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Abstract: It is well known that the elastoplastic properties of materials are important indicators
to characterize their mechanical behaviors and are of guiding significance in the field of materials
science and engineering. In recent years, the rapidly developing nanoindentation technique has
been widely used to evaluate various intrinsic information regarding the elastoplastic properties and
hardness of various materials such as metals, ceramics, and composites due to its high resolution,
versatility, and applicability. However, the nanoindentation process of indenting materials on
the nanoscale provides the measurement results, such as load-displacement curves and contact
stiffness, which is challenging to analyze and interpret, especially if contained in a large amount of
data. Many numerical methods, such as dimensionless analysis, machine learning, and the finite
element model, have been recently proposed with the indentation techniques to further reveal
the mechanical behavior of materials during nanoindentation and provide important information
for material design, property optimization, and engineering applications. In addition, with the
continuous development of science and technology, automation and high-throughput processing of
nanoindentation experiments have become a future trend, further improving testing efficiency and
data accuracy. This paper critically reviewed various numerical methods for evaluating elastoplastic
constitutive properties of materials based on nanoindentation technology, which aims to provide
a comprehensive understanding of the application and development trend of the nanoindentation
technique and to provide guidance and reference for further research and applications.

Keywords: indentation; elastoplastic; load-displacement curves; contact stiffness; dimensionless;
machine learning; finite element model

1. Introduction

Elastoplastic and plasticity measurement of materials is an essential research area in the
mechanics of materials. In modern engineering techniques, it is vital to accurately measure
the elastic and plastic properties of materials. The early experiments mainly used tensile,
impact, and hardness tests to study the physical properties and mechanical properties of the
materials under load [1–6]. However, these methods cannot directly measure the nanoscale
and mesoscale mechanical properties of materials [7]. With the rapid development of
devices for load and displacement monitoring, nanoindentation techniques have emerged,
which are more advanced than traditional tensile or compression experiments and are
widely used to perform the elastoplastic measurements of the constitutive behavior of
materials [8–13].

The invention of nanoindentation can be traced back to the mid-1950s when scholars in
the Union of Soviet Socialist Republics started to record the load-depth curves of different
metals and minerals applied to nanoscale depth sensing technology. Subsequently, this
technology developed rapidly and was widely used around the world. Particularly, it
should be noted that continuous explorations have been made to achieve further devel-
opment of methods to interpret test data and apply them to the estimation of mechanical
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properties of materials [14]. In 1992, Venkataraman et al. [15] first applied nanoindentation
to measure materials in a given set of systems. In 1966, Bolshakov et al. [16] presented
the first theoretical model regarding nanoindentation, proposing an indentation theory
based on contact mechanics and elastoplasticity mechanics for describing the mechanical
properties of solid materials, such as hardness and elastic modulus. In addition, many
other scientists and engineers have made outstanding contributions and great progress in
developing nanoindentation technology.

Nowadays, nanoindentation has become one of the effective methods for material
elastoplasticity measurements and therefore is widely adopted in various fields, such as
thin-film biomaterials, semiconductor materials, metals, polymers, and ceramics [17–19].
In today’s science and technology field, the wide application of the above materials is un-
deniable. However, the unique application value of thin films is remarkable and has led to
in-depth research by many scholars. Not only has the investigation of film formation been
widely explored [20,21], but the measurement of the mechanical properties of thin films has
also become an integral part of the development of thin-film technology. The advantage of
atomic force microscopy (AFM)-nanoindentation has also greatly simplified the nanoin-
dentation experimental procedure and improved the experimental efficiency [18,19,22,23].
With the development of nanoscience and technology, the nanoindentation technique will
certainly be further improved in terms of measurement accuracy and be more extensively
applied in future engineering applications. Exploration of elastoplastic material parameters
by indentation has become a major focus in recent works on indentation. Nevertheless,
the fundamental question of whether the elastoplastic properties of a material sample in
the elastic and strain hardening stages, as shown in Figure 1, can be uniquely determined
remains challenging.
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load-displacement (P–h) curve measured by nanoindentation and also the contact stiffness 
combined with dimensionless, machine learning, density functional theory, molecular dy-
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plastic properties, the flowchart of the solution steps is demonstrated in Figure 2. Finally, 
the application, development, and prospect of nanoindentation in practical engineering 
are further discussed. 

Figure 1. Different stages of the stress-strain curve of materials, including the elastic stage, strain
hardening stage, and necking stage [24].

This paper focuses on the material-related properties obtained through nanoinden-
tation, specifically the stress-strain relationship of the material. The recent studies on
nanoindentation measurement of elastoplasticity are critically reviewed, focusing on the
load-displacement (P–h) curve measured by nanoindentation and also the contact stiffness
combined with dimensionless, machine learning, density functional theory, molecular
dynamics, and finite element model update (FEMU) methods. To solve the material elasto-
plastic properties, the flowchart of the solution steps is demonstrated in Figure 2. Finally,
the application, development, and prospect of nanoindentation in practical engineering are
further discussed.
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broad applicability and recognized characteristics. Furthermore, researchers are currently 
exploring similar geometries to expand the range of options available [26,27]. Later, Gian-
nakopoulos and Suresh obtained P–h curves based on finite element (FE) simulations to 
simulate the experimental process of nanoindentation, which provided a more intuitive 
understanding of the nature of materials at the macroscopic and microscopic levels and 
made an important contribution to the accurate prediction of material elastoplastic [16]. 
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Figure 2. Schematic diagram of nanoindentation method for measuring mechanical properties
of materials.

2. Load-Displacement Curve

The study of the nanoindentation of materials to obtain load-displacement curves has
been published in the previous results. In the early 1970s, experimental tools for load and
displacement measurements were started, and the indentation load-displacement curve
shown in Figure 3 was obtained using an instrumented microhardness tester [25]. With the
continuous development of instrumentation and nanoindentation theories, instrumented
nanoindentation was used to obtain the P–h curves of materials, which built a foundation
for realizing various property measurements and applications at the nanoscale [15,25].
With the continued improvement and development of nanoindentation, there are different
indenter shapes used for experiments. The shape of the indenter has an important impact
on nanoindentation experiments, and different indenter shapes can provide different test in-
formation and applications. In fact, the selection of the appropriate indenter shape depends
on the material properties and testing needs. In addition to using Berkovich indenters for
indentation, various other forms are employed. For instance, cube corner, Vickers, and
Knoop nanoindenters are widely recognized standards due to their broad applicability and
recognized characteristics. Furthermore, researchers are currently exploring similar geome-
tries to expand the range of options available [26,27]. Later, Giannakopoulos and Suresh
obtained P–h curves based on finite element (FE) simulations to simulate the experimental
process of nanoindentation, which provided a more intuitive understanding of the nature
of materials at the macroscopic and microscopic levels and made an important contribution
to the accurate prediction of material elastoplastic [16]. The results by Li et al. [28] showed
that the P–h curve could be generated from a single indentation depth when performing
indentation tests on poly (methyl methacrylate) (PMMA) films using a Berkovich indenter,
regardless of the depth of the indentation. In addition, they performed finite element
simulations by using the Oyen–Cook intrinsic model and succeeded in reproducing the
P–h curves obtained from experimental measurements with reasonable accuracy. The P–h
curves due to the nanoindentation of various materials have been continuously investi-
gated, and the elastoplastic properties have been further explored by different numerical
and theoretical methods, such as reverse algorithms, machine learning, etc.



Coatings 2023, 13, 1334 4 of 19Coatings 2023, 13, 1334 4 of 19 
 

 

 

Figure 3. Load-displacement curve where hmax represents the maximum indentation depth and Pmax 
represents the maximum load corresponding to the maximum indentation depth [29]. 

2.1. Dimensionless Method 
In recent years, the dimensionless method has attracted extensive academic attention 

in the field of nanoindentation, and many researchers have conducted several cutting-
edge works to reveal the relationship between the mechanical properties of materials and 
geometric scales through exploring the dimensionless process of nanoindentation experi-
mental data [30,31]. Their researches provide an important foundation and theoretical 
guidance for an in-depth understanding of the mechanical behavior at the nanoscale and 
its application in material designs and characterizations [32–34]. The research results in 
this field offer a broader prospect for future research on the mechanics of materials and 
the development of nanotechnology. Dao et al. [35] used dimensional analysis of P–h 
curves to construct a set of dimensionless functions characterizing the sharp indentation 
of the instrument, to correlate the data obtained from nanoindentation to the elastic–plas-
tic energy, and also compared the results obtained by forward and reverse algorithms 
with experimental data, respectively. Lee et al. [22] established a series of dimensionless 
functions to reduce the sensitivity of data and experimental errors and to improve the 
accuracy of nanoindentation reverse analysis by using only P–h curves to obtain the pa-
rameters 𝐶 and 𝑊 /𝑊  for prediction in the order of E, 𝜎 , H, n and 𝜎 . and the residual 
indentation depth and maximum indentation depth after unloading obtained from the 
AFM observation after indentation experiments were obtained by another method to ob-
tain the hardening index n. Jiang et al. [36] described the elastoplastic properties of thin-
film materials on elastoplastic substrates and proposed the following elegant equation as: 𝑃 = 𝑃 ℎℎ . (1)

The maximum indentation load 𝑃  and the index 𝑥 are the functions of all inde-
pendent parameters, ℎ is the indentation depth, and ℎ  is the maximum depth of the 
indentation. Equation (1) was subjected to dimensionless analysis to obtain the dimen-
sionless function and obtain the elastoplastic properties of the material. Yu et al. proposed 
a dimensionless equation in which the dimensionless function was established as a func-
tion of the indentation load 𝑃 and the contact depth ℎ  as a function of the other param-
eters. Both dimensionless functions proposed by Jiang and Yu established two separate 
functions related to the other parameters to obtain the predicted P–h curves. Honga et al. 
[37] proposed a new analytical method based on the method of Dao et al. [35] by estab-
lishing a generalized dimensionless function and constructing a forward analysis algo-
rithm and a reverse analysis algorithm, respectively, for directly predicting the 
nanoindentation response based on known elastoplastic properties. Based on FE simula-
tions of nanoindentation, Long et al. [38] derived a dimensionless function and proposed 
a reverse algorithm for estimating the intrinsic parameters and surface stresses of 

Figure 3. Load-displacement curve where hmax represents the maximum indentation depth and Pmax

represents the maximum load corresponding to the maximum indentation depth [29].

2.1. Dimensionless Method

In recent years, the dimensionless method has attracted extensive academic attention
in the field of nanoindentation, and many researchers have conducted several cutting-edge
works to reveal the relationship between the mechanical properties of materials and geo-
metric scales through exploring the dimensionless process of nanoindentation experimental
data [30,31]. Their researches provide an important foundation and theoretical guidance for
an in-depth understanding of the mechanical behavior at the nanoscale and its application
in material designs and characterizations [32–34]. The research results in this field offer a
broader prospect for future research on the mechanics of materials and the development of
nanotechnology. Dao et al. [35] used dimensional analysis of P–h curves to construct a set of
dimensionless functions characterizing the sharp indentation of the instrument, to correlate
the data obtained from nanoindentation to the elastic–plastic energy, and also compared the
results obtained by forward and reverse algorithms with experimental data, respectively.
Lee et al. [22] established a series of dimensionless functions to reduce the sensitivity of data
and experimental errors and to improve the accuracy of nanoindentation reverse analysis
by using only P–h curves to obtain the parameters C and Wp/Wt for prediction in the order
of E, σr, H, n and σy. and the residual indentation depth and maximum indentation depth
after unloading obtained from the AFM observation after indentation experiments were
obtained by another method to obtain the hardening index n. Jiang et al. [36] described the
elastoplastic properties of thin-film materials on elastoplastic substrates and proposed the
following elegant equation as:

P = Pm

(
h

hm

)x
. (1)

The maximum indentation load Pm and the index x are the functions of all independent
parameters, h is the indentation depth, and hm is the maximum depth of the indentation.
Equation (1) was subjected to dimensionless analysis to obtain the dimensionless function
and obtain the elastoplastic properties of the material. Yu et al. proposed a dimension-
less equation in which the dimensionless function was established as a function of the
indentation load P and the contact depth hc as a function of the other parameters. Both di-
mensionless functions proposed by Jiang and Yu established two separate functions related
to the other parameters to obtain the predicted P–h curves. Honga et al. [37] proposed a
new analytical method based on the method of Dao et al. [35] by establishing a generalized
dimensionless function and constructing a forward analysis algorithm and a reverse anal-
ysis algorithm, respectively, for directly predicting the nanoindentation response based
on known elastoplastic properties. Based on FE simulations of nanoindentation, Long
et al. [38] derived a dimensionless function and proposed a reverse algorithm for estimat-
ing the intrinsic parameters and surface stresses of elastoplastic materials. In addition,
they used this reverse algorithm to estimate the residual stresses in solder samples under
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different annealing conditions. Subsequently, Long et al. [38] combined the dimensionless
method and FE simulations to consider the predicted nanoindentation response in the
presence or absence of prestressing two cases to investigate the elastoplastic properties of
the material and derived the dimensionless function of:

P
σyh2 = Π

(
E∗

σy
, n, εpre

)
, (2)

where E∗ and εpre are the reduced modulus and pre-strain, respectively.
Ehsan et al. [39] suggested that an optimal approach to measuring the elastoplastic

properties of materials is to combine experimental results, FE simulations, and dimension-
less methods. To be more applicable in various complex cases, they proposed a method
with fewer dimensionless functions to obtain the elastoplastic properties of materials.
Ehsan Bazzaz et al. also proposed the minimum resultant error method to obtain the
strain-hardening index by combining the errors of two dimensionless functions to extract
the yield stress and strain-hardening index in the form of a unique measure. Based on
previous studies, Wang et al. [40] proposed the dimensionless functions corresponding
to different residual stresses of the material elastoplastic properties. They proved experi-
mentally that the relationship between the residual stress and the dimensionless functions
is linear. Long et al. [41] successfully obtained the complete constitutive relationship of
different materials by investigating the reverse algorithm of nanoindentation to analyze the
elastoplastic material properties by adopting a common assumption for isotropic materials,
in which the stress–strain properties are assumed to satisfy a relationship of:

σ =

{
Eε ε ≤ εy
Rεn ε > εy

. (3)

As shown in Figure 4, the proposed reverse algorithm combines the elastic modulus
of the material and the P–h curve obtained from the nanoindentation test to determine the
constitutive relationship of the material. In a follow-up study, Long et al. [42] randomly
selected the elastoplastic mechanical properties and film thickness. They used FE simula-
tions to achieve a good agreement between the proposed reverse method for predicting
the elastoplastic intrinsic curve and the stress–strain curve of the material. This provides
theoretical guidance for an in-depth understanding of the exact relationship between the
elastoplastic mechanical properties and the indentation response of thin-film materials.
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To obtain high-precision elastoplastic parameters for indentation depths below 100 nm,
Sanchez-Camargo et al. [43] determined the elastoplastic parameters by reverse analysis,
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and the numerical models all correctly described the indentation curves. For the mea-
surement of elastoplastic properties of a ductile film on a hard substrate, Xing et al. [44]
were able to provide sufficient information in a reverse analytical dimensionless algo-
rithm at different indentation depths through a nanoindentation analysis method. In
summary, combining the dimensionless method with nanoindentation is important for
measuring the elastoplastic properties of materials and contributes significantly to mate-
rial characterization.

2.2. Machine Learning

With the development of computer technology and artificial intelligence, combining
machine learning and nanoindentation also inspires motivation to study material properties.
Recently, Weng et al. [45] studied the material properties of cast iron based on machine
learning and FE nanoindentation simulation and extracted the sharp stress–strain curve
of cast iron by proposing the optimization algorithm particle swarm optimization (PSO)
and the detailed steps of the stress–strain relationship inversion method are summarized
in Figure 5.
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Laxmikant et al. [46] found that during the fabrication of electronic components, the
mismatch in lattice and thermal expansion coefficients between the film and the substrate
can lead to misfit strain. Therefore, finite element analysis (FEA)-based nanoindentation
simulation methods and generative adversarial network (GAN)-based machine learning
methods were used to predict the properties of thin-film layers. To study cracks generated
by nanoindentation, Alipour et al. [47] combined a conceptual model of indentation with
machine learning to determine fracture toughness using the energy method and P–h
curves to fracture toughness to provide a systematic analysis for small-sized rock samples.
Wang et al. [48] employed a hyperparametric tunable artificial neural network model to
establish a positive relationship between the material elastoplastic parameters and the
indentation P–h curve. Meanwhile, Long et al. [49] proposed a long short-term memory
neural network to deeply learn the time series of P–h curves to predict the relationship
between P–h curves of metal-coated materials and their stress–strain response. This network
established the mapping relation from the P–h curves to the corresponding elastoplastic
material stress–strain response. By analyzing the prediction results of the network, the
final predicted P–h curves and stress–strain relationships match well with the power law
equation. In addition, it is known that the material elastoplastic properties predicted by
this method are more efficient and accurate than those obtained by FE analysis.

Further studies have demonstrated that complicated relationships exist between the
indentation response and stress–strain curves of elastoplastic materials with thin-film
substrates, posing challenges for conventional calculation methods. To overcome this
problem, Long et al. [50] proposed a machine learning-based method, namely convolutional
neural network (CNN), to rapidly obtain the mechanical properties of thin-film elastoplastic
materials. Compared with the traditional reverse algorithm, CNN excels in reducing
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computational complexity and computational time and has higher prediction accuracy for
the intrinsic parameters of thin-film elastoplastic materials.

2.3. FEMU Method

The finite element model update (FEMU) method is a technique used to update the FE
model of a structure by adjusting the FE model parameters according to the discrepancies.
Comparison between the measured data with the FE simulation results leads to more
accurately simulating and predicting the behavior of the actual structure [51–54].

The FEMU method typically consists of: (1) Collection of actual measurement data.
The actual displacement, strain, acceleration, and other data from the structure are collected.
(2) Construction of an initial FE model. An initial FE model is constructed as a reference
model. (3) Comparison between the measured data and simulation results. The measured
data is compared with the FE simulation results, and the differences are evaluated. (4) Ad-
justment of the FE model. The FE model is adjusted according to the comparison results by
performing appropriate parameter updating techniques.

After iterating through the cycle of the above four steps, the FE model can be enhanced
to simulate and predict material parameters more accurately, which can improve the
reliability and accuracy of the model. Fauvel et al. [51] simulated nanoindentation tests by
the FEMU method combined with a two-dimensional axisymmetric FE model to identify
both the elastoplastic properties of 100 nm amorphous alumina films and the plastic
properties of their silicon substrates by only relying on the P–h curves.

The FEMU method estimates one or more parameters by combining an FE model and
an iterative optimization algorithm with the parameter θ0 as a starting point and by the
difference between the force P generated by the FE simulation and the force Pexp obtained
from the experimental data. Thus, based on the least squares method, the problem to be
solved now becomes a minimization problem governed by:

θ̂ = argmin ω[P(h; θ), Pexp(h)], (4)

where h is the displacement and ω is the cost function to minimize defined by

ω(θ) =
1

2T

T

∑
k=1

(
Pk(θ)− Pexp

k

Pexp
max

)2

, (5)

where T is the number of data points, Pk and Pexp
k are the simulated force and the experi-

mentally measured force, respectively. Pexp
max is the maximum experimental force.

To find the stability of the solution and improve the quality of the solution to quan-
tify the experimentally measured information, the identifiability indicator (I-index) is
introduced as:

I = log10

(
λmax

λmin

)
, (6)

where λmax and λmin are the extremal eigenvalue of the matrix close to the cost func-
tion minimum.

Parameter identification in the crystal plasticity model is more complicated than
ordinary elastoplastic parameters. To solve this troublesome problem, Renner et al. [53]
proposed the crystal plasticity finite element modeling update (CPFEMU) method for
parameter identification. The proposed method is established to define the best-fit reverse
problem and facilitate a more practical approach.

3. Contact Stiffness

The continuous stiffness measurement (CSM) test is an experimental method used
to characterize the surface properties of a material. It differs from traditional indentation
hardness testing methods in that the CSM test uses a continuous loading and unloading
method in which force and displacement are measured simultaneously with the application
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of strain. The CSM test provides a stiffness curve for a material by continuously measuring
force and displacement data at strain rates. The stiffness curve can reflect the deformation
characteristics of the material during the loading process, including the elastic phase,
the plastic phase, and possibly other phases. Through analyzing the slope and shape
of the stiffness curve, the hardness, elastic modulus, and other mechanical properties
of the material can be inferred. The CSM technique is widely practiced in materials
science and engineering, especially for studying surface properties of thin films, coatings,
nanomaterials, etc. [55–57]. Moreover, it can provide a non-destructive and rapid method
to obtain mechanical parameters of materials, which can provide valuable information
for material design, quality control, and material failure analysis. Therefore, extensive
works have also been accomplished on obtaining other properties of materials through
their stiffness.

In 2005, both Zhao and Ogasawara investigated the elastoplastic properties of materials
obtained by a single indentation test [58,59]. Among them, Ogasawara obtained from the
indentation work during loading and the contact stiffness during unloading by fitting the
contact stiffness S after normalization from the plane strain modulus E and the maximum
displacement of the indenter to obtain:

Ω ≡ S
2δmaxE

= Aξ3 + Bξ2 + Cξ + D, (7)

where A, B, C, and D are the coefficients of the fitted equation.
Ogasawara et al. [58] completed 60 different combinations of material properties

(n = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5) by a wide range of FE analysis, covering basically all engi-
neering materials, establishing a clear relationship between indentation parameters and
material properties. By detailed FE analysis of the indentation process in various materials,
Rodríguez [60] obtained the actual hardness from the following dimensionless equation:

H
σyc

= f
(σyc

E∗
, β
)

, (8)

where σyc stands for the uniaxial compressive yield stress, β is the pressure sensitivity
index, and E* can be obtained from:

E∗ =
S
√

π

2
√

A
, (9)

where S is the unloading stiffness and A is the actual contact area of the indentation. With
Equation (8), problems, such as the extraction of elastic modulus and compressive yield
strength from the instrumented indentation, can be better solved.

Furthermore, Long et al. [61] performed CSM-based nanoindentation experiments on
Sn-3.0Ag-0.5Cu (SAC305) solder by defining the experimentally obtained contact stiffness
to represent the residual stress in the solder samples after the cooling and annealing pro-
cesses and using the Oliver–Pharr model to fit the unloading response of the indentation. It
was found that for SAC305 solder samples with different cooling processes, annealing treat-
ments lasting 6 h effectively reduced the residual stresses. Additionally, they performed
nanoindentation experiments on pressureless sintered silver nanoparticle samples at room
temperature [62]. To accurately measure the strain rate sensitivity, their research team
adopted a novel technique to realize multiple strain rate jumps based on CSM. Through
considering different strain rates and indentation depths in the experiments, the nanoscale
mechanical properties were obtained. Phani et al. [63] developed a comprehensive model
for simulating constant indentation strain rate in CSM tests to gain insight into the parame-
ters that affect the precision and accuracy of the measurements. Based on the predictions
of the proposed model, they proposed a new test method without closed-loop feedback
and found that the method could significantly improve the precision and accuracy of
CSM-based indentation measurements. The schematic diagram of the load time variation
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during CSM-based indentation tests on the indenter head is shown in Figure 6. Through
experiments and analysis based on CSM-based nanoindentation, Long et al. [64] investi-
gated the mechanical properties and intrinsic behavior of SiC particle-reinforced sintered
AgNP and proposed an analytical method to simulate the indentation behavior. The results
reveal the correlation between microstructure and macroscopic properties, which guides
the design of AgNP morphologies and improves the mechanical properties of sintered
silver nanoparticles in the electronic packaging industry.
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4. Density Functional Theory

Density functional theory (DFT) is an accurate, first-principle method for predicting
material properties. In recent years, researchers have utilized DFT to calculate and predict
the mechanical properties and anisotropy of different material systems.

Through the study of Shenoy et al. [65], we have seen that DFT can accurately predict
Young’s modulus of Li-Si alloys, which is an important indicator of the mechanical proper-
ties of the alloys. This provides a reliable example of using density functional theory to
analyze and optimize the mechanical properties of other alloy materials. Lamuta et al. [66]
used different exchange-correlation function approximations of DFT in their theoretical
estimation of the combined indentation modulus of materials. This further demonstrates
the flexibility and applicability of density functional theory in studying the mechanical
properties of materials. In addition, the work of Zhou et al. [67] combines DFT with nanoin-
dentation experiments to study the mechanical anisotropy of the energetic crystal FOX-7.
This demonstrates the synergistic application of DFT and experimental studies for a more
comprehensive understanding and explanation of the mechanical behavior of materials.
Hayes et al. [68,69] introduced the multiscale orbital free density functional theory-localized
quasicontinuum (OFDFT-LQC) approach to the problem of dislocation nucleation in metal-
lic systems under the action of a real-size indenter. This problem is difficult to be covered
by conventional density functional theory for such large-scale and complex systems due to
the high computational cost. The innovation of the OFDFT-LQC method is to combine the
first-principles OFDFT with the LQC evolution of the macroscopic system, which enables
multiscale simulations. The introduction of the OFDFT-LQC method makes it possible to
study the mechanical properties of more complex and practical material systems while
improving the efficiency and accuracy of the calculations. With the continuous progress
of technology and the improvement of the method, the density functional theory and its
combination of nanoindentation experiments and multiscale simulations will achieve more
breakthroughs and applications in the field of materials science.

5. Molecular Dynamics

Molecular dynamics is a computational method for modeling atomic and molecular
motions using classical mechanical principles. In nanoindentation research, the molec-
ular dynamics approach is important because it can simulate the mechanical behavior
of materials at the atomic scale and provides new understanding and ideas for complex
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indentation processes. Fang et al. [70] investigated the effect of temperature on the atomic
scale nanoindentation process using a three-dimensional molecular dynamics model. They
used a Morse potential function to simulate the interatomic forces between the sample
and the tool and found that both Young’s modulus and hardness become smaller as the
temperature increases. These results make an important contribution to the understanding
of the mechanical properties of materials in high-temperature environments. Li et al. [71]
calculated the hardness of pure and alloyed gold on different crystalline surfaces using
classical molecular dynamics simulations. Unlike the traditional force-displacement de-
pendence, they analyzed the relationship between hardness and force, which provides a
new idea to study the mechanical properties of materials. This demonstrates the versatil-
ity and flexibility of applying molecular dynamics methods in nanoindentation studies.
Alexey et al. [72] carried out large-scale molecular dynamics simulations of nanoindenta-
tion of titanium crystals by considering different types of indenters, obtaining different
load-displacement curves, and calculating the hardness and Young’s modulus. This study
demonstrated the dependence of the deformation of the crystal structure on the type of
indenter. It provided important information to study the mechanical response of different
materials in nanoindentation. In another study, Fang et al. [73] investigated the effects of
indentation deformation, contact, and adhesion on multilayer films by molecular dynamics
simulations. The results showed that the maximum load, plastic properties, and adhesion of
the specimens increased with increasing indentation depth. This study provides important
insights into the mechanical response of indented films. Chen et al. [74] investigated the
nanoindentation process of amorphous alloys using molecular dynamics methods. They
found that the radius of the indenter did not have a significant effect on the material proper-
ties, whereas a larger loading rate led to an increase in the hardness and elastic modulus of
the material. In addition, the temperature has a significant effect on the material properties,
as the load and hardness decrease with increasing temperature, while the elastic modulus
tends to increase. This provides an important basis for considering the temperature factor
in the study of mechanical properties of amorphous alloy materials.

As a result of these different research works, it can see that the molecular dynamics
approach has a wide range of applications in nanoindentation studies. It can simulate the
mechanical behavior of materials at the atomic level, providing important theoretical sup-
port for studying properties such as hardness, elastic modulus, and adhesion. Combined
with other computational methods, such as density functional theory, we can gain a more
comprehensive understanding of the mechanical properties of materials and provide more
accurate and efficient tools for material design and application.

6. Other Methods

In recent years, many important explorations based on other methods have been con-
ducted to obtain the elastoplastic properties of materials by nanoindentation measurements.
X-ray and neutron diffraction are commonly used non-destructive testing techniques for
determining microstresses in materials and are widely used in materials science and engi-
neering to non-destructively analyze the crystal structure and microstress state of materials.
By understanding the stress distribution of a material, the properties and behavior of the
material can be better understood to optimize the design and improve the service life of
the material [75,76]. The widespread use of X-ray and neutron diffraction methods makes
the study of nanoindentation more accurate and in-depth. Additionally, the hardness map
obtained from nanoindentation can also be used to analyze the mechanical properties of the
material. The hardness map provides information about the spatial distribution of hardness
on the material’s surface, which can be used to infer the local mechanical properties of
the material. By carefully analyzing the hardness map, it is possible to gain insight into
the mechanical behavior of the material and provide important guidance and reference
for the application and design of the material. It should be noted that the hardness map
is a measurement of relative surface properties, and the understanding of the properties
of the whole material needs to be combined with other testing methods and simulation
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analysis [77,78]. In addition to X-rays, neutron diffraction, and hardness diagrams, there
are many other ways to study the mechanical properties of materials.

Jacq et al. [79] proposed a method for obtaining local micro-yield stresses of materials
by nanoindentation based on the relationship between the increasing maximum load and
the residual displacement of the material under the continuous nanoindentation loading–
unloading cycles. It is shown that the nanoindentation technique is not only applicable to
the measurement of hardness and elastic modulus at the micron scale but can also reveal
the relevant interfacial fracture mechanisms. Urena et al. [80] investigated the interfacial
mechanical properties of short carbon fiber-reinforced AA6061 composites coated with
different metal films using the nanoindentation technique. By performing nanoindentation
experiments in different regions of the matrix/fiber interface, changes in the hardness and
elastic modulus of the matrix could be accurately predicted. In addition, they accurately
evaluated the fracture propensity of the interface and performed separate push-out tests
for vertically aligned fibers with composite surfaces to measure the shear strength of the
interface. Zhang et al. [81] proposed a method to distinguish plastic, elastic and viscoelastic
deformations based on indentation tests to obtain the mechanical parameters of polymeric
materials. As shown in Figure 7, In the fast loading/unloading steps (steps 1 and 2),
elastoplastic deformation is dominant and causes negligible visco-elastic deformation only
(relaxation in step 3). Pcreep < Pmax is chosen to prevent further time–independent plastic
deformation, ensuring the dominance of visco-elastic deformation in the reloading and
creep steps.
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Figure 7. Schematic illustration of the five-step test scheme [81], where stage (1) represents the fast
loading step to the maximum load Pmax, stage (2) represents the fast unloading step to the very small
load Pmin, stage (3) is held under Pmin for a period time, stage (4) is the fast reloading step to the creep
test load Pcreep, and stage (5) represents the final holding step during the period of tcreep.

In addition, Zhang et al. [81] predicted the viscoelastic parameters using a genetic
algorithm in combination with the analytical solution. The results show that the elastic
viscoelastic parameters can be uniquely determined by combining the effective indenter
proposed by Sakai [82] with the indenter proposed by Pharr and Bolshakov [83]. Fur-
thermore, the values of the viscoelastic parameters extracted with the effective indenter
proposed by Pharr and Bolshakov were found to be independent of the reloading level.
Saraswati et al. [84] focused on the cyclic nanoindentation experiments and found that
more material information could be extracted by this technique, especially material proper-
ties not available in conventional tests. Ma et al. [85] found that materials with the same
modulus of elastoplastic E and stress–strain parameters have similar indentation loading
curves, regardless of the variation of the strain-hardening index n. Based on their results,
the proposed method is proved to be more convenient and effective when obtaining the
elastoplastic properties of the materials. First, according to Figure 8, the slope of the elastic
segment is the same for the same studied material with changing the strain-hardening
index, which means that the change in the strain-hardening index does not affect the
elastic modulus of the studied material, so the yield strength and elastic modulus need
to be determined by varying the assumed stress over a wide range without considering
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strain-hardening until the calculated results and the experimental loading curve match.
Then, the strain-hardening index is assumed to take different values within a certain rea-
sonable range, such as 0 to 0.6. Finally, the actual strain-hardening index is obtained by
continuously adjusting the calculated unloading curve to match the experimental curve
with the assumed strain-hardening index value, as shown in Figure 9 [85].
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Weaver et al. [86] combined spherical nanoindentation and electron backscatter diffrac-
tion to characterize the elastic and plastic anisotropy of single crystals for two different
compositions. Their results show that this proposed method can reliably characterize the
elastic and plastic anisotropy of crystals with different alloy compositions. Roa et al. [87]
discovered the linear relationship between the ratio of indentation hardness H to the re-
duced modulus Er and the ratio of the elastic potential energy Ue to the total strain energy
Ut. This finding simplifies the data analysis using an independent analysis procedure,
which resolves the considerable uncertainty due to the possible stacking effect of different
plastic deformation phenomena.

It is important to acquire accurate material data with high precision and quality. How-
ever, during the experimental process of performing nanoindentation, the accumulation
around the indenter leads to a significant increase in the contact area for large materials,
while thin-film materials can lead to variations in the contact area due to deformation mech-
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anisms as well as dislocations. In this regard, more advanced techniques, such as atomic
force microscopy (AFM) or scanning electron microscopy (SEM), are needed to determine
the contact area [85]. To obtain more accurate data, numerous researchers characterized the
shape and size of the indentation based on AFM [85,88,89]. For the effect of the contact-area
error caused by the indenter, the larger the radius, the greater the contact-area error of
the indenter. To address this problem, Guo et al. [90] proposed a hardness determination
method that is not based on the geometric relationship of the indenter tip. This method is
highly effective regardless of the variation in the scale and depth size of the indentation.
Lee et al. [91] also investigated the effects of material process hardening phenomena, such
as indentation pile-up and sink effects, that are challenging to be explained by a simplified
indentation resolution.

To improve the accuracy of the requested parameters depending on the way the
material and indenter parameters are combined, Hyuk Lee proposed a more efficient
reverse analysis method based on dimensional function analysis and artificial neural
networks to build a database of dimensional functions related to material stress and strain
parameters. The feasibility of the method was demonstrated by validating experimental
results. In addition, the bimaterials consisting of matrix and particle make an important
contribution to the development of new materials and the improvement of the properties
of existing materials by jointly exploiting the interaction between matrix and particle.
Therefore, it is of great importance in a wide range of applications. H.S. Tran proposed a
new method for identifying the mechanical behavior of individual phases in a bimaterial
material. An identification model was developed by performing nanoindentation tests
at different locations of the nanocomposite using Berkovich indenters, which allowed
the determination of material parameters and demonstrated the effect of particles on the
nanoindentation response [92].

7. Current and Emerging Applications

To date, nanoindentation has become an effective method for studying the mechan-
ical properties of materials such as metals, ceramics, polymers, and composites through
the advantages of high resolution, non-destructive measurements, rapid measurements,
comprehensive performance evaluation, and microscopic morphological analysis. It has
been widely used in materials science, medicine, and manufacturing [93–95]. Stoichiometry
is of paramount importance in the study of metals, metal alloys, and composite samples.
Deviations from stoichiometric ratios or the presence of oxygen anions in the chemical
composition of the samples will lead to changes in the cation charge state, which can
significantly affect the electronic parameters [96,97]. Therefore, ensuring the accuracy
of stoichiometry and avoiding the presence of anomalous oxygen anions is essential to
safeguard the stability and superior performance of these materials to ensure optimal
expression of their properties and performance. In addition, nanoindentation can position
the indenter at specific locations on the material under test when measuring material
properties, which helps to probe the nature of microstructural components and thus assess
structural inhomogeneities [98,99].

Liu et al. [17] utilized the nanoindentation technique to verify its applicability in
studying the nanomechanical properties of shale samples. The elastic modulus and hard-
ness of different samples were calculated and compared using this method and correlated
with mineral composition and microstructure. This study reveals the potential application
of nanoindentation theory to shale samples and provides important information for un-
derstanding the mechanical behavior of shales. It can be predicted that the mechanical
properties of shale samples can be studied in depth by nanoindentation methods, which can
provide valuable references for shale oil and gas extraction and reservoir evaluation [17,100].
To study the degree of degradation of multilayered shales, the CSM method was used
during the measurement of mechanical properties by applying small harmonic forces
on the indenter and measuring the harmonic response of the indenter at the excitation
frequency, which does not cause different types of damage to the rock surface and the rock



Coatings 2023, 13, 1334 14 of 19

interior [55,101–103]. In addition, researchers have paid special attention to the study of the
influence of micro- and macro-porous structures in gypsum materials on their mechanical
properties and fracture mechanics through indentation experiments. This research allows
insight into the fundamental mechanical behavior of highly complex materials used in
various applications, such as the construction and medical industries [104].

In addition to conventional engineering sectors, nanoindentation has been proven
to be one of the most promising methods for studying emerging areas such as bone
tissue engineering. Nanoindentation is superior for providing information related to the
nanomechanical properties of bone at the level of individual bone cells and bone lamellae,
independent of their size, shape, and porosity [105–107]. This technique provides a more
convenient method for medical research to study skeletal aging and the effects of various
diseases on the bone. As such, it has potential applications in clinical research, such as
understanding the impact of therapeutic processes. Further, microscopic information about
the mechanical properties of bones can be obtained through nanoindentation techniques,
providing insight into the structure and function of bones and offering new perspectives
for the diagnosis and treatment of skeletal-related diseases [103].

In conclusion, nanoindentation has a wide range of applications in materials science
and engineering and has promising prospects for the future. Combining nanoindentation
with other characterization methods, such as atomic force microscopy (AFM) and scanning
electron microscopy (SEM), thermal analysis methods, X-ray and neutron diffraction tech-
niques, cell biology, and biocompatibility testing, and macro-mechanical testing methods
can provide more comprehensive and multidimensional information about the properties
of materials, thus deepening the understanding of materials. Multidimensional material
characterization by nanoindentation, in combination with other characterization methods,
is expected to address current challenges in materials research and play a greater role in
materials design and applications.

8. Conclusions

Nanoindentation is an effective method for evaluating the elastoplastic properties of
materials and is of great importance in materials science and engineering. However, the
experimental data, such as the load-displacement curves and contact stiffness obtained
from conventional measurements, are limited to analyzing the mechanical behavior of the
indentation process. Therefore, novel numerical methods are critically reviewed in this
paper for their advantages when combined with the nanoindentation to further reveal the
mechanical behavior of materials. Among the representative numerical methods, the most
common method is dimensionless analysis to reproduce the experimental results from
different samples and under experimental conditions, which has the advantage of making
the test results more generalizable. In addition, with the advantages of machine learning
methods and finite element simulations, numerically predicted results can satisfactorily
agree with actual indentation test data, thus helping to address the complexity of data
analysis and interpretation in nanoindentation testing. Both machine learning methods and
finite element model update methods could be good alternatives for providing accurate
and efficient numerical tools in practice. It is well-accepted that nanoindentation has
wide applicability in measuring a wide range of materials. It provides a reliable and
accurate method for the mechanical property evaluation of different materials, including
metallic materials, alloys, and composite materials. It is worth noting that in future
developments regarding smaller scales and harsher loading environments, nanoindentation
will face greater challenges and opportunities in terms of automation, versatility, and
integration with other characterization techniques, as well as accurate mechanical models
and algorithms. These developments will help further promote the application prospects
and research areas of nanoindentation.
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