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Abstract: The search for materials for a new generation of wound coatings is important due to the
increase in antibiotic-resistant microorganisms and the number of patients with untreatable chronic
purulent wounds. Metal nanoparticles, specifically silver nanoparticles, have antimicrobial activity
and do not induce known bacterial resistance. To obtain new Ag-containing nanocomposites, type I
collagen was extracted by an enzyme–acid method from cattle tendons. Silver nanoparticles were
obtained by an environmentally safe method, metal-vapor synthesis (MVS), which enables obtaining
metal nanoparticles without impurities. For this, metal vapors were cocondensed in a vacuum
of 10−2 Pa on the walls of a quartz reactor cooled to 77 K using acetone as an organic dispersion
medium. The composition of the collagen surface was determined by XPS using the spectra of C1s,
N1s, and O1s. The presence of a peak with a binding energy of approximately 368.57 eV in the Ag
3d5/2 spectrum indicates the state of Ag0 silver atoms in the nanocomposite. SEM images showed
that collagen contributes to the effective stabilization of Ag nanoparticles with an average size of
13.0 ± 3.5 nm. It was found that collagen is non-toxic and biocompatible with skin cells and
fibroblasts. The collagen–Ag nanoparticle nanocomposites exhibited antimicrobial activity against
bacteria Bacillus subtilis, Escherichia coli, and fungi Aspergillus niger.

Keywords: wound coatings; collagen; silver nanoparticles; metal-vapor synthesis; antimicrobial activity

1. Introduction

Wound coatings/dressings should be biodegradable, biocompatible, non-toxic, non-
pyrogenic, non-allergenic, have good absorbency, adhesion, permeability to gases, water
vapor, and, most importantly, have antimicrobial and regenerating activity [1]. Currently,
there are no wound coatings that meet all the above requirements and this area is open
for research. Based on the requirements of biodegradability and biocompatibility, collagen
(Col) is the most suitable dressing material [2]. The use of biodegradable polymers makes
it possible to solve environmental problems while creating a sustainable ecosystem [3].
Collagen has a highly ordered structure, chemical and thermal stability. It combines the
positive qualities of synthetic polymers and does not have their negative sides [4]. Collagen
is non-toxic, has low antigenicity due to the absence of histocompatibility receptors, is
resistant to tissue enzymes, and is able to stimulate regenerative processes, cell prolifer-
ation and migration [5]. Collagen for biomedical, pharmaceutical and food purposes is
extracted from skins, tendons, ligaments of cattle, pigs, fish waste (skin, bones) [6,7], and
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sea mollusks [8,9]. The purest collagen with good yield is obtained from the tendons of the
tails of cattle. Tendons consist only of type I collagen [10].

The growth of resistance of microorganisms to antibiotics is one of the most important
problems of modern clinical practice. Despite the pace of development of antimicrobials,
mortality rates from tissue damage and wound infections are quite high. All this stimulates
the search for new effective antimicrobial drugs and wound coatings that do not cause
resistance of microorganisms [11].

Collagen is a suitable matrix for wound coatings, which can be enriched with antimi-
crobial, anti-inflammatory, antioxidant and other drugs, and thus make the wound coating
multifunctional. Thus, researchers offer wound coatings and collagen hydrogels with
various antibiotics [12,13], collagen complexes with biologically active components [14,15],
collagen complexes with hydroxyapatites and polysaccharides or lanthanum oxide or
silicon dioxide for bone tissue regeneration, complexes with beta-tricalcium phosphate
and strontium oxide for bone engineering [16–19]. Enrichment of the collagen matrix with
polyphenolic compounds leads to collagen structuring and imparts additional properties
to the material, such as antioxidant, anti-inflammatory, proliferative, and even antimicro-
bial properties [20,21]. Wound coatings with polyphenolic compounds—quercetin and
rutin—accelerated the healing of experimental purulent wounds by 1.73 fold [21,22]. Hy-
brid complexes of collagen with metal nanoparticles are promising, since nanoparticles
of many metals (silver, zinc, gold, titanium, etc.) have high antimicrobial activity in the
absence of microbial resistance to them [1,23].

Nanosilver is currently used in wound coatings, cosmetic lotions, dental materials,
antimicrobial textiles, wastewater treatment, etc. [24]. A significant antimicrobial effect
of silver nanoparticles in the fight against various infections and diseases was demon-
strated [25,26], as well as an effective wound coating based on hydrocollagen and silver
nanoparticles in the treatment of purulent wounds [27]. The dose-dependent antimicrobial
activity of collagen/ZnTiO3 nanocomposites against Firmicutes (Staphylococcus epidermidis,
Bacillus cereus), Gracilicutes (Escherichia coli, Salmonella enterica, Pseudomonas putida) and
fungi with low cytotoxicity on skin cell cultures has been previously demonstrated. The
authors suggested three mechanisms of antimicrobial action: mechanical destruction of
cell membranes by crystalline metal nanoparticles, its chelation with metal ions, and the
formation of oxygen free radicals [28].

At the moment, there are many methods for the synthesis of metal nanoparticles of
various compositions (pure metal, oxides, hydroxides, salts, etc.), size (1–100 nm) and shape
(spherical, needles, plates, etc.). Methods for the reduction of metals using a wide range of
reducing agents, such as sodium borohydride [29,30], trisodium citrate and glucose [20],
tannic acid [31], triethanolamine [32], and ultraviolet radiation [33] have a number of
significant limitations: a long synthesis process, the presence of a significant amount
of impurities in the form surfactants and residues of synthesis products, as well as the
difficulty of controlling the completeness of metal reduction [34,35]. It should be noted that
there are difficulties in controlling the formation of the internal structure of materials in the
process of chemical reduction of metals, which arise due to the presence of impurities in the
matrix. In recent years, biogenic or “green” synthesis of metal nanoparticles using bacteria,
fungi, aquatic plants, and herbivorous animals has become popular [36]. The advantage
of biogenic methods is that nanoparticles are regenerated from ions and stabilized by
biomolecules produced by microorganisms that may be familiar to the human body. These
methods also have similar limitations, which greatly complicate the use of the obtained
materials for biomedical purposes [37–41]. Metal-vapor synthesis (MVS) has undoubted
advantages, allowing the dispersion of metal components at the atomic level, significantly
increasing the uniformity of their distribution [42]. This efficient environmentally friendly
method for obtaining biologically active nanoparticles of metals and their oxides is widely
used in the preparation of new biomedical hybrid metal polymers [43–46]. The MVS
method is based on simultaneous processes of evaporation and condensation of metal and
organic ligand on reactor walls cooled with liquid nitrogen under vacuum conditions of
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10−4–10−6 Torr. To date, nanoparticles of gold, silver, copper, nickel, cobalt, zinc, and many
other metals have been obtained by the MVS method, “solvated” with various types of
solvents [47–50]. The advantages of this method for obtaining metal nanoparticles include:
the absence of synthesis by-products during the formation of metal nanoparticles; the
possibility of obtaining nanoparticles of various metals, including those with pronounced
antimicrobial activity and/or magnetic properties; the ease of modifying various types
of supports, including polymer matrices, in order to impart new functional properties to
them [48,51–53]. Nanocomposites based on natural polymers containing Ag nanoparticles
(Ag NPs) obtained by MVS showed high antibacterial activity [54,55]. The fundamental
possibility of using the MVS method to obtain medical supplies is shown in [56,57]. Unlike
most methods for obtaining nanoparticles, MVS is an environmentally friendly closed
cycle that can be effectively integrated into various technological processes for obtaining
biologically active metal-containing composites.

Collagen and materials based on it are considered as the most promising biomaterials
for clinical applications. The ease of modifying the surface of collagen with metal nanopar-
ticles obtained by the MVS method makes it possible to improve its physicochemical and
biological properties. In this work, for the first time, using the MVS method, biologically
active Ag-containing nanocomposites based on collagen were obtained in the form of gels
and porous materials—promising components for creating wound dressings.

2. Materials and Methods

Chemical reagents and media used in work: silver (purity 99.99%), acetone (Sigma-
Aldrich, St. Louis, MO, USA, ACS reagent, purity ≥ 99.5%), zeolites (4 Å), culture media
RPMI-1640 (Himedia, Mumbai, India), fetal bovine serum FBS (Himedia, India), 100×
antibiotic–antimycotic solution (Himedia, India), DMSO (Sigma, USA), EDTA (Sigma,
USA), crystalline trypsin (SamsonMed, Saint Petersburg, Russia), 3-(4,5-dimethylthiaxol-2-
yl)-2,5-diphenyltetrazolium bromide MTT (Himedia, India), as well as chemicals reagents
produced in the CIS countries. In the research, the following equipment and consum-
ables were used: Mindray MR-96A immunoassay analyzer (Mindray, Shenzhen, China),
Thermostat TS-1/80 SPU (JSC “Smolensk SKTB SPU”, Smolensk, Russia), water pu-
rification system “Prodion” 10VS-MA (JSC “Vital Development Corporation” Saint Pe-
tersburg, Russia), Tabletop centrifuge TDZ4-4WS (Changsha Weierkang Xiangying Cen-
trifuge Co., Ltd., Changsha, China), BIOBASE −60 ◦C −80 ◦C vacuum lyophilizer freeze
dryer machine BK-FD12PT (BIOBASE Group, Jinan, China), CO2-Incubator (Shel Lab,
Cornelius, OR, USA), Laminar flow cabinet BBS-V1800-XK (BIOBASE Group, Jinan, China),
Bante210 Benchtop pH Meter (Bante Instruments Co., Ltd., Shanghai, China), Yx280b
portable autoclave (WINCOM COMPANY LTD., Changsha, China), microscope Leica
DM IL LED (Leica Microsystems Inc., Wetzlar, Germany), microscope Zeiss Axiolab A1
(Carl Zeiss AG, Oberkochen, Germany), digital video camera SDPTOP, 50 cm2 culture
flasks and Petri dishes (Costar, Washington, DC, USA), 24-well and 96-well plates (Costar,
Washington, DC, USA).

2.1. Obtaining Collagen from Biological Raw Materials

Powdered collagen was obtained from cow tail tendons using both enzymatic and
acid extraction methods [58]. Trypsin was used as an enzyme. The tendons of the tails of
cows were cleaned from muscles, ligaments and skin, crushed to pieces 1–2 mm in size,
treated with 0.25% trypsin solution at 37 ◦C for 3 h. The resulting suspension was diluted
with distilled water at the rate of 1:100 and precipitated in a centrifuge at 3000 rpm for
10 min in order to remove non-collagen proteins. Next, the precipitate was subjected to
hydrolysis in a 0.1 N solution of acetic acid (1:100) for 48 h. The collagen solution was then
precipitated in a centrifuge at 3000 rpm for 10 min. The collagen precipitate was filtered
through a mesh material to remove large pieces, which were re-hydrolyzed. The collagen
was then dialyzed against water and lyophilized. To form porous materials, dialyzed
collagen was poured into special flasks and frozen at −30 ◦C. After that, the flasks were
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placed in a chilled freeze-drying chamber for lyophilization (pressure in the apparatus
13.3322–66.6610 N/m2). Lyophilization lasted an average of 17 h at a working temperature
of −70 ◦C.

2.2. Modification of Collagen by Silver Nanoparticles Obtained by Metal-Vapor Synthesis

MVS was carried out by co-condensation of vapors of metal and organic reagents in
a vacuum of 10−2 Pa on the walls of a 5 L quartz reactor cooled to −196 ◦C. The metal
was evaporated by resistive heating from a tantalum evaporator. The organic solvent
acetone was dried over zeolites and degassed by alternating freeze–thaw cycles. After
the completion of metal evaporation, the supply of the organic reagent was stopped. The
cooling was removed, the co-condensate was heated until melting. After the matrix was
defrosted, the organosol was removed from the reactor through a siphon system into
a prepared evacuated flask containing dialyzed collagen gel in water. During in situ
application, the mixture was stirred with a magnetic stirrer and the flask was filled with
argon. Next, the flask was disconnected from the siphon line and the resulting mixtures
were stirred for 60 min. At the end of the deposition process, the metal-containing matrix
was decanted from the organic solvent and dried in a vacuum (10−1 Pa) at 60 ◦C to constant
weight. After distillation in vacuo from the solvent gel, the residue was freeze-dried.

2.3. Obtaining Fibroblast Cell Cultures to Assess the Cytotoxicity and Biocompatibility of Collagen

Fibroblasts were obtained using the explant method proposed in [21]. Cells were
cultured in complete growth medium RPMI-1640 (Himedia, India) containing 10% FBS (Hi-
media, India) and 1% antibiotic–antimycotic solution (Himedia, India, where 10,000 U/mL
penicillin, 10,000 µg/mL streptomycin and 25 µg/mL amphotericin B) in a CO2 incuba-
tor (ShelLab, Cornelius, OR, USA) at +37 ◦C, 5% CO2. The medium was changed every
4 days. When the cell culture reached 80% confluency, the cells were reseeded (multiplicity
of sieving 1:3). For studies, stabilized cell cultures were used after 5 passages.

2.4. Determination of the Number of Living Cells on a Collagen Substrate by Staining with a Vital
Dye in the MTT Assay

Under sterile conditions, 10 mL of collagen gel was poured into 24-well plates and
the plates were left open for collagen polymerization in nitrogen vapor and under ultravi-
olet radiation for 10 min. A commercial preparation of collagen film NeuSkin-F (Eucare
Pharmaceuticals (P) Limited, India) was used as a reference. To do this, circles with a
diameter of 15 mm were cut out from NeuSkin-F films and placed in the wells of 24-well
plates. Stabilized fibroblast cells were removed from the bottom of culture flasks with
a trypsin-EDTA solution. The number of cells was counted and diluted with complete
growth medium RPMI-1640. Fibroblast cells were seeded on collagen substrates in 24-well
plates at the rate of 1 × 104 cells per well in 1 mL of complete medium and the plates were
left for 24, 48 and 72 h in a CO2 incubator.

After 24, 48 and 72 h, the medium was removed from the wells and 0.8 mL of incom-
plete medium, without FBS and antimycotic-antibiotic, and 0.2 mL of the MTT solution
were added to each well, having previously dissolved 5 mg of MTT (SIGMA, St. Louis, MO,
USA) in 1 mL sterile PBS solution (pH 7.2) and filtered. The plates were protected from
light and incubated at 37 ◦C for 4 h. After the incubation period, the wells were emptied
and 1 mL of the organic solvent dimethyl sulfoxide, DMSO (SIGMA, USA), was added to
each well. After 10 min, readings were taken on a microplate spectrophotometer (Mindray
MR-96A, China) at a wavelength of 596 nm.

Cell survival in the presence of the test samples was calculated by the formula: (OD of
experimental wells − OD of medium)/(OD of control wells − OD of medium) × 100%,
where OD is the optical density. Intact cells served as controls.

All data were presented as the mean ± standard deviation of three independent
triplicate experiments (3 plates × 3 wells per sample). The data were statistically processed
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using Student’s paired t-test. Mean values were considered statistically significant at
p < 0.05.

2.5. Scanning Electron Microscopy (SEM)

The morphology of the surface of the original and modified collagen matrixes was
studied by low-voltage scanning electron microscopy (LVSEM) on an FEI Scios microscope
(Thermo Fisher Scientific, Waltham, MA, USA) in the secondary and backscattered electron
mode with an accelerating voltage of less than 1 kV.

2.6. Thermogravimetric Analysis (TGA)

Thermogravimetric analysis was carried out using a Derivatograph-C device (MOM,
Mátészalka, Hungary) device at a heating rate of 10 ◦C/min in air up to 650 ◦C.

2.7. Powder X-ray Diffraction (PXRD)

Powder X-ray diffraction phase analysis was performed with a D8 Advance (Bruker
AXS, Karlsruhe, Germany) diffractometer in Bragg–Brentano focusing geometry using
CuKα radiation and an angular range of 5–90◦ with a step of 0.02◦ and scan rate of
0.5–2 deg/min. The samples were placed on flat holders. Diffraction pattern profiles were
fit using the TOPAS 5 program package (Bruker AXS, Karlsruhe, Germany).

2.8. Small-Angle X-ray Scattering (SAXS)

SAXS measurements were performed on a laboratory diffractometer (AMUR-K, Insti-
tute of Crystallography, Moscow, Russia) at a wavelength λ = 0.1542 nm in a Kratky-type
(infinitely long slit) geometry covered the range of momentum transfer 0.12 < s < 7.0 nm−1

(here, s = 4π sinθ/λ, where 2θ is the scattering angle). The scattering profiles were corrected
for the background scattering and primarily processed using the program PRIMUS [59]
of the software suit ATSAS [60]. The experimental SAXS data were normalized for the
intensity of the incident beam, and then a correction for the collimation distortion was
made in accordance with the standard procedure [61].

The processed experimental SAXS curves were used to compute the volume size dis-
tribution functions DV(R) of the scattering particles. Assuming the particles to be spherical,
an indirect transform program GNOM [62] was employed to solve the integral equation.

2.9. X-ray Photoelectron Spectroscopy (XPS)

The XPS analysis was performed using a Thermo Fisher Scientific Theta Probe spec-
trometer (ThermoFisher Sciebtific Ltd., East Grinstead, UK). For analysis, a monochromatic
Al Kα (1486.6 eV) X-ray source was used. The spectra were measured at room tempera-
ture at a pressure of ~5 × 10−10 mbar in the analytical chamber. The energy scale of the
spectrometer was calibrated to provide the following values for reference samples: Au
4f7/2–83.96 eV, Cu 2p3/2–932.62 eV, Ag 3d5/2–368.21 eV. Survey spectra were recorded at
constant pass energies of 300 eV, with step sizes of 1 eV, delay time 0.05 s, number of scans 5.
High-resolution spectra of appropriate core levels were recorded at constant pass energies
of 100 eV, with step sizes of 0.1 eV, delay time 0.1 s, number of scans 15 [63]. The samples
were mounted on a titanium sample holder with two-sided adhesive tape.

In the process of recording the spectra, the differential charging of the sample was
compensated using a low-energy electron beam. The charge of the sample was corrected
by reference to the C-C/C-H state identified in the C 1s spectrum (285.0 eV). After binding
to the charge, the Shirley-type background was subtracted from the high-resolution spectra
and the approximation by the Gaussian function or the sum of the Gaussian functions was
carried out. Quantitative analysis was carried out using the survey spectrum and elemental
sensitivity coefficients included in the software of the spectrometer.
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2.10. Antimicrobial Tests

The antimicrobial activity of the composites was measured by the disk diffusion
method. A sample of Ag—containing collagen 6 × 6 mm in size was used. The spec-
trum of antibacterial activity was studied using test cultures of strains of Gram-positive
bacteria—Bacillus subtilis ATCC 6633 and Gram-negative bacteria—Escherichia coli ATCC
25922. Antifungal activity was assessed using the Aspergillus test strain. Niger INA 760 from
the collection of cultures of the Institute of New Antibiotics, Gauze (Moscow, Russia). Bac-
teria and fungi were incubated at 37 ◦C within 24 h. Standard disks with antibiotics were
used as positive controls (ampicillin—10 µg/disk, amphotericin B—40 µg/disk, produced
by the Pasteur Institute (St. Petersburg, Russia)).

3. Results and Discussion

New materials based on collagen modified with nanoparticles of biologically active
metals may be promising for creating wound dressings. This is due to the fact that collagen
has a high biocompatibility and the ability to stimulate the growth and division of con-
nective tissue cells [64], and the introduction of silver nanoparticles imparts antibacterial
properties to the hybrid material.

The yield of the collagen obtained only from the tendons of the tail of cattle by the
method mentioned in Section 2.1 was 2.24%. However, in [64] the yield of the target product
from by-products of sheep slaughter was 12.5%–18.0% in terms of dry matter. The collagen
prepared in [65] cannot be of the same type, since the authors isolated collagen from bones,
skin, and tendons. This raw material contains, in addition to type I collagen, collagens of
other types that are not suitable for biomedical purposes. Collagen extracted from tendons
consists mainly of type I collagen and is more suitable for biomedical applications.

The assessment of the biocompatibility of the prepared collagen was carried out by
the in vitro method, by seeding secondary cultures of fibroblast cells on substrates from
this collagen. NeuSkin-F commercial collagen film (India) was used as a comparison drug
(reference drug). After 24, 48 and 72 h of incubation of fibroblast cells on substrates from the
obtained collagen and NeuSkin-F, fibroblast viability was assessed using the vital dye MTT.
Cells seeded in the wells of the plate without substrate served as a control and were taken
as 100% live cells. The experiment was set in 9 repetitions (3 plates × 3 wells per sample)
and the average value was derived (Table 1). As a result of the study, it was found that
the collagen preparation we received and NeuSkin-F comparisons are not cytotoxic and
biocompatible with fibroblasts. A slight proliferative activity of fibroblasts was observed
during prolonged (72 h) incubation of cells on the substrates under study. This shows
that collagen and NeuSkin-F are better substrates for fibroblast adhesion and growth than
culture plate surfaces.

Table 1. Evaluation of the biocompatibility of collagen and fibroblast cells.

Sample Number of Living Cells, %
24 h 48 h 72 h

Col 97.6 ± 0.3 106.2 ± 0.5 110.5 ± 0.4

NeuSkin-F 98.3 ± 0.2 108.1 ± 0.3 119.0 ± 0.6

For the first time, hybrid materials based on a biocompatible polymer matrix—collagen—and
Ag nanoparticles obtained by the MVS method using acetone as a dispersion medium were
prepared. The composition, structure and electronic state of the metal in the materials were
characterized by modern physicochemical methods.

SEM images of the surface morphology of the initial and modified collagen are shown
in Figures 1 and 2. Previously, this technique was used to study catalytically active systems
based on chitosan [66]. The wide collagen strands, including fibers up to 100 nm in
size, and forming a network of interpenetrating pores in a wide range from hundreds of
nanometers to approximately 20–30 µm, present the natural structure of initial collagen
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matrix. Modifying collagen matrix by silver nanoparticles synthesized by the MVS method
does not change the collagen microstructure: the strands and the individual fibers of
collagen are clearly visualized in the SEM image obtained in the secondary electron (SE)
mode (Figure 2a). In the same image obtained in the backscattered electron (BSE) mode Ag
NPs can be detected as the silver shows brighter contrast due to the higher molar weight
(Figure 2b). The even contrast in the BSE image indicates a uniform distribution of silver
nanoparticles on the surface of collagen, with the exception of small rare clusters up to
100 nm. SEM image of the individual fiber confirms the uniform distribution of Ag NPs
through the fiber (Figure 2b, inset). To estimate the size range of the Ag particles through
the collagen fibers several independent fibers with near 1000 particles on average were
taken into the account. Thus, the Ag NPs size varies from several nanometers to 35 nm
with an average size of 13.0 ± 3.5 nm.
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with corresponding histogram of NPs size distribution is presented as an inset.

Thermal behavior of the nanocomposite Col/Ag NPs was studied by thermogravimet-
ric analysis.

The weight loss of the studied samples in air proceeds in several stages (Figure 3).
At the first, ending in the region of 100 ◦C, the moisture sorbed from the air is removed.
The main processes of collagen decomposition proceed in the range of 250–400 ◦C; with
a further increase in temperature, the destructive processes slow down and continue at a
much lower rate, up to 700 ◦C [67].
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Figure 3. Thermogravimetric curves of Col (red) and Col/Ag NPs (blue).

A comparative analysis of the TGA parameters of pure collagen and Ag-containing
composite showed that the modification of collagen with metal nanoparticles has little
effect on the process of its thermal degradation.

The nanocomposites Col/Ag NPs were studied by the powder X-ray diffraction
method. The absence of pronounced reflexes in the diffractogram of collagen indicates
its amorphous nature. In this regard, all the observed peaks can be characteristic of
the fcc packing of metal nanoparticles (Figure 4). Peaks are observed at 2θ angles of
38.1◦ (111), 44.3◦ (002), 64.5◦ (022), 77.4◦ (311) and 81.5◦ (222). In the sample under con-
sideration, the silver phase is uniquely identified. Estimated by the Scherrer formula size
metal nanoparticles in the composition of composite materials Col/Ag NPs was 23 nm.
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Figure 4. PXRD pattern of the Col/Ag NPs composite (blue line) and its fit evidencing the presence
of Ag nanoparticles (red line).

Small-angle X-ray scattering was applied to study Col and Col/Ag NPs. The corre-
sponding scattering curves are shown in Figure 5a.

Experimental SAXS curves from Col and Col/Ag NPs were collected in the range of
momentum transfer 0.12 < s < 7.0 nm−1; however, due to strong experimental noise at
s > 2 nm−1, the region only up to 2 nm−1 was used for further analysis. As one can see from
Figure 5a pure collagen Col exhibits the low scattering even at very small angles, which is
characteristic of a nearly homogeneous medium. In such samples, there are practically no
structural inhomogeneities (pores or compactions) and, therefore, the calculation of size
distributions is meaningless in this case. The incorporation of the Ag nanoparticles into
collagen gels leads to a significant increase in the scattering intensity due to the higher
electron density of the metal compared to the gel.
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Despite the fact that the intensity of the scattering from the gel with the embedded
metal nanoparticles is much higher than the scattering from the initial gel and, thus, the
scattering from the latter could be neglected, for a more accurate determination of the
size distribution of the Ag nanoparticles, the scattering from the gel should be subtracted
from the total scattering. In this way, scattering from the metal nanoparticles only will be
calculated. The obtained difference scattering profile is shown in the inset of Figure 5a.
This curve was used for calculation of the volume size distribution function DV(R) of Ag
nanoparticles embedded in the Col (Figure 5b).

The gel-stabilized Ag nanoparticles exhibit a relatively broad monomodal size distri-
bution with radii up to 50 nm and the most popular radii being approximately 14–16 nm.
It should be noted that the fraction of the metal particles larger than 30 nm is relatively
small. Hence, we can conclude that the stabilization of the Ag nanoparticles by the Col is
quite effective.

The interaction of Ag NPs with the collagen surface can change the electronic structure
of both the metal and the material as a whole. Photoelectron spectroscopy is the leading
method for analyzing various physicochemical characteristics of nanostructured elements
on the metal surface.

Analysis of the survey spectra (Figure 6) allowed estimation of the relative concentra-
tions of elements on the surface of Col and Col/Ag NPs samples. The results are presented
in Table 2.
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Table 2. Concentrations of elements on the surface of Col and Col/Ag NPs samples (at. %), calculated
from the XPS spectra.

Sample C N O Ag

Col 52 15 32 –
Col/Ag NPs 74 9 17 0.1

Collagen is a repeating sequence of Gly-Pro-Hyp amino acids [68]. According to this,
the model C 1s spectrum of collagen should contain the states C-C/C-H, C-N-H, C-OH,
O-C=O, N-C=O [63]. The characteristics of the four states are usually used to describe such
systems [69,70]. This is due to the fact that the range of chemical shifts of the C-N-H, C-O-C,
C-OH, and O-C=O bonds overlaps to a large extent [63] and can be replaced by the total
peak, simplifying the model [70,71]. The chemical shift of the C=O/O-C-O/N-C=O bonds
is within 0.2 eV with respect to each other, which in the case of massive non-conductive
samples leads to overlapping or merging of the peaks due to the presence of differential
charging, which cannot be fully compensated. Figure 7 presents the C 1s Col and Col/Ag
NPs spectra as the sum of several Gaussian profiles using the reference chemical shifts for
the respective chemical groups [63]. Table S1 (see Supplementary Materials) presents the
characteristics of the peaks.
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of all Gaussian components.

Comparative analysis of C 1s spectrum showed that the surface composition of Col
and Col/Ag NPs significantly differs. This may be caused by a change in the chemical
composition of the collagen surface after its modification with Ag NPs/acetone organosol.

Figure 8 shows the N 1s spectrum of Col and Col/Ag NPs samples, and Table S1 shows
peak characteristics. The typical N 1s spectrum of collagen in the literature is described by
the three principal states C-NH2, N-C=O, and C-NH3

+, whose binding energies are 399.6,
400.5 and 401 eV, respectively [63,72]. It should be noted that the content of the amide
groups decreased, which, as well as the changes in the C 1s spectrum, may indicate damage
to the peptide chain.
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In Figure 9a, the O-C=O group is the sum of two peaks of equal intensity C-O*-C=O
and C-O-C=O* with a small difference in energy values (less than 1.38 eV), which can be
replaced by a single total peak if the differential charge is negligible [63]. This may be a sign
of the “balancing” of the two oxygen species and the formation of the tertiary structure
of the protein. For the sample with silver, there seems to be a decrease in the differential
charge. This is manifested by a narrowing of the peaks and an increase in the energy
difference between the peaks of the O-C=O grouping to typical values of 1.4 eV, which
makes it possible to fit/leave both peaks in the spectrum decomposition instead of using
the summed peak. Analysis of the data presented in Figure 9b suggests that modification
of collagen by silver nanoparticles disrupts the protein structure.
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Parameters of the C 1s, N 1s and O 1s spectrum are presented in Table S1.
Figure 10 shows the spectrum of the Ag 3d nanocomposite Col/Ag NPs, and Table 3

shows the characteristics of the peaks. The spectrum of the Ag 3d sample registers a
characteristic doublet with a spin splitting of 6 eV. For the Ag 3d5/2 peak, silver Ag, Ag2O,
and AgO states with average binding energies of 368.2, 367.8, and 367.4 eV, respectively, are
reported in the literature [63,68,73–77]. The low concentration of Ag makes it difficult to
determine the chemical state of the metal using the modified Auger parameter. Analysis of
the results obtained allows us to attribute a binding energy of 368.57 eV to the metallic state
of silver. The difference between the binding energy of the Ag 3d5/2 peak of the reference
sample used in the spectrometer calibration and the Col/Ag NPs sample can be due to the
dimensional effect due to the nanometer parameters of silver particles.
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Antimicrobial activity of freeze-dried nanocomposite Col/Ag NPs were determined
by the disk diffusion method. The spectrum of antibacterial activity was studied using test
cultures of strains of Gram-positive and Gram-negative bacteria, and antifungal activity
was also tested. Standard disks with antibiotics were used as controls (Figure S1, see
Supplementary Materials). The results are presented in Table 4.

Table 4. Antimicrobial activity of Col/Ag NPs.

Sample Zone of Inhibition, mm
B. subtilis TCC 6633 E. coli ATCC 25922 A. niger INA 00760

Col/Ag NPs 6.5 ± 0.4 11.3 ± 0.7 6.5 ± 0.4
ampicillin 30.7 ± 1.0 27.0 ± 1.7 * nt
amphotericin B * nt * nt 15.3 ± 0.3

* nt—non-tested.

Table 4 shows the hybrid material Col/Ag NPs inhibits the growth of the present fun-
gal and bacterial cells, but is weaker than the antifungal amphotericin B and the antibiotic
ampicillin. Nevertheless, the effect of the obtained new Col/Ag NPs in further studies will
need to be tested on experimental purulent wounds, especially on wounds contaminated
with antibiotic-resistant microorganisms.

4. Conclusions

New hybrid materials with antibacterial activity, based on collagen, modified with
a silver-containing organosol were obtained using metal-vapor synthesis. SEM images
showed that collagen contributes to the effective stabilization of Ag nanoparticles with
an average size of 13.0 ± 3.5 nm. A comparative analysis of the TGA parameters of pure
collagen and Ag-containing composite showed that the modification of collagen with metal
nanoparticles has little effect on the process of its thermal degradation. XPS results showed
that the collagen/Ag NPs composite contained Ag0 states. Collagen-based nanocomposite
with Ag nanoparticles exhibited antimicrobial activity against Bacillus subtilis,
Escherichia coli bacteria and Aspergillus niger fungi. The obtained material can be recom-
mended for further research as a wound coating for the treatment of purulent wounds,
fungal infections, etc.

The main difference in the prepared hybrid material is that the Col/Ag NP was
obtained on the basis of type I collagen, which is the most suitable for medical purposes,
and silver nanoparticles synthesized by the MVS method. MVS is a “green chemistry”
method and makes it possible to obtain metal nanoparticles without impurities and by-
products, which is also important for obtaining materials for biomedical purposes.

The new approach to the synthesis of hybrid metal–polymer systems presented
in the work can make a significant contribution to the creation of a new generation of
wound coatings.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/coatings13081315/s1, Figure S1: Antimicrobial activity of nanocom-
posite Col/Ag NPs. a: B. subtilis, 1—Col/Ag NPs and 2—ampicillin; b: E. coli, 1—Col/Ag NPs and
2—ampicillin; c: A. niger, 1—Col/Ag NPs and 2—amphotericin B. Table S1: Parameters of compo-
nents in the photoelectron spectra of the collagen and its nanocomposite with silver nanoparticles:
Eb—binding energy, W—peak width and Irel—relative intensity.
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