of passbands and narrow the bandwidth; and as m
increases, the spacing between passbands becomes smaller. Based on the target wavelength,
appropriate parameter values can be calculated. According to Equation (9), in order to
design a dual−band membrane system structure with center wavelengths of 530 nm and
660 nm, with ∆λ = 130 nm and λ0 = 580 nm, it can be calculated that m = 3.5. By simu-
lating the required half−wavelength, it can be obtained that a = 1, b = 1, and s = 2. The
final determined dual−band film structure is Sub|(HL)2 7H (LH)2 |Air. We obtained the
transmission curve shown in Figure 1d.
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Figure 1. (a) Transmittance curves of bandwidth matching coefficients a, b = 1 and a, b = 1.5 with the
number of film layer periods of s = 2 and the interference order m = 5. (b) Transmittance curves of
bandwidth matching coefficients a, b = 1 and interference order m = 5 for film layer periods s = 1, 2,
and 3. (c) Transmittance curves of interference orders m = 3, 5, and 7 for film layer periods of s = 2
and the bandwidth matching coefficient a, b = 1. (d) Transmittance curve of dual−band filter.

By coupling multiple F−P structures and connecting them with a matching layer, L,
the passband spectrum range is widened. Based on a dual−bandpass membrane system in
Figure 1d, an additional F−P structure is overlaid and connected by a matching layer, L,
with the basic structure being Sub|(HL)2 7H (LH)2 L n((HL)2 2H (LH)2)|Air. By adjusting
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the coefficient, n, the initial membrane system has a basic shape of three transmission
peaks, and n = 1.62 is obtained after multiple simulations. The transmission curve shown
in Figure 2 has three basic shapes of transmission peaks in the wavelength bands of
515~545 nm, 645~675 nm, and 925~955 nm.
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2.2. Optimize Design

Figure 2 presents the basic prototype of a multi−bandpass filter. Based on this pro-
totype, optimization was carried out using the Simplex, Optimac, and Needle Synthesis
methods in the Macleod film design software [30]. The optimized film structure is as
follows: Sub|0.92H 1.61L 0.82H 0.11L 0.13H 1.22L. . .. . .1.26H 0.18L 0.12H 1.16L 0.78H
0.44L|Air. There was a reference wavelength of 580 nm, a total of 84 layers, and a physical
thickness of about 9.357 µm. The theoretical 3D design curve of the transmittance is shown
in Figure 3.
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The average transmittance under 0◦, 10◦, 20◦ and 30◦ conditions are shown in Table 2,
and this design can meet the usage requirements.
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Table 2. Design parameters of multi−bandpass filter.

Incident Angle Wavelength/nm Average Transmittance/%

0◦
515~545 99.80
645~675 99.69
925~955 99.11

10◦
515~545 99.78
645~675 99.68
925~955 99.23

20◦
515~545 99.68
645~675 99.62
925~955 99.19

30◦
515~545 98.54
645~675 99.10
925~955 95.63

2.3. Sensitivity Analysis

The design of a multi−bandpass filter has the advantages of a wide half−wave, deep
background, and high cutoff. The design avoids ultra−thin layers, reducing errors during
the manufacturing process. The filter demonstrates good stability and reproducibility,
meeting the requirements for spectral design and facilitating easier and more reliable
production. Sensitivity analysis is an important indicator for evaluating the accuracy and
reliability of film preparation [31]. Using Essential Macleod software, tolerance simulations
were performed with a random error of 3‰ 20 times. The simulation results are shown in
Figure 4, with minimal waveform variations, which fulfill system design and manufacturing
requirements better.

Coatings 2023, 13, x FOR PEER REVIEW 7 of 13 
 

 

Table 2. Design parameters of multi−bandpass filter. 

Incident Angle Wavelength/nm Average Transmittance/% 

0° 

515~545 99.80 

645~675 99.69 

925~955 99.11 

10° 

515~545 99.78 

645~675 99.68 

925~955 99.23 

20° 

515~545 99.68 

645~675 99.62 

925~955 99.19 

30° 

515~545 98.54 

645~675 99.10 

925~955 95.63 

2.3. Sensitivity Analysis 

The design of a multi−bandpass filter has the advantages of a wide half−wave, deep 

background, and high cutoff. The design avoids ultra−thin layers, reducing errors during 

the manufacturing process. The filter demonstrates good stability and reproducibility, 

meeting the requirements for spectral design and facilitating easier and more reliable 

production. Sensitivity analysis is an important indicator for evaluating the accuracy and 

reliability of film preparation [31]. Using Essential Macleod software, tolerance 

simulations were performed with a random error of 3‰ 20 times. The simulation results 

are shown in Figure 4, with minimal waveform variations, which fulfill system design and 

manufacturing requirements better. 

 

Figure 4. (a) Simulation curve with 3‰ random error. (b) Partially enlarged drawing of the 

900~1020 nm region. 

3. Thin Film Preparation and Analysis 

3.1. Temperature Gradient in the Material 

The preparation temperature of the film affects the optical constants and surface 

roughness of the material [32]. By analyzing the changes in the optical parameters and 

surface roughness of Ta2O5 at different temperatures, an appropriate process was selected 

for the preparation of the filter. Since SiO2 material is less affected by environmental 

changes, the preparation parameters were determined by analyzing the surface roughness 

of Ta2O5 with a high refractive index. The method of electron beam deposition was used 

for the experiment via a Leybold SYRUSpro1110 coating machine. The deposition rate of 

Ta2O5 was 0.3 nm/s. Figure 5a shows the optical constants of the film at deposition 

Figure 4. (a) Simulation curve with 3‰ random error. (b) Partially enlarged drawing of the
900~1020 nm region.

3. Thin Film Preparation and Analysis
3.1. Temperature Gradient in the Material

The preparation temperature of the film affects the optical constants and surface
roughness of the material [32]. By analyzing the changes in the optical parameters and
surface roughness of Ta2O5 at different temperatures, an appropriate process was selected
for the preparation of the filter. Since SiO2 material is less affected by environmental
changes, the preparation parameters were determined by analyzing the surface roughness
of Ta2O5 with a high refractive index. The method of electron beam deposition was used
for the experiment via a Leybold SYRUSpro1110 coating machine. The deposition rate
of Ta2O5 was 0.3 nm/s. Figure 5a shows the optical constants of the film at deposition
temperatures of 120 ◦C, 150 ◦C, 180 ◦C, 210 ◦C, and 240 ◦C, with a deposition thickness of
500 nm. Figure 5b shows the surface roughness of the film at different temperatures.
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Figure 5. (a)The refractive index of Ta2O5 at different temperatures. (b) The surface roughness of
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Testing results indicate that the refractive index of Ta2O5 increases with a rise in
substrate temperature, while surface roughness decreases first and then increases with a
rise in the substrate temperature. Based on the principles of thin film dynamics [33,34],
substrate temperature affects the ability of atoms to migrate on the growing surface. At
lower substrate temperatures, the ability of atoms to migrate is weak. With an increase
in substrate temperature, the migration of adsorbed atoms becomes more active, leading
to a decrease in surface roughness. However, when the substrate temperature reaches a
certain level, atoms begin to jump from low to high rough positions, resulting in an increase
in surface roughness with temperature. This roughness affects the propagation of light,
leading to light loss. Taking all factors into consideration, a deposition temperature of
180 ◦C was chosen for the final preparation of the multi−bandpass filter.

3.2. Preparation of Multi−Bandpass Filter

The Leybold SYRUSpro1110 coating machine was used to prepare the multi−bandpass
filter. The experimental temperature was determined as 180 ◦C based on the temperature
gradient, and the background vacuum degree was 1.0 × 10−3 Pa. The deposition rates
of Ta2O5 and SiO2 were 0.3 nm/s and 0.7 nm/s, respectively. The deposition process
parameters are shown in Table 3. We adapted the optimized film structure from Section 2.2.

Table 3. Deposition process parameters of Ta2O5 and SiO2.

Material
Substrate

Temperature/◦C
Degree of

Vacuum/Pa
Deposition

Rate/nm·s−1
Flow Rate of O2/sccm

APS HPE

Ta2O5 180 1 × 10−4 0.30 35 15
SiO2 180 1 × 10−4 0.70 25 25

3.3. Filter Testing
3.3.1. Spectral Testing

The multi−bandpass filter prepared was spectrally tested using an Agilent Cary 7000
spectrophotometer, and the spectral testing results are shown in Figure 6.
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Figure 6. (a) Transmittance test curve of 0◦~30◦ multi−bandpass filter. (b) Design transmittance
curve and test transmittance curve of 0◦−incident−angle multi−bandpass filter.

The average transmittance under 0◦, 10◦, 20◦ and 30◦ conditions are shown in Table 4.
Through analysis, the difference between measured transmittance and theoretical transmit-
tance was found to be caused by deposition thickness errors. However, the impact of these
errors was minimal, and the final experimental data meet the design requirements.

Table 4. Test results of multi−bandpass filter.

Incident Angle Wavelength/nm Average Transmittance/%

0◦
515~545 93.33
645~675 92.42
925~955 91.38

10◦
515~545 93.03
645~675 92.83
925~955 92.53

20◦
515~545 92.76
645~675 93.09
925~955 94.24

30◦
515~545 91.98
645~675 92.94
925~955 92.99

3.3.2. Roughness Testing

Surface roughness affects the quality of thin films directly. A higher surface roughness
can lead to defects and impurities in the thin film, reducing its crystallinity and compactness.
Higher surface roughness can increase light scattering, thus affecting the transparency and
optical properties of the thin film. Using the Zygo Verifire interferometer for surface rough-
ness testing, the test results are shown in Figure 7, with a peak valley (PV) value of 0.374
and a root mean square (RMS) value of 0.05 nm, which meet the technical specifications.
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3.3.3. Weak Absorption Test

Using the Stanford hot−lens weak−absorption spectrometer, the weak absorption of
the film was measured. The test results are shown in Figure 8. The weak absorption of the
multi−bandpass filter produced was about 139 ppm. The result indicates that the filter has
minimal absorption, which does not affect the spectral transmittance and light utilization
efficiency, thus meeting the requirements for use.
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3.3.4. SEM Test

The multi−segment bandpass filter prepared was tested using a scanning electron
microscope with a resolution of 1 µm. The test results, as shown in Figure 9, indicate
that the deviation between the actual thickness of the multilayer films and the theoretical
thickness is less than 0.5%. From Figure 9, the multilayer film stack can be clearly seen. The
film has a high−quality structure without defects.
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Figure 9. Multilayer thin−film SEM spectroscopy.

4. Conclusions

In this paper, we present an enhanced design of an F−P narrowband filter by increas-
ing the interference order and incorporating a new series−connected F−P structure, which
expands the spectral range of the multi−bandpass filter. We have successfully developed a
multi−bandpass filter characterized by a wide half−wave and cutoff, meeting the neces-
sary requirements. This advanced filter has been implemented in smart wearable devices,
offering multi−angle adaptability that eliminates monitoring limitations due to human
body movements. Its exceptional spectral filtering properties enable the accurate and
real−time monitoring of physiological parameters under various complex backgrounds,
thus minimizing the impact of external environmental factors on detection accuracy.

The multi−bandpass filter significantly improves the visual performance of smart
wearable devices. In health monitoring applications, it delivers more precise and compre-
hensive health monitoring while providing personalized services. As a result, it facilitates
earlier disease prediction and ultimately enhances users’ quality of life. In future research,
we will investigate the filter’s potential applications in other domains, such as medical
imaging and wireless communication. Further advancements in multi−bandpass filter
research will bolster spectral filtering capabilities, which hold significant promise for the
development of sensors in smart wearable devices.

Author Contributions: Conceptualization, H.J. and D.C.; methodology, H.J.; validation, Y.J., H.J.,
R.F. and K.G.; formal analysis, H.J., S.X. and D.C.; investigation, R.F., Y.J. and C.Z.; data curation,
X.W. and C.Z.; resources, S.X. and B.S.; software, X.W.; writing—original draft preparation, H.J.;
writing—review and editing, D.C., S.X., K.G. and B.S.; visualization, H.J. All authors have read and
agreed to the published version of the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China (62193277012).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in this research are available from the corresponding
author upon reasonable request.

Conflicts of Interest: Bing Sun is affiliated to China Electronics Technology Group Corporation. The
remaining authors declare that there is no conflict of interest.



Coatings 2023, 13, 1341 12 of 13

Abbreviations

List of symbols
B Magnetic induction intensity vector
C Magnetic field intensity vector
ϕ Phase difference
δ Phase of the film
λ Wavelength of electromagnetic wave
Abbreviations
PPG Photoplethysmography
PD Photodiode
LED Light−emitting diode
F−P Fabry–Perot
PV Peak valley
RMS Root mean square
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