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The worldwide clinical demand for skeletal repair is constantly increasing due to the
aging of the population [1,2]. Orthopedic and dental surgeries require biocompatible bone
implants with appropriate mechanical properties to replace hard tissue functions [3–5].
The International Union of Pure and Applied Chemistry (IUPAC) defines biocompatibility
as the ability of a material to be in contact with a biological system without producing an adverse
effect [6]. Metallic bone implants are effective in load-bearing applications but need a
surface coating to make them bioactive within the human body. Bioactivity is the property
of materials to develop a direct, adherent, and strong bonding with bone tissue [7]. Coatings of
bioactive materials deposited on metallic implants prevent bone anchorage failure and
promote long-term stability in the body that delays revision surgery [8,9].

Calcium phosphate and bioactive glass coatings are primary materials developed for
decades in the bone implant industry and academic research [10,11]. Their ability to support
the osseointegration of metallic bone implants is well established. The bioactivity process
starts with the partial dissolution of the bioactive coating in contact with the physiological
environment. The dissolution kinetics depends mainly on the bioactive coating’s solubility
product (Ks). The corresponding ionic releases induce a local supersaturation that triggers
the precipitation of biological apatite at the interface between the metallic implant and the
bone tissue [12,13]. The newly formed biological apatite layer promotes bone cell growth
on the implant surface. As a result, the metal bone implant is chemically and biologically
bonded to the bone tissue [14,15].

Calcium phosphates are bioceramic materials with a chemical composition like bone
mineral, the inorganic component of bones. Several compounds belong to this family,
among which hydroxyapatite (HAP), tricalcium phosphate (TCP), calcium-deficient apatite
(Ca-def apatite), octacalcium phosphate (OCP), brushite or dicalcium phosphate dihydrate
(DCPD) and tetracalcium phosphate (TTCP) are the most common [16,17]. They are
characterized by their stoichiometry, described explicitly in biomaterials science by the
calcium-to-phosphorus atomic ratio (Ca/P). The stoichiometry of these phases is related to
their solubility in a physiological environment, corresponding to the surface bioactivity
they provide to the bone implant [18,19].

Bioactive glasses are materials with osteoconductive and osteoproductive proper-
ties that can repair and replace diseased bones [20]. Several compositions of bioactive
glasses are of great interest, such as phosphosilicates (45S5, 58S, 13-93, S53P4), borosilicates
(13-93B1, 13-93B3) or 70S30C [21]. Among them, the famous 45S5 Bioglass® was developed
for the first time by Larry Hench in the 1970s [22]. This quaternary oxide made of SiO2-CaO–
Na2O–P2O5 has the property to bond both to hard and soft tissues (class A bioactivity).
Bioactive glasses are synthesized either at very high temperatures by the melt quenching
method or by the sol-gel process at low temperatures. The latter produces bioactive glasses
of high purity, homogeneity, porosity, and specific surface area that promote bioactivity in
a physiological environment [23].
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Several methods can be used to produce calcium phosphate or bioactive glass coatings
on the surface of metal bone implants [24]. This Special Issue gathers four reviews dealing
with the latest developments in the field.

The first review describes the main deposition methods to produce bioactive calcium
phosphate coatings on bone implants. Plasma spraying is the primary industrial process
but other methods such as magnetron sputtering, pulsed laser deposition, electrospray
deposition, electrophoretic deposition, biomimetic deposition, the sol-gel process combined
with dip or spin coating, electrodeposition, and the hydrothermal synthesis are also widely
studied in academic and industrial research [25]. This article also describes the most
important physicochemical properties of calcium phosphate coatings and their impact
on the bioactivity of bone implants in a physiological environment. The influences of
crystallinity, morphology, roughness, porosity, wettability, adhesion, and ionic substitution
are described.

In the second article, Shaikh et al. review recent applications of bioactive glass ma-
terials used to heal periodontal lesions, including repairing infrabony defects, gingival
recession, and furcation defects [26]. They describe the bioactive properties of bioactive
glasses that are suitable in many clinical dental applications or for the regeneration of hard
tissues in the craniofacial region.

In another review, we summarize more than three decades of scientific knowledge on
the electrodeposition of calcium phosphate coatings. We also describe the current develop-
ment to produce the next generation of coatings [27]. Electrodeposition is a low-temperature
process using metallic electrodes connected to an electric generator and immersed in an
aqueous solution containing calcium and phosphate ions. Electrical energy from the genera-
tor triggers a series of chemical reactions at the electrode-electrolyte interfaces. The metallic
bone implant is connected to the cathode, where the main electrochemical reaction is the
reduction in water, the solvent of the electrolyte solution. This reaction results in a local
pH variation that induces the precipitation of a calcium phosphate coating on the cathode
surface [28]. As a function of the experimental parameters, various chemical compositions,
phases, surface topographies, and morphologies are obtained [29–31]. Thermal annealing
is required after deposition to evaporate the solvent and to improve the cohesive and
adhesive properties of the electrodeposited coating.

In the last review, Robert B. Heimann describes the crystallographic changes of HAP
particles in contact with a hot plasma jet during plasma spray deposition [32]. The HAP
powder melts incongruently inside plasma at thousands of degrees and undergoes complex
dehydration and decomposition reactions. The phase composition and crystallinity of the
material are modified, resulting in a coating with physicochemical and biological properties
different from those of the initial powder [33].
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