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Abstract: The performance of poly(3-hexylthiophene) (P3HT): phenyl-C61-butyric acid methyl ester
(PCBM) organic photovoltaic (OPV) devices was found to be strongly influenced by environmental
during preparation, thermal annealing conditions, and the material blend composition. We optimized
laboratory fabricated devices for these variables. Humidity during the fabrication process can cause
electrode oxidation and photo-oxidation in the active layer of the OPV. Thermal annealing of the
device structure modifies the morphology of the active layer, resulting in changes in material domain
sizes and percolation pathways which can enhance the performance of devices. Thermal annealing
of the blended organic materials in the active layer also leads to the growth of crystalline for P3HT
domains due to a more arrangement packing of chains in the polymer. Poly(3,4-ethylene dioxythio-
phene):poly(styrene sulfonate) (PEDOT:PSS) acts as a hole transport layer in these P3HT:PCBM
devices. Two commercially materials of PEDOT:PSS were utilizing in the optimization of the OPV in
this research; high conductivity PEDOT:PSS-PH1000 and PEDOT:PSS-Al4083, which is specifically
designed for OPV interfaces. It was demonstrated that OPVs were prepared with PEDOT:PSS-PH1000
have a less than the average performance of PEDOT:PSS-Al4083. The power conversion efficiency
(PCE) decreased clearly with a reducing in masking area devices from 5 mm2 to 3.8 mm2 for OPVs
based on PH1000 almost absolutely due to the reduced short circuit current (Jsc). This work provides
a roadmap to understanding P3HT:PCBM OPV performance and outlines the preparation issues
which need to be resolved for efficient device fabrication

Keywords: OPV; P3HT:PCBM; PEDOT:PSS; organic heterojunction

1. Introduction

Over the past two decades, OPV has experienced a considerable increase in interest as
a potential energy source due to their semitransparent, flexible, and light-weight properties.
In addition to their light harvesting properties, these devices can be fabricated using low-
cost manufacturing processes and are suitable for the use of simple laboratory-environment
deposition techniques, making research in this area readily accessible [1–4]. However,
OPV devices traditionally exhibit lower efficiencies than their silicon counterparts and a
significant challenge for the field is how to improve the PCE. In OPV research the most
widely studied active layer materials of all of the different possible combinations of organic
materials is still P3HT and PCBM due to the low cost and commercial availability of these
two components [5]. However, using much more synthetically complex (and therefore
expensive) materials, OPV PCEs have now exceeded 18% for OPV devices that included
polymer materials as both donors and acceptors [6].

During the lifetime operation of an OPV system, ambient environmental stress such as
heat, cold, sunlight, moisture, and mechanical loads can be exposed to and affect the mod-
ule. These parameters can result in the breakdown of the device structure and a gradual
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reduction in the performance of the devices [7]. Consequently, environmental degradation
of OPV layers is an important parameter influencing device efficiency. Oxidization and
degradation factors for OPVs often are the result of moisture present during laboratory
preparation and, thus, water proves a major stress factor for devices. Moisture ingress into
devices can result in device layer delamination and cause loss of passivation with degrading
of anti-reflection coatings. Furthermore, the corrosion of metal elements in OPV modules
appears on devices operated under outdoor conditions [8]. Glen et al. demonstrated the
important role humidity contributed to the degradation of OPV devices incorporating
Ca/Al and PEDOT:PSS/ITO electrodes, with devices exposed to humid air degrading
more rapidly than those in dry air [9]. It has been established that devices incorporating
a PEDOT:PSS transport layer are more vulnerable to the influence of moisture due to its
hygroscopic nature [10]. Voroshazi et al. demonstrated that moisture leads to significant
degradation in OPVs containing a PEDOT:PSS layer by studying OPV devices based on
P3HT:PCBM incorporating either MoO3 or PEDOT:PSS as a hole transport layer [10,11].
Creation of more stable OPV modules can be achieved by avoiding the ingress of mois-
ture [12–14]. Indeed, in order to achieve stable OPV devices, the device must be isolated
from water and oxygen in the ambient atmosphere [15]. Even when barrier films are
used, oxygen and water diffusion occurs through pinholes in metal electrodes and at the
module’s edges and boundaries. This ingress leads to modification of the inner surface of
the OPV electrodes due to oxidative chemical reactions with them [13,16].

Another key environmental stress parameter for OPV performance is ambient temper-
ature, which can have a significant effect on the electric performance of an OPV system.
Generally, the thermal treatment of an OPV increases reaction rates in the component
materials, accelerates permeation, and induces mechanical stress on the device relating
to dissimilarity of the thermal expansion coefficients of the module parts [17,18]. This
treatment can also influence module degradation mechanisms associated with chemical
diffusion and reactions. Improved device performance can be obtained through performing
various post-fabrication treatments on the OPV module, included the application of thermal
annealing [19,20]. However, preventing subsequent changes due to ambient heat or cold
is a significant problem. Thermal and solvent vapor annealing is recognized as being of
critical importance for optimization of active layer morphology in P3HT:PCBM blends.
Annealing processes have been optimized to take advantage of the phase separation of
P3HT and PCBM causing the formation of nano-size material domains. These domains are
comparable with the length of exciton diffusion in a conjugated polymer [21], maximizing
the probability of charge separation. Thermal annealing allows the polymer chains to
move into a more crystalline configuration which expels the fullerene directly affecting
device properties [22]. In addition, the side chains on the polymer increase device and
material stability and affect the solubility of films, allowing for multilayer processing for
OPV fabrication [23,24]. Thus, changes to the chemical structure of materials are associated
with dramatic differences in morphology and efficiency of devices [25–27].

PEDOT:PSS has often been utilized as a hole transport layer in polymer devices due to
its a high optical transparency to visible light [28,29]. Over the last two decades, there have
been many studies of different PEDOT:PSS formulations seeking to modify its electronic
properties such us work function and electrical conductivity, as well as physical properties
(such as wetting properties) [30–32]. Consequently, PEDOT:PSS formulations result in films
which exhibit a wide range of conductivities from 10−4 to 103 S/cm−1, achieved through
synthetic conditions, post-synthesis treatments and doping additives [33]. For PEDOT:PSS,
the material work function is high at ~5–5.2 eV which matches well with the highest
occupied molecular orbital (HOMO) level of polymer donors in the absorption layer [34].
PEDOT:PSS is almost transparent in the visible light range, exhibiting a transmission of
over 90% at 550 nm for a dry film thickness of 100 nm [33]. The π-conjugated structure
of the conducting polymer back-bone results in weakly bound electrons [35,36], but the
specific conductivity is a result of orbital overlap and delocalization which are limited by
the disorder of structure material [36].
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PEDOT:PSS (PH1000) is a highly conductive polymer which can be used not only as an
hole transport layer but also applied as the transparent electrode in OPV devices due to its
excellent flexibility and high transmittance [37–40]. Its highly tunable work function allows
excellent alignment of energy levels with active layer polymer blends. The first selected as
an inverted conductive polymer in OPV was PEDOT:PSS (Al4083) polymer due to its low
temperature process-ability and tunable conductivity [41,42]. Its low work function was
shown that limited the value of open-circuit voltage (Voc) in the inverted device [42].

In this report we focus on the impact of fabrication conditions on efficiency s in
P3HT:PCBM devices. The discussion outlines the steps which should be considered in the
fabrication of P3HT:PCBM OPV to optimize efficiency and prevent degradation.

2. Materials and Methods

Thin layers of PEDOT:PSS (300 nm) was deposited as an aqueous dispersions of
low conductivity poly(3,4-ethylene dioxythiophene-poly(styrene sulfonate) (PVP AI4083
(purchased from Heraeus, Hanau, Germany)) and high conductivity of aqueous solution
Clevios PH1000 purchased from Heraeus, Hanau, Germany, onto glass substrates, with
indium tin oxide (ITO) electrodes, via spin-coated at 4000 rpm for 1 min. The films
were dried at 140 ◦C for 30 min that is removing excess water. The glass/PEDOT:PSS
(Al4083 or PH1000) substrates were then directly moved onto a laboratory benchtop under
ambient conditions or into a nitrogen (N2) atmosphere (glovebox) for deposition of the
photoactive layer. Both the poly(3-hexylthiophene-2,5-diyl (P3HT)) and (phenyl-C61-
butyric acid methyl ester (PCBM) were synthesised inhouse at the University of Newcastle,
Callaghan, Australia within the Centre for Organic Electronics [43]. The P3HT:PCBM
blends were prepared as a solution via dissolving the materials in 1057 µL of anhydrous
1,2-dichlorobenzene at a concentration ratio of 1:0.8 (20 mg:16 mg total mass) [44]. The
solution of polymer-fullerene was sonicated at room temperature for 1 h. For completing
dissolution, it was following via stirred overnight. The P3H:PCBM as active layers had spin
coating onto substrates of PEDOT:PSS at 900 rpm for 1 min (final thickness ~200 nm) under
the two different environmental conditions. The films were dried or pre-annealing (before
cathode deposition) under a N2 atmosphere on a hot plate at 60 ◦C for 4 min for drying and
140 ◦C for 4 min for pre-annealing. A Calcium (Ca) (~30 nm) was deposited as an interfacial
layer onto the active layer by thermal evaporation using Angstrom Engineering evaporator
under vacuum (Angstrom Engineering Inc., Cambridge, ON, Canada) to 10–7 bar pressure.
This deposition was followed by thermal evaporation of a metal cathode of aluminum
(Al) (120 nm under the same condition. Figure 1 illustrates the layered structure of the
conventional architecture devices fabricated, which was allowed pathways for charge
carriers to be transported towards both the anode and cathode electrodes for collection.
The fabricated OPVs were transferred into a N2 glovebox for the photo-response current
density-voltage (J-V) measurement via a Keithley 2400 m. The illumination of OPVs was
under an AM1.5 Newport class A solar simulator (Newport Corporation, Irvine, CA, USA)
calibrated by a silicon (Si) photodiode.
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3. Results and Discussion

Degradation mechanisms which affect the stability and performance of OPV devices
are triggered through different environmental conditions, one of the most critical of which is
oxidation of the electrodes by humidity and oxidation in air. In addition, P3HT and PCBM
in the active layer is known to be influenced by photo-oxidation under these conditions [45].
The concentration of water and oxygen molecules within the device structure increases
in encapsulation OPVs via diffused through barrier and seals film and this increase leads
directed to underlie degraded pathway over time [46]. Consequently, OPV stability can
be upgraded via removing water and oxygen from the preparation atmosphere. Diffusion
of water and oxygen atoms through the OPV layers leads to the formation of corrosion
at the electrode interfaces and creates defects in the active layer [47]. In this work, the
active layers (P3HT:PCBM) were fabricated under an ambient atmosphere or within a
glove box in a clean room under N2 atmosphere. Table 1 and Figure 2 show the efficiencies
of devices prepared under these two conditions and clearly demonstrate the effect of
the fabrication environment on the PCE of OPVs, as determined via the current-voltage
characteristic. Devices prepared in the wet laboratory are consistently of lower efficiency
due to oxidative degradation (2.1% vs. 2.5% average PCE). These results highlight the
significant of encapsulated devices in increasing the lifetime and stability of OPV devices.

Table 1. Illustrates OPVs characterization fabricated under two conditions.

Condition PCE (%) JSC
(mA/cm2)

VOC
(V) FF Cell Area

(mm2)

Ambient Atmosphere (Best Device) 2.3 −8.309 0.56 0.49 5
Ambient Atmosphere (Average Data) 2.1 −7.7 0.56 0.5 5
Glove Box (Best Device) 2.88 −9.068 0.57 0.55 5
Glove Box (Average Data) 2.5 −8.2 0.56 0.5 5
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Figure 2. The efficiency of OPVs fabricated under the different atmosphere conditions (Wet laboratory:
moist ambient conditions; clean room: under N2 in a glovebox). The red and blue lines present the
average value of efficiency (2.1% and 2.5%).

The preparation of OPV devices through a N2 atmosphere inside an inert atmosphere
glove-box minimizes the undesirable oxidative degradation of the devices. In addition
to an overall increase in device efficiency, fill factor (FF) also increases when oxidative
degradation is reduced as shown in Figure 3a. The fill factor is largely associated with
resistances within the device, particularly at the electrode interfaces, and as such is highly
influenced by oxidative degradation of these electrodes [48]. In addition, the exposition
of P3HT polymer to oxygen caused a deterioration of polymer properties and damage of
its structure [49]. These two factors detrimentally change the shunt and series resistances
within the device, lowering FF and thus overall device performance. For devices prepared
in the wet laboratory, the humidity could cause a degradation of the P3HT and PEDOT:PSS
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and can also lead to a shorter lifetime of the OPV device [47]. Figure 3a shows a higher
and more consistent fill factor within the cleanroom synthesized devices comparison to
the environment of wet laboratory (0.57 vs. 0.51), highlighting these issues. For the future
success of solar energy development of organic devices, these degradation and stability
issues must be addressed [45]. The influence of degradation in the active layer was shown
for the decreasing values of Jsc and Voc in the moist ambient condition as illustrate in
Figure 3b,c. There was investigation released that exposure P3HT:PCBM blend to O2
related to loss value in the dark results of Jsc while all factors of OPVs dropped down in
the light. It is caused via increasing number of O2 generated trap states in the polymer
active layer [50]. There were many experimental works demonstrating the contributed
mechanism of P3HT:PCBM photo-oxide degradation in bulk OPV [51]. The previous study
had a clear view that O2 effected on OPV with gas permeable electrode [52]. Another
research work was released that PEDOT:PSS contributed for accelerating oxidation to
format that Al oxide in the interface layer between the active layer and Al electrode [53]. It
concluded in-contact air to devices in the wet lab (i.e., O2 atoms reacted to polymer layers).
This created different species of oxidized polymer that break polymer chains causing failure
in devices performance [54].
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Figure 3. (a) the FF of OPV devices fabricated in under the different atmosphere conditions (Wet
laboratory: moist ambient conditions, clean room: under N2 in a glovebox). The FF of OPV devices
shows in two atmosphere conditions. The red and blue line are present the average value of FF (0.51
and 0.57), (b) J-V curve of OPV fabricated in under moist ambient condition and (c) in clean room:
under N2 in a glovebox.

To enhance the device performance, the morphology of active polymer layers was mod-
ified by thermal annealing. Thermal annealing has proven to be a remarkable performance-
enhancing step when utilizing polymer materials as active layers in OPVs [55]. For ex-
ample, OPV blends of P3HT:PCBM which are thermal annealed at 80 ◦C for 5 min have
been shown to form crystalline domains of P3HT due to more ordered packing of the
polymer chains [56]. In the crystalline domains of P3HT, improved photoconductivity and
enhanced hole mobility (which increased from 0.0056 cm2/Vs for the non-annealed sample
to 0.044 cm2/Vs for the annealed sample) was observed as a result of this morphological
change [56]. Thermal annealing is believed to contribute to enhancing the Voc, Jsc, and FF in
the polymer blend with better charge transport properties for the annealed devices. Com-
paring to a reference device, the efficiency of OPV devices have improved by up to 3-4-fold
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by thermal annealing at 55 ◦C for 30 min for the P3HT:fullerene system [57]. Overall, the
PCE of P3HT:PCBM devices are shown to increase with higher annealing temperatures
after the thermal evaporation of OPV electrodes, with PCE improving from 0.4% PCE
in a standard device to 2.5% in the annealed device [57]. The improving of the size and
modification of domains for donor and acceptor by the thermal annealing also usually
leads to enhancements of exciton dissociation, charge separation and charge extraction [55].
For better performance and morphology of P3HT:PCBM devices, optimization of thermal
annealing has been significantly influential in the fabrication of efficient OPVs. Studies
show that the polymer P3HT changes orientation with the main chain backbones aligning
parallel and the side chains orientating themselves perpendicular to the substrate. The
PCBM diffusion also forms crystallites of PCBM from the mixed polymer film [58]. In
this study we have investigated two annealing conditions prior to electrode deposition;
a drying step at 60 ◦C for 4 min, and an annealing step at 140 ◦C for 4 min Table 2 and
Figure 4 show PCEs for devices treated with both thermal annealing conditions studied.
This data clearly shows that annealing at 140 ◦C for 4 min results in a 60% improvement
in PCE, as compared to the 60 ◦C for 4 min drying conditions. Since the glass transition
temperature for P3HT:PCBM increases with PCBM fraction from 12.1 ◦C for pure P3HT to
131.2 ◦C for pure PCBM, this result reflects the increased mobility of the blend components,
and thus the greater degree of crystallization, present when the film is annealed at the
higher temperature [59].

Table 2. Illustrates OPVs characterizations were treated with both thermal annealing conditions.

Condition PCE (%) JSC
(mA/cm2)

VOC
(V) FF Cell Area

(mm2)

Dried Device (Best Device) 1.87 −6.304 0.6 0.49 5
Dried Device (Average Data) 1.6 −5.3 0.59 0.5 5
Annealed Device (Best Device) 2.75 −8.407 0.56 0.57 5
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Another advantage of thermal annealing is the decreasing of moisture within OPVs,
ultimately preventing active layer oxidation, with higher temperatures increasing water
evaporation from the polymer structure [60,61]. Generally, P3HT:PCBM device performance
is improved by thermal annealing if this step is done either before or after the deposition of
Al/Ca electrode [19]. In this study we have annealed the P3HT:PCBM active layer stacks
(140 ◦C for 4 min) both prior to and after deposition of the Al/Ca electrodes. Table 3
and Figure 5 show the PCEs and FF for devices annealed prior to and after electrode
deposition. This plot shows clear enhancement of the device which happens when thermal
annealing was executed before the deposition of electrode, as comparison to after. In
Figure 5a, the PCEs are ~55% higher for OPVs annealed before Al electrode deposition,
whilst Figure 5b shows that these same devices exhibited a uniformly higher FF). There
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results support the hypothesis that annealing prior to electrode deposition facilitates the
release of water from the device, whilst annealing post electrode deposition results in water
being trapped within the device architecture, resulting in enhanced oxidative degradation
of the device and reduced performance. In accordance with these results, optimal device
fabrication conditions for annealing of devices was chosen to be 140 ◦C for 4 min, prior to
electrode deposition.

Table 3. Illustrates OPVs characterizations were annealed prior to and after electrode deposition.

Condition PCE (%) JSC
(mA/cm2)

VOC
(V) FF Cell Area

(mm2)

Annealed before Al (Best Device) 2.75 −8.407 0.56 0.57 5
Annealed before Al (Average Data) 2.5 −7.8 0.56 0.6 5
Annealed after Al (Best Device) 1.85 −6.163 0.59 0.5 5
Annealed after Al (Average Data) 1.6 −5.2 0.6 0.5 5
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Al/Ca electrodes deposition. The red and blue dashed lines represent the average value of PCE (2.5%
and 1.61%) and FF (0.56 and 0.51).

Finally, the importance of the PEDOT:PSS hole transport interlayer was probed by
comparing the performance of devices fabricated with a PEDOT:PSS designed for OPV
applications (PEDOT:PSS-Al4083) and a high conductivity PEDOT:PSS (Clevios PH100).
PEDOT:PSS was applied to the device structure as a solution of polymer electrolyte that
contains an excess of positive charge, i.e., the PEDOT is a p-doped material. The location
of negative matching charge is in the PSS, which ensures overall the neutral of charge.
The PSS also acts as a polymer surfactant which effectively disperses and stabilises the
PEDOT in water and other solvents. In large scale printing applications, it has been
demonstrated that PEDOT can be a very successful hole-transport layer for OPV [62]. As
such, in electrode applications, it was widely utilized as a buffer layer anode in polymer
solar cells electrodes [63,64]. The aqueous dispersion of PEDOT:PSS has a high optical
transmission in the region of visible light, which is as one of its most desirable polymer OPV



Coatings 2023, 13, 1293 8 of 12

properties. The work function values of PEDOT:PSS have been established to be between
4.8 and 5.2 eV, which allows the formation of an ohmic contact with donor polymers [65],
avoiding the formation of energy barriers at the OPV ITO interface. A definite improvement
of performance parameters for all P3HT:PCBM conventional solar cells was shown with a
PEDOT:PSS as an interlayer at the ITO/active layer interface [66].

Table 4 shows that OPV devices prepared with PEDOT:PSS-PH1000 had a higher
average of performance than PEDOT:PSS-Al4083 with an active area of 5 mm2. Decreasing
the masked device area from 5 to 3.8 mm2 for OPVs based on PH1000 resulted in a marked
reduction of the PCE almost exclusively due to JSC. This change in device efficiency is a
reflection of the higher conductivity of the PEDOT:PSS, which can allow cross-talk between
devices, artificially increasing JSC, and thus device performance, by accessing charges
generated outside of the direct illumination area in adjacent devices [67,68]. By comparison
OPVs based on Al4083 show more reasonable PCE values when the device size is changed
due to the lower conductivity of the interlayer. Moreover, a more stable dark current
plot is observed with PEDOT:PSS-Al4083 comparison with the condition of PH1000 (see
Figure 6a,b). It is likely that the higher conductivity PEDOT:PSS leads to a leaking current
created under dark conditions that is contributing more sheet resistance to the substrate of
OPV (see Figure 6b). Another reason for this change could be linked to a worse mismatch
of the interface between the interface and OPV active layer [69,70] due to the reduced
uniformity of PEDOT:PSS-PH1000. These results demonstrate that Al4083 is the best type
of PEDOT:PSS for using in the fabrication of P3HT:PCBM OPVs.

Table 4. Illustrates the characterization of OPVs utilizing two types of PEDOT:PSS in the fabrication.

PEDOT:PSS Type PCE (%) JSC
(mA/cm2)

VOC
(V) FF Cell Area

(mm2)

PEDOT:PSS-PH1000 3.14 −12.36 0.55 0.46 5
PEDOT:PSS-PH1000 2.76 −9.3 0.54 0.55 3.8
PEDOT:PSS-Al 4083 3.06 −8.38 0.55 0.66 5
PEDOT:PSS-Al 4083 3.04 −7.92 0.55 0.7 3.8
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4. Conclusions

In this article we have highlighted some of the significant challenges of OPV fabrication.
Mastering these challenges can raise the performance of devices, particularly with regards
to device stability and efficiency. We have shown that it can be possible to improve
PCE devices through using one (or more) of these approaches. In particular, controlling
environmental conditions during fabrication can dramatically increase the stability of OPV
devices. A clear lesion is the importance of capsulation of the device after preparation. The
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function of thermal annealing of devices plays an important role in device morphology
and performance. The demonstration of increasing values for FF and PCE was achieved by
optimizing the thermal annealing of OPVs. Furthermore we have shown that PEDOT:PSS-
Al4083 was the most suitable choice as a hole transport interlayer for high performance
devices after optimization. These findings should be taken into account to achieve the
fabrication of efficient, stable P3HT:PCBM OPV devices.
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