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Abstract: Cu–Cr–Zr alloys reinforced in situ with TiCx nanoparticles were prepared via combustion
synthesis and electromagnetic stirring casting. The microstructure of TiCx/Cu-Cr-Zr composites
with various contents was analyzed. The microhardness and Brinell hardness of the composites
were determined; the average volumetric abrasive wear rate and worn surface of the composites
were investigated; and the electrical, thermal conductivity and thermal expansion coefficients of the
materials were discussed. The results indicated that the addition of TiCx particles transformed the
Cu–Cr–Zr matrix alloy microstructure from a dendritic to an equiaxed crystal, and the grain size was
significantly refined as the amount added was increased. The composites with high TiCx content
possessed higher hardness and abrasive wear resistance. The addition of TiCx particles reduced the
electrical and thermal conductivity and thermal expansion coefficients of the materials.

Keywords: TiCx/Cu; in situ nano-TiCx; abrasive wear resistance; physical properties

1. Introduction

With the rapid development of the automotive, electronics, and machinery manu-
facturing industries [1–3], higher performance requirements have been put forward for
Cu; that is, to ensure that Cu has good electrical and thermal conductivity on the basis of
high strength, high wear resistance, especially with good high-temperature mechanical
properties, and high temperature resistance to melt corrosion [4–6]. Adding alloying ele-
ments to a metal enables the physical and mechanical characteristics of the material to be
improved, which expands the range of applications for metal materials [7,8]. For example,
the electrode materials used in spot welding robots in passenger car manufacturing are Cu-
based alloys, such as Cu–Cr–Zr, Cu–Cr and Cu–Zr, which have good electrical and thermal
conductivities [9,10]. However, Cu alloys present many shortcomings in terms of strength
and wear resistance, especially as electrode materials, due to the harsh working conditions
and poor oxidation resistance, low strength and wear resistance, softening and deformation
at temperatures above 500 ◦C, and melt corrosion problems, which result in large contact
resistance, rise in conductive temperature, and serious loss of the electrode [11,12]. Existing
spot welding electrodes have a very short service life of around only 500 cycles. Therefore,
it is imperative to obtain a Cu alloy material with high strength, good wear resistance, and
good thermal and electrical conductivity simultaneously [13,14].

It is known that the strength and wear resistance of composites can be effectively
improved by incorporating nano-sized particles into the metal matrix [15]. Furthermore,
ceramic particle morphology significantly impacts the mechanical and physical properties
of the materials [16–18]. Cubic TiCx particles added in situ can enhance both electrical
conductivity and the compression strength and yield strength of the materials. Neverthe-
less, the concentrated stresses and shear effects at the sharp corners of cubic TiCx particles
substantially reduce the fracture strain of the composite materials. Compared with cubic
TiCx, the addition of spherical TiCx particles enhances the strength of the material and
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avoids the reduction in fracture strain caused by the sharp corners of cubic TiCx. Combus-
tion synthesis is usually used to prepare spherical TiCx nanoparticle-reinforced Cu matrix
composites with regular morphology and uniform size [19–21]. However, low-content
TiCx particle-reinforced Cu matrix composites cannot be prepared by combustion synthesis
owing to the limitations of combustion synthesis thermodynamic conditions [22,23]. Exces-
sive TiCx content would substantially reduce electrical and thermal conductivity as well as
the plasticity of the Cu matrix, making Cu worthless for its applications. Therefore, there
is an urgent needed to develop a new method for manufacturing Cu matrix composites
strengthened with a low content of TiCx particles. The application of casting methods
makes it possible to add small amounts of reinforcing phases and alloying elements into the
melt [24–26]. Therefore, low-content, spherical TiCx nanoparticle in situ-strengthened Cu–
Cr–Zr-based composites can be fabricated organically via the combination of combustion
synthesis method with stir casting.

In this paper, TiCx/Cu master alloys with a reinforcing particle size of about 100 nm
and spherical particle shape were prepared by combustion synthesis; the TiCx/Cu master
alloys were then added and dispersed into the Cu–Cr–Zr melt using electromagnetic
stirring casting to fabricate low-content TiCx/Cu–Cr–Zr composites. The experiments
focused on the impact on microstructure, abrasive wear resistance, electrical and thermal
conductivity, and thermal expansion coefficients of the composites with various contents of
TiCx nanoparticles. The mechanism responsible for the effect of the in situ incorporation of
spherical TiCx nanoparticles on the variation of microstructure, abrasive wear resistance,
and the above-mentioned physical properties of the composites was revealed. A new
method of preparing TiCx/Cu–Cr–Zr composites is presented in this paper. Furthermore,
the results will provide the experimental foundation and theoretical guidance for further
investigation of both the microstructure and properties of TiCx ceramic particle-reinforced
Cu-based alloys.

2. Materials and Methods

Cu powders with an average size of 45 µm, Ti powders with an average size of
25 µm, and CNTs with a length of 15–80 µm and a diameter of 10–20 nm were used to
fabricate TiCx/Cu master alloys by the combustion synthesis method. The TiCx/Cu–Cr–
Zr composites were manufactured via the method of combustion synthesis assisted by
electromagnetic stirring casting; details of the process flow are shown in Figure 1. The
experimental powder was configured with a CNT-Ti molar ratio of 1.0 and a Cu content of
70 vol.%. After applying the ball mill to mix the configured powder, the resulting mixed
powder was cold-pressed at 100 MPa into a cylindrical compact measuring 30 mm in
diameter and 30 mm in height. The resulting compact was placed in graphite mold in a
homemade vacuum furnace, which was evacuated to below 100 Pa and heated. According
to the vacuum gauge indication, heating was stopped after the combustion synthesis
reaction, which resulted in the TiCx/Cu master alloy. Manufacturers of Ti, Cu, CNTs, and
Cu–Cr–Zr alloy are shown in Table 1. The chemical composition of the Cu–Cr–Zr alloy
is illustrated in Table 2. The Cu–Cr–Zr alloy was heated to a molten state in the graphite
crucible of an electromagnetic induction furnace for incorporation of the TiCx/Cu master
alloy into the molten state Cu–Cr–Zr. During electromagnetic stirring, mechanical stirring
was used as an aid for dispersion of the TiCx/Cu master alloy. After the master alloy
was completely dispersed, it was held at this temperature for 3 min and then cast into the
prepared mold. Successful TiCx/Cu–Cr–Zr composites were fabricated by cooling to room
temperature.
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Figure 1. Flow chart for the preparation of TiCx/Cu–Cr–Zr composites utilizing combustion synthesis-
assisted stir casting. (a) ball milling (b) cold pressing (c) combustion synthesis + hot press (d) master-
alloy (e) casting process (f) casting.

Table 1. Manufacturers of raw materials.

Raw Material Manufacturer

Ti Beijing Research Institute of Nonferrous Metals
Cu Beijing Research Institute of Nonferrous Metals

CNTs Chengdu Organic Chemistry Co., Ltd., Chinese Academy of
Sciences (Chengdu, China)

Cu–Cr–Zr Shanghai Xinmeng Metal Materials Co., Ltd. (Shanghai, China)

Table 2. Chemical compositions of Cu–Cr–Zr alloy (wt.%).

Elements Cu Cr Zr Si Fe Mg Al

Content Bal. 0.65 0.6 0.05 0.05 0.15 0.18

TiCx/Cu master alloy phase composition was analyzed on a Rigaku D/Max 2500PC
X-ray diffraction (XRD, Rigaku D/Max 2500PC, Tokyo, Japan) with Cu-Kα radiation. Mor-
phologies of microstructure and extracted TiCx were investigated using a field emission
scanning electron microscope (FESEM, JSM 6700, Tokyo, Japan). Observation of the grain of
TiCx/Cu–Cr–Zr composites was performed using an Olympus optical microscope (XJZ-6,
Tokyo, Japan). Determination of the microhardness for materials using a Vickers hardness
tester (1600-5122VD, New Troy, MI, USA) with 50 gf load and 15 s duration time. Mea-
surement of the Brinell hardness was performed using a Brinell hardness tester (HB-3000C,
Kunshan, China) with 9807 N load and a duration time of 30 s. Both microhardness and
Brinell hardness measurements were collected 5 times and averaged. Tests of abrasive
wear were performed using a pin-disc machine with Al2O3 abrasive paper under a load
of 5 N with a wear distance of 24.78 m at room temperature. The samples were 4 mm in
length, 4 mm in width, and 12 mm in height. The worn surfaces of the composites were
observed by a scanning electron microscope (SEM, Evo18, Carl Zeiss, Jena, Germany). A
digital eddy current conductivity meter (Sigma 2008b, Kanagawa, Japan) was employed
to determine the electrical conductivity; the results were measured 5 times and averaged.
A laser thermal conductivity meter (LFA427, Selb, Germany) was employed to measure
the thermal diffusivity at the temperature of 25 ◦C, 50 ◦C, 75 ◦C, and 100 ◦C. Coefficient of
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thermal conductivity was defined as the product of thermal diffusivity, density, and specific
heat. The coefficient of thermal expansion was tested using a dilatometer (NETZSCH
DIL402C, Selb, Germany) in argon at the temperatures of 50 ◦C, 100 ◦C,150 ◦C, 200 ◦C,
250 ◦C, 300 ◦C, 350 ◦C, and 400 ◦C.

3. Results and Discussion

The X-ray diffraction pattern of TiCx/Cu master alloy prepared through combustion
synthesis is illustrated in Figure 2a. The diffraction peaks belonging to Cu and TiCx were
clearly visible, demonstrating that the TiCx/Cu master alloy was successfully manufactured.
The morphology of TiCx nanoparticles extracted from the TiCx/Cu master alloy is depicted
in Figure 2b. As indicated, the extracted TiCx particles from the TiCx/Cu master alloy,
which possess an average dimension of 100 nm, are uniform and spherical in shape.
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Figure 2. (a) XRD pattern of the TiCx/Cu master alloy, (b) extracted TiCx particles from TiCx/Cu
master alloy.

The microstructures of Cu–Cr–Zr matrix alloy and TiCx/Cu–Cr–Zr composite mate-
rials are illustrated in Figure 3. Dendrites are a dominant morphological feature of the
Cu–Cr–Zr matrix alloy, manifested by coarse grains and uneven grain size, as shown in
Figure 3a, whereas those TiCx/Cu–Cr–Zr composites containing 2 wt.% and 4 wt.% TiCx
have an equiaxed grain morphology with a uniform dimensional distribution, as shown in
Figure 3b,c. In comparison with the matrix alloy, the composites have more uniform and
denser structures. With increasing TiCx content, the grain morphologies of the composites
transform from dendritic into equiaxial grain, with grain sizes refined considerably. Both
the change in the grain morphology and the reduction in the grain size are related to the in
situ addition of TiCx particles.
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Figure 4 is the microstructure of Cu–Cr–Zr alloy, 2 wt.% and 4 wt.% TiCx/Cu–Cr–Zr
composites. As shown in Figure 4a, grain shape is not obvious and the grain boundary
range is relatively large. Whereas the TiCx/Cu–Cr–Zr composites have an obvious mi-
crostructure and grain boundaries with a relatively uniform grain dimension. Furthermore,
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the grain dimensions of the composites with a TiCx content of 4 wt.% are smaller than
those of 2 wt.%. A large amount of chained particulate matter near the grain boundaries
and a large distribution of particles are visible in the grains of the 4 wt.% TiCx/Cu–Cr–Zr
composites, as illustrated in Figure 4d.
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The binary phase diagram of Cu–Zr shows an approximate maximum solubility of Zr
in Cu of 0.12 wt.% (927 ◦C), which is only about 0.01 wt.% at room temperature. During the
solidification process, a large amount of Zr element and a considerable amount of Cu9Zr2
compound were precipitated. In addition, according to the binary phase diagram of Cu–Cr,
the approximate maximum solubility of Cr in Cu is 0.7 wt.% (1076 ◦C), while it is only
0.03 wt.% at room temperature. Therefore, Cr elements were constantly precipitated with
the decrease in the temperature in the solidification process. Some of the precipitated Cr
elements were pushed to the grain boundary and gathered during the grain growth process,
which showed the morphology of chain particles, as presented in Figure 4.

In order to explore the reason for the grain refinement phenomenon, lattice misfit (δ)
was utilized to determine the likelihood of heterogeneous nuclei, which was calculated via
a mathematical model [27].

δ
(hkl)s
(hkl)n

=
1
3∑3

i=1

∣∣∣d[uvw]is cos θ − d[uvw]in

∣∣∣
d[uvw]in

× 100% (1)

where (hkl)s and (hkl)n are the low index crystal face; [uvw]s and [uvw]n are the low index
crystal orientation in the (hkl)s and (hkl)n; d[uvw]s and d[uvw]n are the atom spacings
along the direction of the [uvw]s and [uvw]n; θ is the angle between [uvw]s and [uvw]n.

According to the results of the calculations, the lattice misfit of (111)Cu and (111)TiCx
is 19.8%, which means that TiCx is less likely to be a heterogeneous nucleus of the Cu
alloy. However, the lattice misfit of (010)Cu3Ti and (111)Cu is 1.9%, and the lattice misfit
of (100)Cu3Ti and (100)TiCx is 1.2%. Therefore, it is speculated that the addition of TiCx
changes the nucleation conditions of grains, and at the surface of the TiCx or TiCx clusters,
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a layer of Cu3Ti forms that acts as heterogeneous nuclei for the grains. We speculated that
heterogeneous nuclei are the main reason of changes in grain morphologies.

Figure 5 presents the microhardness and Brinell hardness of the Cu–Cr–Zr alloy and
the TiCx/Cu–Cr–Zr composites. The microhardness of matrix alloy composites with TiCx
contents of 2 wt.% and 4 wt.% is 97.1 HV, 114.9 HV, and 119.7 HV, respectively, and the
Brinell hardness is 75.1 HB, 84.1 HB, and 86.8 HB, respectively. The addition of TiCx
nanoparticles effectively improves the hardness of the matrix alloy. Compared to the
Cu–Cr–Zr alloy, the microhardness and Brinell hardness of 2 wt.% and 4 wt.% composites
increase by 18.3% and 12.0%, 23.3% and 15.6%, respectively, with increasing TiCx content.
It may be attributable to diffusely distributed TiCx particles within the composites, which
can prevent the occurrence of plastic deformation. Based on load transfer strengthening,
TiCx nanoparticles act as reinforcement, which indirectly bear the load applied on the
materials. Moreover, the increasing number of TiCx particles lead to an increase in the
amount of TiCx particles to bear the load; thus, the bearing capacity of the composite
is enhanced. Meanwhile, fine grain strengthening also enhances the hardness of the
composites. Consequently, an improvement in the hardness of composites is observed as
the TiCx content increases.
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Figure 6a–c shows the worn surface morphology of the Cu–Cr–Zr alloy and TiCx/Cu–
Cr–Zr composites with different TiCx contents with a 6.5 µm abrasive particle size and
a 5 N load. An abrasive worn surface on the Cu–Cr–Zr alloy can be seen to be rough,
with deep and wide surface furrows as shown in Figure 6a. With increasing TiCx content,
abrasive worn surfaces of the composites become smooth, surface furrows become shallow
and narrow, and the number of furrow ridges caused by plastic deformation decreases
(Figure 6b,c). Figure 6d shows the abrasive wear rates for the Cu–Cr–Zr alloy and different
TiCx content composites. The abrasive wear rates of Cu–Cr–Zr alloy, 2 wt.% and 4 wt.% TiCx
content composites are 1.48, 1.35, and 1.31 (10−10 m3/m), respectively. In comparison to the
Cu–Cr–Zr alloy, the composites showed a significant decrease in abrasive wear rate, which
indicates that the incorporation of TiCx nanoparticles obviously improves the abrasive wear
resistance of the Cu–Cr–Zr alloy. The addition of TiCx particles refines the microstructure,
improving the hardness of the materials, which can reduce the depth of abrasive particle
penetration into the materials and weaken the “plough and cut” phenomenon of the
abrasive particles. Meanwhile, the nanoparticles act as reinforcement pinning in the matrix,
which hinders the ploughing behavior of abrasive particles, preventing the deformation
of materials. Therefore, the composites with 4 wt.% TiCx content exhibit the best abrasive
wear resistance among the three materials.
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It is believed that the increase in wear resistance and hardness for copper matrix com-
posites is due to both the introduction of nano-TiCx particles and the Orowan mechanism.
Moreover, nano-TiCx particles play a role as barriers during the dislocation movement
process, which enhances the strength of the copper matrix composite. In contrast, the
coefficient of thermal expansion mismatch and Taylor strengthening by modulus mismatch
between the matrix and particle are also attributed to the strengthening of the composites’
wear resistance [28].

The schematic diagram of the abrasive wear process for TiCx/Cu−Cr−Zr composites
with various TiCx contents is presented in Figure 7. During the abrasive wear process, as
a consequence of abrasion and loads, the Cu−Cr−Zr alloy undergoes significant plastic
deformation, which appears in the form of deep and wide furrows, as illustrated in Fig-
ure 7b. Shallower and narrower furrows on the worn surface of 2 wt.% TiCx composites
are observed at identical abrasive and load conditions compared with the Cu−Cr−Zr
alloy, as presented in Figure 7d. Composites with TiCx content of 4 wt.%, among the
three materials, show the flattest worn surface under the same conditions, as shown in
Figure 7f. TiCx nanoparticles, acting as the core of the heterogeneous nuclei, refine the grain
size. Consequently, the grain morphology transformed from dendrite to equiaxial grain
(Figure 7a,c,e). Grain refinement can improve the hardness of materials, which weakens
the ploughing behavior of the abrasive particles by reducing their depth of penetration
into the materials; therefore, the abrasive wear resistance of the composites is improved,
as shown in Figure 7b,d,f. Moreover, the TiCx nanoparticles being added to the matrix
alloy that are located at both grain boundaries and inside the grains corresponding to
Figure 7 areas A and B, act as particle reinforcement, which fixes dislocations and prevents
dislocation movement. The above reasons also contribute to the improvement of material.
Thus, hardness and wear resistance were effectively improved by the addition of TiCx
particles.



Coatings 2023, 13, 1263 8 of 12Coatings 2023, 13, x FOR PEER REVIEW 8 of 12 
 

 

 
Figure 7. Schematic diagram of abrasive wear process for TiCx/Cu–Cr–Zr composites with various 
TiCx contents. (a) metallographic morphology of Cu–Cr–Zr alloy (b) wear process of Cu–Cr–Zr alloy 
(c) metallographic morphology of 2 wt.% TiCx/Cu–Cr–Zr composites (d) wear process of 2 wt.% 
TiCx/Cu–Cr–Zr composites (e) metallographic morphology of 4 wt.% TiCx/Cu–Cr–Zr composites (f) 
wear process of 4 wt.% TiCx/Cu–Cr–Zr composites 

Figure 8 presents the electrical conductivity of Cu–Cr–Zr alloy, TiCx/Cu–Cr–Zr com-
posites with different TiCx contents. As indicated, the conductivity of the Cu–Cr–Zr alloy, 
2 wt.% and 4 wt.% TiCx composites are 64.71%, 56.77%, and 52.93%, respectively (IACS). 
The incorporation of nanoparticles obviously refined the grain dimensions. The refined 
grain raises the quantity of grain boundaries and the scattering effect of the material on 
electrons is increased. In contrast, the incorporation of TiCx particles inhibits the migration 
of free electrons. The interface between the particle and matrix also enhances electron scat-
tering, resulting in a reduction of 12.27% and 18.20% in electrical conductivity for compo-
sites with TiCx content of 2 wt.% and 4 wt.%, respectively, compared with the matrix alloy. 

 

Figure 7. Schematic diagram of abrasive wear process for TiCx/Cu–Cr–Zr composites with various
TiCx contents. (a) metallographic morphology of Cu–Cr–Zr alloy (b) wear process of Cu–Cr–Zr alloy
(c) metallographic morphology of 2 wt.% TiCx/Cu–Cr–Zr composites (d) wear process of 2 wt.%
TiCx/Cu–Cr–Zr composites (e) metallographic morphology of 4 wt.% TiCx/Cu–Cr–Zr composites
(f) wear process of 4 wt.% TiCx/Cu–Cr–Zr composites.

Figure 8 presents the electrical conductivity of Cu–Cr–Zr alloy, TiCx/Cu–Cr–Zr com-
posites with different TiCx contents. As indicated, the conductivity of the Cu–Cr–Zr alloy,
2 wt.% and 4 wt.% TiCx composites are 64.71%, 56.77%, and 52.93%, respectively (IACS).
The incorporation of nanoparticles obviously refined the grain dimensions. The refined
grain raises the quantity of grain boundaries and the scattering effect of the material on
electrons is increased. In contrast, the incorporation of TiCx particles inhibits the migration
of free electrons. The interface between the particle and matrix also enhances electron
scattering, resulting in a reduction of 12.27% and 18.20% in electrical conductivity for
composites with TiCx content of 2 wt.% and 4 wt.%, respectively, compared with the matrix
alloy.

Thermal conductivity curves for TiCx/Cu–Cr–Zr composites with various TiCx con-
tents from 25 ◦C to 100 ◦C can be observed in Figure 9. It shows a gradual decrease in
the thermal conductivity for the composite with increasing TiCx content at the same tem-
perature. The coefficient of thermal conductivity of TiCx particles was significantly less
than that of pure Cu. Therefore, the thermal conductivity of the material decreases as the
rule Cu content decreases. Meanwhile, incorporating TiCx particles increased the bonding
interface between the particles and matrix, enhancing the scattering effect by the interface
upon heating in the composite, which is not conducive to heat conduction. In contrast, the
thermal conductivity coefficient of composites drops as the temperature rises. The higher
the temperature, the worse the thermal conductivity. Therefore, the thermal conductivity
of the composite materials decreases gradually with the increase in temperature.
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contents at different temperatures.

Figure 10 presents the thermal expansion coefficient curves of the TiCx/Cu–Cr–Zr
composites with different TiCx contents from 25 ◦C to 400 ◦C. As shown, the thermal
expansion coefficients of the materials gradual increase with increasing temperature for the
three materials. The thermal expansion coefficients of the three materials are sensitive to
TiCx content at the same temperature, with the sequence showing that the higher the TiCx
content, the smaller the thermal expansion coefficient. It is indisputable that the thermal
expansion coefficients of materials are determined by different external temperatures,
the thermal expansion coefficient of the matrix metal, and the restraining effect of the
reinforcing particles on the matrix. With the increase in temperature, the thermal expansion
coefficients of all the three materials follow a similar trend; that is, as the temperature
increases, the thermal expansion coefficients of the materials becomes larger. The higher
the number of TiCx particles, the stronger the restraining effect on the matrix, causing the
thermal expansion coefficient to decrease with the addition of TiCx particles.
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4. Conclusions

In this work, the microstructure evolution, abrasive wear, electrical conductivity,
thermal conductivity, and thermal expansion coefficient of TiCx/Cu–Cr–Zr composites
with reinforced in situ with different TiCx nanoparticle contents were investigated.

1. The in situ addition of TiCx nanoparticles transformed the microstructure of matrix
alloy from dendrites to equiaxed crystal and refined the grain size.

2. Hardness and abrasive wear resistance were enhanced in the matrix alloy by adding
TiCx particles. Microhardness and Brinell hardness of 4 wt.% TiCx/Cu–Cr–Zr com-
posites are 23.3% and 15.6% higher, respectively, compared to the matrix alloy.

3. The 4 wt.% TiCx/Cu–Cr–Zr composite had the lowest abrasive wear rate (1.31 ×
10−10 m3/m) with the shallowest and narrowest surface furrows.

4. The thermal expansion coefficient, thermal conductivity, and electrical conductivity
of the composites decreased with the increasing TiCx content. Electrical conductivity
of 2 wt.% and 4 wt.% TiCx/Cu–Cr–Zr composites was reduced by 12.27% and 18.20%,
respectively, compared with the matrix alloy.
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