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Abstract: The hardness and wear resistance of amorphous Al–Mn alloy coatings can be improved
by incorporating ceramic particles into them to extend their application. In this paper, Al–Mn/WC
composite coatings have been prepared with electrodeposition in stirred AlCl3–NaCl–KCl–MnCl2
molten salts at 180 ◦C with the addition of WC particles. The effects of stirring speed (400–700 rpm)
and cathode current density (15–75 mA/cm2) on the produced Al–Mn/WC composite coatings
have been studied. At 600 rpm and 700 rpm, the Al–Mn/WC composite coatings exhibited the
best uniform distribution of the embedded WC particles, with the tested microhardness value up to
650 HV0.1, compared with 530 HV0.1 of the Al–Mn alloy. Moreover, under various cathode current
densities, the best quality of the Al–Mn/WC composite coating was obtained at 55 mA/cm2, with a
homogeneous distribution of WC particles and the highest microhardness value (670 HV0.1). It is
expected that this method could be extended to be applied for the preparation of aluminum-based
and magnesium-based ceramic composite coatings.

Keywords: AlCl3–NaCl–KCl–MnCl2 molten salts; electrodeposition; WC particles; Al–Mn/WC
composite coating

1. Introduction

Amorphous Al–Mn alloy coatings have attracted considerable interest due to their
promising chemical, physical, mechanical and corrosion-resistant properties [1–3], and they
have been utilized to protect metals such as steels [4], magnesium alloys [5] and NdFeB
magnets [6] against corrosion.

By improving the hardness and wear resistance of Al–Mn alloys, their applications can
be broadened [7,8]. Numerous studies have demonstrated that Al-based composite coatings
containing ceramic particles have increased hardness and improved wear resistance, and
are capable of protecting metal substrates under harsh environments [9–11]. Currently,
incorporated particles such as diamonds [12], SiO2 [13], Al2O3 [14], SiC [15], WC [16],
TiB2 [17] and CNT (carbon nanotubes) [18] are being used to prepare composite coatings.
Therefore, it is worthwhile to explore the possibility of incorporating ceramic particles into
amorphous Al–Mn alloy coatings in order to improve their quality.

Amorphous Al–Mn alloy coatings can be prepared using both molten salt electrode-
position [19–22] and room-temperature ionic solution electrodeposition [23–25]. Since
room-temperature ionic solutions are highly volatile, expensive [24], mostly toxic and
poorly biodegradable, and the synthesis of ionic liquids includes several steps involving
highly toxic reagents [26], it is more advantageous to prepare Al–Mn alloys with elec-
trodeposition in low-temperature inorganic molten salts. As an example, M. Jafarian et al.
electrodeposited Al, Mn and Al–Mn alloys on aluminum electrodes in AlCl3–NaCl–KCl
molten salts [20]. Ting-ting Cai [27] obtained good quality Al–Mn coatings with electrode-
position in an AlCl3–NaCl–KCl–MnCl2 (0.5–2.0 wt.%) melt at 200–220 ◦C under cathode
current densities of 26.7–48.0 mA/cm2.
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Our group has produced Al/TiC nanocomposite coatings with electrodeposition in
AlCl3–NaCl–KCl molten salts with the addition of TiC nanoparticles [28]. TiC nanoparticles
have been successfully incorporated into Al coatings with a uniform distribution, and
the hardness of Al/TiC composite coatings was significantly improved compared with
pure Al coatings; thus, this method can be extended to prepare Al–Mn-based composite
coatings. Therefore, this paper focuses on investigating the possibility of electrodeposition
in AlCl3–NaCl–KCl–MnCl2 molten salts at 180 ◦C with the introduction of WC particles
to prepare Al–Mn-based composite coatings incorporated with WC particles under a
stirring state. Moreover, the effects of stirring speed and cathode current density on the
incorporation of WC particles into Al–Mn coatings and their mechanical properties have
been investigated.

2. Experimental
2.1. Preparation of NaCl–KCl Solid Salts Containing WC Particles

The procedure for preparing NaCl–KCl solid salts containing WC particles is illus-
trated in Figure 1. Using a planetary ball mill (HLXPM-ϕ10 ×4, Hengle, Wuhan, China),
NaCl (99%, Sinopharm, Shanghai, China) and KCl (99%, Sinopharm) were pre-dried in an
oven for 48 h at 200 ◦C, mixed in a mole ratio of 1:1, and then ball milled in a 316 stainless
steel grinding jar for 2 h. WC particles (average size, 400 nm, Aladdin Biochemical Technol-
ogy Co., Ltd., Shanghai, China) were blended with ball-milled NaCl–KCl salts at a mass
ratio of 1:1, ultrasonically dispersed in acetone for 2 h (100 kHz), and finally dried at 120 ◦C
for 1 h in a vacuum drying oven to obtain NaCl–KCl solid salts containing WC particles.
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Figure 1. Schematic diagram of the preparation process of NaCl–KCl solid salts containing WC particles.

2.2. Electrodeposition Process for Producing Al–Mn/WC Composite Coatings

An AlCl3–NaCl–KCl mixture with a molar ratio of 66:17:17 was selected as the elec-
trolyte. AlCl3 (99%, Aladdin Biochemical Technology Co., Ltd.) was weighed and ground
in a glove box protected by an argon atmosphere and mixed with KCl and NaCl in the
glove box. Then, 1.5 wt.% MnCl2 (>99%, Aladdin Biochemical Technology Co., Ltd.) was
added to obtain AlCl3–NaCl–KCl–MnCl2 salts. MnCl2 was dried in a vacuum oven at
200 ◦C for 10 h before use.

As shown in Figure 2, an AlCl3–NaCl–KCl–MnCl2 mixture was placed in a quartz
crucible under an argon atmosphere, which was heated to 180 ◦C in an oil bath. After it
was melted, NaCl–KCl solid salts containing WC particles were added to the molten
salts through the filling hole and stirred using a mechanical stirring paddle to form
AlCl3–NaCl–KCl–MnCl2 molten salts in which the WC particles can be well suspended.
A 25 mm × 5 mm × 0.5 mm sheet of 304 stainless steel was used as the cathode and a
25 mm × 5 mm × 3 mm sheet with high purity (99.999 wt.%) aluminum was used as the
anode. The cathode and anode were positioned symmetrically and parallel to each other,
with the stirring paddle placed in the center. After electrodeposition, the cathodes were
removed, cleaned in deionized water, dried, and characterized.
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The effect of different stirring speeds (400 rpm, 500 rpm, 600 rpm and 700 rpm) on the
electrodeposition of Al–Mn/WC composite coatings was studied in AlCl3–NaCl–KCl–MnCl2
molten salts under a current density of 55 mA/cm2 with a WC particle concentration of
20 g/L at 180 ◦C.

In addition, the influence of different cathode current densities (15 mA/cm2, 35 mA/cm2,
55 mA/cm2 and 75 mA/cm2) on the produced Al–Mn/WC composite coatings was inves-
tigated in the same molten salts under a rotating speed of 700 rpm with a WC particle
concentration of 30 g/L at 180 ◦C. In order to pass the same charge at different current
densities, the electrodeposition time was 37 min, 16 min, 10 min and 7.5 min, respectively.

2.3. Characterization of WC Raw Materials and Coatings

The WC raw material and the surface and cross-sectional morphologies of the com-
posite coatings were examined using scanning electron microscopy (SEM) (Regulus 8220,
HITACHI and JSM-6510, JEOL, Tokyo, Japan). X-ray diffraction (XRD, Tokyo, Japan) (Smart
Lab, Rigaku, voltage: 40 kV, current: 40 mA, scan rate: 10◦/min) was used to analyze their
phase composition. A Vickers microhardness tester (Q30A+, Qness, Salzburg, Austria) was
employed to measure the Vickers hardness using a load of 0.98 N with a dwell time of 10 s.
Six indentation tests on various parts of each coating were conducted to ensure reliability.

3. Results and Discussion
3.1. Preparation of Al–Mn/WC Composite Coatings at Various Rotating Speeds

The as-received WC particles were characterized by XRD and SEM, with the results
shown in Figure 3. From the XRD analysis results in Figure 3a, it is obvious that the WC
particles were pure. In addition, from Figure 3b, it can be found that the WC particles had
a particle size smaller than 500 nm, with a relatively uniform particle size distribution.

Electrodeposition was carried out in AlCl3–NaCl–KCl–MnCl2 molten salts with the
addition of WC particles (20 g/L) at 180 ◦C under a cathode current density of 55 mA/cm2.
The rotating rate of the mechanical stirring paddle ranged from 400 rpm to 700 rpm. A
photograph depicting the typical appearance of the produced coating (under a rotating
rate of 500 rpm) is shown in Figure 4a, exhibiting a relatively flat and metallic appearance.
Figure 4b presents the XRD results of the obtained composite coatings at various stirring
rates. For the XRD result corresponding to no addition of WC particles, there existed
an amorphous hump with 2θ in the range of 40–48◦, which corresponded to amorphous
Al–Mn [27]. Moreover, diffraction peaks for 304 stainless steel substrates and Al can also be
detected. After the introduction of WC particles, diffraction peaks of WC can be detected,
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indicating successful incorporation of WC particles into the Al–Mn alloy at a stirring rate
from 400 rpm to 700 rpm in the AlCl3–NaCl–KCl–MnCl2 melt at 180 ◦C.
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Figure 4. (a) Typical appearance (500 rpm) and (b) XRD patterns (400–700 rpm) of Al–Mn/WC
composite coatings with electrodeposition under a cathode current density of 55 mA/cm2 in the
AlCl3–NaCl–KCl–MnCl2 melt at 180 ◦C (WC particle concentration, 20 g/L).

Subsequently, the surface morphologies of Al–Mn/WC composite coatings prepared at
different stirring speeds were analyzed with SEM (backscattered electron mode) as shown
in Figure 5, in which the bright white areas corresponded to the WC particles embedded in
the coatings. At a rotating rate of 400 rpm (Figure 5a), it can be seen that the incorporated
WC particles tended to aggregate. When it was increased to 500 rpm, the agglomeration of
WC particles decreased, and an increased amount of WC particles was embedded. With
the increase in the stirring rate to 600 and 700 rpm, a better distribution of WC particles
was demonstrated.

The cross-sectional SEM images of the Al–Mn/WC composite coatings prepared at
different rotating speeds are presented in Figure 6. It can be seen that the Al–Mn/WC
coatings were dense and well bonded to the substrate. The change in the stirring rate had
an insignificant effect on the thickness of the composite coatings. At 400 rpm, there existed
severe aggregation of WC particles, especially on the surface, corresponding to the result in
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Figure 5a, resulting in a slightly reduced thickness. An uneven distribution of WC particles
was also observed. At 500 rpm, the distribution of WC particles became more uniform. The
further increase in the stirring rate to 600 rpm and 700 rpm resulted in reduced aggregation
of WC particles and more even distribution of them in the coatings, which is in agreement
with the SEM analysis results of the Al–Mn/WC surface as shown in Figure 5c,d.
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Furthermore, the microhardness of these samples was tested to evaluate the effect of
incorporating WC particles into the Al–Mn alloy. At the same time, it was noticed that the
Mn content in the Al–Mn/WC composite coatings produced at different speeds fluctuated
within the range of 28~32 wt.%. To avoid the effect of Mn content change on the values
of hardness, the hardness of Al–Mn coatings with different Mn content was measured
and analyzed, with the results presented in Figure 7a. As the Mn content increased, the
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hardness of the Al–Mn coating increased gradually. However, at a Mn content of 27 wt.%,
the hardness growth rate became slower, which was in agreement with the results reported
by Uchida [29]. In Figure 7a, it can be seen that the hardness did not vary significantly with
the Mn content in the range of 28 wt.% to 32 wt.%, ranging from 510 HV0.1 to 530 HV0.1.
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At various stirring speeds, Figure 7b presents the microhardness of Al–Mn/WC
composite coatings. The hardness of the Al–Mn/WC composite coatings increased with
the increase in stirring speed. With a rotating speed of 600 rpm and 700 rpm, the value of
the microhardness could reach 650 HV0.1. It was also higher than 530 HV0.1 for the Al–Mn
coating. As a result, the variation in hardness of Al–Mn/WC composite coatings prepared
at different rotating speeds is mainly due to the enhanced inclusion of WC particles in the
coating with a more uniform distribution.

During the electrodeposition, as the stirring speed increases, the frequency of collision
between WC particles and the electrode surface increases, leading to increased chances for
WC particles to be captured by electrodeposited Al–Mn. On the other hand, employment
of stirring speeds that are too high increase the impact of molten salt fluid on the electrode
surface, which allows WC particles that have been captured by the electrode surface to
detach from it and reenter into the molten salts [30,31]. In the present study, at a low
stirring rate, the gravitational effect of WC particles dominates due to their high density
(15.77 g/cm3). Thus, they do not suspend well in the molten salts, resulting in a relatively
small amount of WC incorporated in the Al–Mn coating. As the stirring rate increases, the
WC particles overcome these gravitational effects, resulting in better suspension and an
increase in WC amount in the Al–Mn coating. When the speed is further raised to 700 rpm,
although the frequency of collisions between WC particles and the electrode increases, the
large impact of the molten salt fluid probably causes WC particles that are captured on
the electrode surface to divorce from it again. As a result, at 600 rpm and 700 rpm, the
incorporation results are similar, demonstrating a good distribution of WC particles and the
highest coating hardness. Simultaneously, the incorporation of WC particles in the Al–Mn
coating leads to an improved value of hardness, compared with that of the Al–Mn coating.

3.2. Preparation of Al–Mn/WC Composite Coatings at Various Current Densities

Electrodeposition was conducted with a WC particles concentration of 30 g/L at
cathode current densities of 15–75 mA/cm2. In this case, a stirring rate of 700 rpm was
selected according to the experimental results in Section 3.1. The XRD pattern results of
the obtained composite coatings are shown in Figure 8 (not including the result for the
composite coating at 15 mA/cm2 because of its poor quality). It can be observed that
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there existed an amorphous region between 40 and 48º, corresponding to the formation
of Al–Mn, and diffraction peaks of WC, stainless steel substrates and Al, demonstrating
successful incorporation of WC particles into the Al–Mn alloy at current densities from
35 to 75 mA/cm2 in the AlCl3–NaCl–KCl–MnCl2 melt at 180 ◦C.
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Figure 8. XRD patterns of Al–Mn/WC composite coatings with electrodeposition under cathode
current densities of 35–75 mA/cm2 with a stirring rate of 700 rpm in the AlCl3–NaCl–KCl–MnCl2
melt at 180 ◦C (WC particle concentration, 30 g/L).

The surface morphologies of Al–Mn/WC composite coatings prepared with electrode-
position at varying current densities are shown in Figure 9. Locations with bright white
particles corresponded to WC particles. As shown in Figure 9, the content of WC particles
in the Al–Mn/WC composite coating increased with elevated current density, and the WC
particles were dispersed most uniformly at the current density of 55 mA/cm2.
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Figure 9. SEM images of the surface of the obtained Al–Mn/WC composite coatings using electrode-
position with a stirring rate of 700 rpm in the AlCl3–NaCl–KCl–MnCl2 melt at 180 ◦C (WC particle
concentration, 30 g/L) ((a) 15 mA/cm2; (b) 35 mA/cm2; (c) 55 mA/cm2; (d) 75 mA/cm2).

SEM analysis of the cross-sections of Al–Mn/WC composite coatings prepared with
electrodeposition at various current densities was conducted, and the obtained results
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are shown in Figure 10. It can be observed that the thickness of the Al–Mn/WC coating
prepared under a current density of 15 mA/cm2 was smaller than those under other con-
ditions, based on the same passed charge under different cathode current densities. This
coating contained a small amount of incorporated WC particles, with poor adhesion. In-
creasing the current density to 30 mA/cm2 and 55 mA/cm2 resulted in enhanced thickness
of the coating as well as the content of WC particles. These coatings, with good adhesion,
coherence and high compactness, included uniform distributions of WC particles. As the
current density increased to 75 mA/cm2, the flatness of the coating was reduced, with a
degraded distribution of WC particles and their amount was decreased slightly.
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Figure 10. SEM images of the cross-sections of the obtained Al–Mn/WC composite coatings using
electrodeposition with a stirring rate of 700 rpm in the AlCl3–NaCl–KCl–MnCl2 melt at 180 ◦C (WC
particle concentration, 30 g/L) ((a) 15 mA/cm2; (b) 35 mA/cm2; (c) 55 mA/cm2; (d) 75 mA/cm2).

Under different current density conditions, the Mn content of Al–Mn/WC composite
coatings ranged from 29 wt.% to 32 wt.%. According to Figure 7a, the hardness of Al–Mn
coatings within this Mn content range was between 520 HV0.1 and 530 HV0.1, which
indicated that Mn content variation had no significant effect on coating hardness in this
range. As shown in Figure 11, the hardness value of composite coatings obtained at
35–75 mA/cm2 was tested and analyzed, among which the hardness of the Al–Mn/WC
coating at 55 mA/cm2 was the highest, reaching 670 HV0.1. At 75 mA/cm2, the hardness
value was lower than that of the coating at 55 mA/cm2, with a wider error bar, exhibiting
larger instability. These results were in agreement with SEM analysis results shown in
Figure 10.

The cathode current density has a large effect on the quality and the incorporation of
particles for the coating. The growth rate of the coating controlled by the cathode current
density should match the transporting rate of particles towards the electrode dominated
by the stirring rate, in order to form a coating with a uniform distribution of particles in
it. As can be seen from Figures 9 and 10, at the 15 mA/cm2 current density, most WC
particles delivered to the cathode surface are probably returned to the molten salts by
the stirring fluid before they are completely embedded into the Al–Mn coating, due to
its relatively slow growth rate, so the Al–Mn/WC composite coating contains a small
amount of WC particles. Furthermore, these detached WC particles also remove some of
the deposited Al–Mn metal, reducing the current efficiency and making the Al–Mn/WC
composite coating thin. In addition, such low current density leads to electrodepositing
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a coating with poor quality. By increasing the current density, the WC particles on the
cathode surface are easy to be embedded and covered by the relatively quick deposition of
the Al–Mn metal, improving particle incorporation efficiency and current efficiency [32].
However, with a further increase in the current density to 75 mA/cm2, the Al–Mn alloy
is deposited extremely quickly, while perhaps the transporting rate of WC particles using
mechanical stirring could not catch up with the deposition speed of Al–Mn [33]. In this case,
the amount of embedded WC particles is slightly reduced. Moreover, a high current density
tends to cause concentration polarization [34], forming dendrites and uneven coating
surfaces for the deposited Al–Mn/WC coating, as illustrated in Figure 10d. Therefore, the
quality of the Al–Mn/WC composite coating at 55 mA/cm2 is the best, and the dispersion
of the WC particles is the most homogeneous, demonstrating the highest microhardness.
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4. Conclusions

We have conducted investigations on electrodepositing Al–Mn/WC composite coat-
ings in an AlCl3–NaCl–KCl–MnCl2 melt at 180 ◦C with the introduction of WC particles
under a stirring state. The conclusions are as follows.

(1) With the assistance of mechanical stirring, Al–Mn/WC composite coatings can be
prepared using electrodeposition with an enhanced value of microhardness compared
with Al–Mn alloy coatings.

(2) At different rotating speeds between 400 rpm and 700 rpm, a better distribution
of incorporated WC particles caused by the increased rotating speeds was found,
due to the better suspension of WC particles. At 600 rpm and 700 rpm, the highest
microhardness value of the Al–Mn/WC composite coatings was reached at 650 HV0.1,
compared with 530 HV0.1 of Al–Mn coatings with a similar Mn content.

(3) Under various cathode current densities ranging from 15 mA/cm2 to 55 mA/cm2, the
amount of embedded WC particles and their distribution in Al–Mn/WC composite
coatings have been improved. A further increase to 75 mA/cm2 resulted in a slightly
reduced amount of embedded WC particles and an uneven distribution of them.
Therefore, the highest microhardness value (670 HV0.1) was obtained at 55 mA/cm2.
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