
Citation: Du, Y.; Hu, L.; Dong, L.; Du,

S.; Xu, D. Experimental Study on

Anti-Icing of Robust TiO2/Polyurea

Superhydrophobic Coating. Coatings

2023, 13, 1162. https://doi.org/

10.3390/coatings13071162

Academic Editor: Mariaenrica

Frigione

Received: 22 May 2023

Revised: 15 June 2023

Accepted: 21 June 2023

Published: 27 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

coatings

Article

Experimental Study on Anti-Icing of Robust TiO2/Polyurea
Superhydrophobic Coating
Yizhi Du 1, Lina Hu 1,*, Liting Dong 1,†, Shuming Du 2,† and Dong Xu 2

1 Faculty of Electrical Engineering, Xinjiang University, 777 Huarui Street, Urumqi 830017, China
2 Beijing Key Laboratory of Power Generation System Functional Material, CHN Energy New Energy

Technology Research Institute Ltd., Beijing 102209, China
* Correspondence: hulina@xju.edu.cn
† These authors contributed equally to this work.

Abstract: This study aims to solve the icing problem of wind turbine blades in low-temperature envi-
ronments and to improve the power generation efficiency of wind turbines. In this study, modified
TiO2 particles (500 nm), butyl acetate solvent, polyaspartic acid ester polyurea (PAE polyurea), and
Crestron N75 curing agent were mixed and sprayed on the epoxy resin board surface. Static icing
test, dynamic icing test, wear resistance test, and icing adhesion strength test studies were carried
out to evaluate the anti-icing performance of the coating as well as its mechanical stability. The
results showed that the mechanical stability and anti-icing performance of the coating were relatively
optimal when the ratio of modified TiO2 particles to PAE polyurea was 1.5. Under this ratio, the
static contact angle of the coating was 161.4◦, and the rolling angle was 4.7◦. The main reason for the
superhydrophobic performance after 250 wear cycles was that the TiO2 particles were encapsulated
by PAE polyurea. The static contact angle of the coating was still greater than 150◦ after eight icing–
de-icing cycles. This paper provides a simple method to prepare a robust superhydrophobic coating
and promotes the application of superhydrophobic coatings in the field of passive anti-icing of wind
turbine blades.

Keywords: superhydrophobic polyurea coating; modified TiO2 particles; polyaspartic acid ester
polyurea; anti-icing performance; mechanical stability

1. Introduction

As society seeks new energy technologies, the installed wind power capacity is grow-
ing rapidly. However, wind turbine blades are prone to icing in cold environments; ice
degrades the power generation efficiency and lifetime [1] of turbines [2]. There are active
and passive methods for wind turbine ice defense [3]. Active de-icing is effective, but it
requires a considerable investment in equipment; it is energy-intensive, and it involves
complex construction [4]. Passive de-icing methods include coating with electro-thermal
materials [5–7], photothermal materials [8–10], and superhydrophobic materials [11–13].
Superhydrophobic coatings have a low surface energy and rough structure [14], so that ice
does not easily nucleate; icing after adhesion is limited, and the ice that does accumulate
falls off easily. A superhydrophobic coating is an effective means to solve the problem
of anti-icing of wind turbine blades [15–17]. However, key problems associated with su-
perhydrophobic coating are reducing contamination, reducing costs, and improving their
mechanical stability.

In previous studies, researchers had often used polymers, such as PTFE [18], PVDF [19],
and polypyrrole [20], to prepare hydrophobic coatings to solve the anti-icing problem
of wind turbine blades. All these hydrophobic coatings had shown excellent anti-icing
performance. In particular, the shear strength of PTFE coatings could be reduced by up to
80% compared to uncoated blades under −1.8 ◦C to −12.5 ◦C environment [21]. However,
the disadvantages of these coatings were that they were expensive, not wear-resistant, and
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not easily degradable. Therefore, in this study we used polyaspartic acid ester polyurea
(PAE polyurea) instead of fluoropolymer. Polyurea is a new environmentally friendly
material formed by the reaction of an isocyanate component with an amine component [22].
The molecular structure of polyurea contains a considerable number of urea groups, which
are geometrical structures centered on C=O groups and have extremely strong hydrogen
bonding and high intermolecular forces and have the advantages of corrosion resistance,
high abrasion resistance, scratch resistance, high ductility, and low surface energy [23].
It had been studied in the field of anti-icing of roads [24], but there were few reports on
the research in the field of anti-icing of wind turbine blades. The material of the wind
turbine blade is glass-fiber-reinforced epoxy resin. PAE polyurea has good hardness after
curing and can be firmly bonded to the substrate. In order to achieve superhydrophobic
performance, it is usually necessary to add nanoparticles, and the common choices are nano-
SiO2 [25], nano-Fe2O3 [26], nano-Al2O3 [27], etc. In this paper, modified TiO2 particles
were used because TiO2 particles have photocatalytic properties that can degrade the
contaminants attached to the coating surface and restore the superhydrophobic properties
of the coating [28].

How to maintain the superhydrophobic properties and improve mechanical stability
is a hot research topic in academia. At this stage, there are two main approaches. One
is to use multiple micro–nanostructures. For example, Bai et al. [29] used a suspended
high-speed oxygen fuel thermal spraying system to prepare superhydrophobic ceramic
surfaces with unique micro- and nanoscale structures. Peng et al. [30] prepared all-organic
flexible multi-fluorinated superhydrophobic nanocomposite coatings that had both me-
chanical and chemical robustness. Yamauchi et al. [31] used loosely filled tetrapod-like
zinc oxide to construct a “two-dimensional needle-like surface” and a “three-dimensional
porous framework.” Wang et al. [32] designed micro-structured armor that had excellent
mechanical robustness by splitting the wettability and robustness to two scales.

The other approach to improve the mechanical stability of superhydrophobic coatings
is to construct self-healing surfaces. Guo et al. [33] constructed a self-healing superhy-
drophobic coating with epoxy resin and PDMS; the coating recovered the micro- and
nano-rough structure by heating at 85 ◦C for 2 min. Wang et al. [34] prepared a super-
hydrophobic material with n-nineteenthane and polydimethylsiloxane that had a fast
self-healing speed, and the hydrophobic property recovered within 20 min without external
stimulation. Cao et al. [35] prepared self-healing superhydrophobic coatings using ultra-
high polymer–silicone polymers and silica-based nanoparticles, and 10 µm cut damage was
recovered by heating at 120 ◦C for 3 min. These methods improved the mechanical stability
of the coatings to some extent, but the high cost and complicated preparation procedures
make it difficult to promote their use on a large scale.

In order to overcome the shortcomings of existing methods, a simple superhydropho-
bic polyurea coating was proposed in this paper to solve the anti-icing problem of wind
turbine blades. Firstly, TiO2 nanoparticles were modified using per (heptadecyl) fluorode-
cyltriethoxysilane. Then, the superhydrophobic polyurea coating was prepared with PAE
polyurea as a low surface energy substrate. Meanwhile, experimental studies on static
icing, dynamic icing, icing adhesion strength, and an icing–de-icing cycle were conducted
to analyze the anti-icing mechanism of a superhydrophobic polyurea coating and the effect
of material ratio on the anti-icing performance.

2. Experimental Section

Combined with the current state of research at home and abroad, the anti-icing mecha-
nism of superhydrophobic coatings can be expressed in three aspects. First, the superhy-
drophobic coating surface supercooled droplet slippage [36]; second, the superhydrophobic
coating surface can delay the droplet icing process [37]; third, the low surface energy
material of superhydrophobic coating can reduce the adhesion of ice to the substrate [38].
At the same time, the problem that the micro and nanostructures of superhydrophobic
coatings are prone to wear is considered. Therefore, a static icing test, a dynamic icing test,
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an ice adhesion strength test, an icing–de-icing test, and a wear-resistance test were carried
out in this paper.

2.1. Materials

The substrate was a 100 × 100 × 2 mm epoxy resin board. Anhydrous ethanol, butyl
acetate, per (heptadecyl) fluorodecyltriethoxysilane, ammonia, and PAE polyurea were
purchased from Shanghai Aladdin Reagent Co. (Shanghai, China). TiO2 was purchased
from Shanghai Mogo Technology Co. Crestron N75 curing agent was purchased from
Crestron Investment Co. (Shanghai, China). The polyurea resin is polyaspartic acid
ester polyurea, referred to as polyaspartate polyurea or PAE polyurea. PAE polyurea is a
macromolecular polymer obtained by the reaction of aliphatic isocyanates with polyaspartic
acid ester. The molecular structure of polyaspartic acid ester is shown in Figure 1a. The
reaction mechanism of polyaspartic acid ester is shown in Figure 1b [39].
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Figure 1. (a) Polyaspartic acid ester and (b) reaction mechanism of polyaspartic acid ester.

2.2. Coating Preparation

Anhydrous ethanol, TiO2 powder with a particle size of 500 nm, and per (heptade-
cyl) fluorodecyltriethoxysilane (Shanghai Aladdin Reagent Co., Shanghai, China) were
measured to prepare modified TiO2 powder based on the Stober method proposed by
Werner Stöber et al. [40]. The preparation process was shown in Figure 2. Firstly, 50 mL
of anhydrous ethanol was measured in beaker I. A total of 10 g of TiO2 powder with a
particle size of 500 nm was added to beaker I and stirred in a magnetic stirrer at 500 rpm for
10 min. Secondly, 6 g of all (heptadecyl) fluorodecyltriethoxysilane was weighed in beaker
II and stirred for 10 min. Deionized water was heated to 40 ◦C using an electromagnetic
heating stirrer. Then, the liquid from beaker I was poured into a round-bottomed flask, and
the round-bottomed flask was placed in water at 40 ◦C and heating continued. After the
solution in the round-bottomed flask also reached 40 ◦C, heating was continued for 5 min,
adding 30 mL of ammonia to it and heating for 10 min. Slowly, the solution in Beaker II was
added to the heating round-bottomed flask drop by drop and covered, and the reaction was
continued for 2 h. Finally, the hydrophobic TiO2 dispersion was removed and poured it into
a filtering flask lined with filter paper, and a circulating water-type multi-purpose vacuum
pump was connected and pumped until no water drops fell. The powder obtained from the
upper layer was put into a vacuum-drying oven (Beijing Yashilin Testing Equipment Co.,
Beijing, China) and dried for 24 h to obtain the modified TiO2 powder.
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Figure 2. Preparation of modified TiO2.

The sample substrates were a glass-fiber-reinforced epoxy resin board (Anhui Ruifa
Composite Material Manufacturing Co., Anqing, China). The epoxy resin boards were
sanded with 1000 grit sandpaper until there were obvious scratches. Then, the samples
were cleaned with anhydrous ethanol followed by deionized water. The samples were
dried after cleaning to obtain the spare substrate.

The modified TiO2 and butyl acetate were measured in a conical flask and stirred on a
magnetic mixer. Then, PAE polyurea was added dropwise to the conical flask and stirred
for 10 min. Finally, Crestron N75 curing agent (Crestron Investment Co, Shanghai, China)
was added; the mass ratio of PAE polyurea to Crestron N75 curing agent was 2:1, and the
solution was stirred for 10 min to homogeneity. The pressure of an air compressor was set to
0.4 MPa, the solution was poured, and the sample was placed horizontally with the nozzle
20 cm away. The spray gun was moved from one end of the sample to the other end at a
uniform speed, with a 10 s delay before spraying a second time. After spraying, the samples
were vacuum dried for 24 h. Three types of superhydrophobic coatings with different mass
ratios were prepared, i.e., samples B, C, and D. Sample A was the uncoated epoxy resin
board, and samples B’, C’, and D’ were obtained after 250 times of wear and tear of B, C,
and D, respectively, as shown in Table 1. The ratios of modified TiO2 nanoparticles to PAE
polyurea were set to 1.5, 1.2, and 1, respectively. A total of 2~3 g of PAE polyurea was
added while keeping the mass of modified TiO2 at 3 g, as shown in Table 1. Butyl acetate
was used as a solvent, and modified TiO2 was used to increase the roughness of the coating.
When the ratio was proportionally increased, the superhydrophobic coating performance
remained the same, so Table 1 was used as an example for experimental illustration.

Table 1. Samples prepared by spray-coating method.

Samples m (Modified TiO2:Butyl Acetate Solvent:PAE
Polyurea:Crestron N75 Curing Agent)

B 3 g:8 g:2 g:1 g
C 3 g:8 g:2.5 g:1.25 g
D 3 g:8 g:3 g:1.5 g

2.3. Hydrophobic Performance Test

The contact angle and rolling angle of the samples were determined with a SDC350 con-
tact angle measuring instrument (Dongguan Sindin Precision Instrument Co.,
Dongguan, China). After the water drops fell onto the sample surface, the focal length of
the CCD camera lens and the size of the contrasting light source were adjusted to make the
water drops clearly visible. Firstly, the static contact angle and rolling angle of the water
drops were measured by the static sessile drop method. The low-temperature platform
angle was set to 0◦, and a drop of water was dropped. The angle formed between the
natural spreading of the water drop on the solid surface, and the solid surface was the
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contact angle. The volume of the water drops was taken as 3 µL. Each specimen was
measured at five different positions for the contact angle, and the measured values were
averaged. The angle of the stationary cryogenic platform was 0◦, the sample was placed
on the platform, and 3 µL of water droplets added. Slowly, the platform was tilted, and
the angle was recorded, at which the water droplet just rolled off. The test was repeated
5 times, and the average value was taken as the rolling angle of the sample.

2.4. Static Icing Test

Considering the water vapor condensation of small droplets as well as the freezing
of droplets with lower velocities indexed by the complete freezing time t0, the complete
freezing time was defined as the time interval between the beginning of the change in the
transparency of the water droplet and the creation of the ice cone tip [41,42]. The substrate
temperature was −25~−5 ◦C, the volume of water droplets was 10 µL, and the freezing
of the droplet was recorded in real time using a high-speed CCD camera. Five different
locations were selected for each sample for testing.

2.5. Dynamic Icing Test

The water droplets hit the sample at a certain speed, and the indicator was the freezing
time of the droplets, t. The experimental setup consisted of four parts: a refrigeration unit,
an infusion unit, a homemade 30◦ tilting stand, and a computer, as shown in Figure 3.
The substrate temperature was −25~−5 ◦C. The distance between the infusion nozzle,
the sample was controlled to be 10 cm, and the speed was constant, 10~15 drops per
minute. The camera recorded the freezing process of the droplets and the freezing time of
the droplets.
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2.6. Wear Test

A 600-mesh sandpaper sheet was fixed on the ground as the wear surface, and a 100 g
weight was placed above the sample as the wear load. A thin wire was connected to the
sample at one end and a linear reciprocating motor at the other end. The motor was set
to run at a speed of 2 cm/s. The sample was pulled slowly with a thin wire at a uniform
speed and with a force parallel to the direction of the sandpaper, so that the sample and the
weight moved together. One wear event was counted from one end of the sandpaper to the
other end (20 cm). After 50, 100, 150, 200, and 250 times of wear, the macroscopic shape of
the sample was observed, and the contact and rolling angles were measured (see Figure 4).
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2.7. Ice Adhesion Strength Test

Fan blade deicing mainly depends on the shear force. Therefore, the ratio of shear
force to contact area was used in this paper as the ice adhesion strength of wind turbine
blade surface coating. The ice adhesion strength was expressed by δ as follows:

δ = F/S (1)

where F is the shear force exerted to remove the overlying ice, and S is the contact area
between the overlying ice and the object.

A 5 × 5 × 5 cm ice box was used to prepare ice cubes on sample plates. The pull rod of
the ice cover box and the tension sensor were connected, and the sample was fixed at one
end and pulled slowly and uniformly at the other end to separate the measuring device
from the sample surface. The value of the sensor changed to the shear force. After the
samples were dried, the shear force of deicing was measured (see Figure 5). Five groups
were tested at each temperature and averaged. The measured shear force was brought into
Equation (1) to obtain the ice adhesion strength.
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3. Results and Discussion
3.1. Coating Surface Micro-Pattern Analysis

We observed the superhydrophobic surface of the samples with a Hitachi Regulus
8100 field emission scanning electron microscope (Hitachi High-Technologies (Shanghai)
International Trading Co., Shanghai, China). Figure 6 shows the surface morphology of
the coating. There was no significant difference in the SEM morphology of samples B, C,
and D. Here, sample B was used as an example to illustrate. From Figure 6, it was found
that there was a double rough structure on the surface, and the micron-level structure was
the nano-TiO2 particles and PAE polyurea that had been agglomerated, and the nano-level
structure was the TiO2 particles (485.9 nm). This structure made a large amount of air
stored in the void, which could prevent the transition from Cassie state to Wenzel state to a
certain extent and also had strong wear resistance, as shown in Figure 7.
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3.2. Hydrophobicity Test

The contact angle and rolling angle of each sample were obtained by the test, as shown
in Table 2.

Table 2. Hydrophobic properties of samples in the initial state.

Sample Contact Angle (◦) Rolling Angle (◦)

A 68.0 ± 1.34 /
B 161.4 ± 0.82 4.7 ± 0.14
C 158.7 ± 1.07 6.2 ± 0.27
D 154.5 ± 1.16 8.1 ± 0.24

The contact angles of samples B, C, and D were 154.5~161.4◦, and the rolling angles
were 4.7~8.1◦, all of which indicated good superhydrophobic properties. As the content of
the PAE polyurea increased in the sprayed solution of the samples, the magnitude of the
weakening of the hydrophobic properties increased. This relation may have occurred be-
cause the sprayed solution was a homogeneous mixture of the PAE polyurea and modified
TiO2, and when the content of the PAE polyurea was lowered, the surface of the prepared
coating was mostly composed of modified TiO2, which provided sufficient rough structure
and good hydrophobic properties. When the content of PAE polyurea was increased, a
large amount of the PAE polyurea wrapped around the modified TiO2, resulting in a reduc-
tion in the micro–nanostructure of the coating. The surface of the coating consisted of the
micro–nanostructure of the bump and part of the PAE polyurea, resulting in the reduction
in the contact angle. The larger void structure also made the water droplets less likely to
roll, resulting in a larger rolling angle. The direct contact area and adhesion between the
water droplets and the PAE polyurea increased, thereby further reducing the contact angle
and increasing the rolling angle.

3.3. Static Icing Test

The formulations of samples A, B, C, and D preparation formulations in the figure
were shown in Table 1. The complete freezing times of droplets on the surfaces of samples
A, B, C, and D were 4.3 s, 16.8 s, 14.1 s, and 8.2 s at −25 ◦C (see Figure 8). As the
temperature increased, the complete freezing times of droplets all increased accordingly,
and the increased times of samples B, C, and D were larger than the freezing time of sample
A. At −5 ◦C, the complete freezing times of samples A, B, C, and D were 10.5 s, 837 s, 756 s,
and 737 s.

The complete freezing time of water droplets is an important indicator of the anti-
icing performance of superhydrophobic surfaces. The longer the icing time, the more
likely the droplets will be removed from the surface by external forces, such as wind and
vibration. Superhydrophobic coatings have good anti-icing properties and can delay water
condensation for a long time for the following reasons: When water droplets are in a non-
wetting Cassie–Baxter state on a superhydrophobic surface [43–45], the rough structure
traps air on the surface, and the trapped air minimizes the interaction between the droplets
and the solid surface. When the surface is slightly tilted, water droplets tend to slide off [37].
In an actual freezing situation, if the water droplets fall from the surface due to gravity,
the surface will not freeze. In addition, the solid–liquid–gas contact between the surface
and the water droplets can efficiently reduce the heat transfer rate between the water
droplets and the solid, forming a good thermal insulation layer to prevent the droplets
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from freezing [46] and prolonging the freezing time of the droplets. Finally, the existence of
micro- and nanostructured “space gaps” reduces the chance of uneven nucleation of ice
crystals at the solid–liquid interface, decreases the adhesion of the ice layer [47], and thereby
increases the freezing time of water droplets. At a temperature less than −15 ◦C, the growth
of the icing time of each sample was flat, and the growth increased abruptly when the
temperature was greater than −15 ◦C. This difference occurred because the nucleation rate
and the icing process of each sample were highly affected when the temperature was low,
but the advantages of the superhydrophobic coating in hindering nucleation and retarding
the icing rate were highlighted when the temperature was increased [48].
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3.4. Dynamic Icing Test

The dynamic freezing time of water droplets of samples A, B, C, and D all increased
with the increase in substrate temperature, and the freezing times of samples B, C, and D
increased significantly, compared with the flat trend of sample A. The freezing times of
water droplets of samples B, C and D at different temperatures were much larger than that
of sample A, and the freezing time of water droplets of sample B was slightly longer than
that of samples C and D. At a substrate temperature of −25 ◦C, the freezing times of water
droplets of samples A, B, C, and D were 126.6 s, 2388 s, 1934.4 s, and 1857 s, respectively, and
the freezing time of water droplets of superhydrophobic coating was on average 16.27 times
as long as that of the epoxy resin board. When the substrate temperature was −5 ◦C, the
freezing times of water droplets of samples A, B, C, and D were 867.4 s, 8471.7 s, 7454.5 s,
and 7524.6 s, respectively, and the freezing time of water droplets of the superhydrophobic
coating was 9.01 times as long as that of epoxy resin board (see Figure 9).
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When droplets fell on the coating, the droplets tended to slide off the surface due
to the compound micro–nano-level rough surface structure. The droplets immediately
bounced off and split into small droplets the moment they hit the surface from a height,
but these small droplets also slid away smoothly. Continuous droplet scouring accelerates
the wear of the coating’s micro- and nanocomposite rough structure, thereby degrading
the anti-icing performance of the surface. However, the dynamic icing performance is still
advantageous compared to uncoated wind turbine blades.

3.5. Wear Test

Samples B’, C’, and D’ in the figure were obtained from samples B, C, and D in Table 1
after 250 times of wear. As shown in Figure 10, samples B, C, and D were worn 250 times
with contact angles above 150◦ and rolling angles within 10◦, with little change compared
to the initial state and remaining superhydrophobic. After 250 cycles of wear testing, the
water contact angle and rolling angle were quite similar for the three coated samples.
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During the wear test, the coating appeared to be worn and peeled off, and the degree
of wear was related to the content of PAE polyurea. Samples with more PAE polyurea
content, TiO2 particles were wrapped by PAE polyurea, and the cross-linking between
PAE polyurea made the coating firmly bonded to the substrate; while samples with less
PAE polyurea content could not provide a larger adhesion force and were easily destroyed.
Meanwhile, the presence of modified TiO2 particles reduced the contact area between
PAE polyurea and substrate, which reduced the adhesion force between the coating and
substrate. After sandpaper rubbing, the double rough structure of the sample surface was
destroyed, and the bumps composed of small particles on the surface were smoothed; thus,
the air layer disappeared, which, in turn, increased the contact area between the droplets
and the coating, which was macroscopically reflected in the decrease in the water contact
angle. Therefore, sample D had better friction resistance compared with samples A and B.
With the increase in wear times, the growth of contact angle and rolling angle of sample D
was lower than that of samples A and B. The coating exhibited excellent wear resistance
due to the constructed double rough structure, as well as the wear resistance and low
surface energy of PAE polyurea.

The superhydrophobic coating can maintain excellent performance mainly due to the
constructed micro- and nanostructures, and the micro-sized PAE polyurea and nanosized
modified TiO2 in the micro- and nanostructures effectively improve the wear resistance of
the coating. In addition, the modified TiO2 and the PAE polyurea had low surface energy,
which was beneficial for increasing surface roughness.
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3.6. Ice Adhesion Strength

The coating surface had a micro–nanometer rough structure. The actual contact area
between the ice layer and coating was smaller than the apparent contact area. Theoretically,
the adhesion of the ice layer on the superhydrophobic surface should be much smaller than
the adhesion of the ice layer on an ordinary material surface, which was one of the reasons
why superhydrophobic coatings were anti-icing.

As shown in Figure 11, the ice adhesion strengths of ice-covered samples A, B, C, and
D at −5 ◦C were 113.56 kPa, 54.14 kPa, 66.44 kPa, and 84.44 kPa, respectively; at −20 ◦C,
the ice adhesion strengths were 177.36 kPa, 105.92 kPa, 112.56 kPa, and 140.88 kPa. The
ice adhesion strength of the superhydrophobic coating was smaller than that of the epoxy
resin board. One reason for the smaller strength was because, during the icing process, the
micro–nano rough structure voids of the coating were filled by air, the surface maintained
the Cassie state, and the actual contact area between the coating and the ice layer was
smaller [49]. Another reason was that there were many hydroxyl groups on the surface of
the epoxy resin board; thus, many hydrogen bonds were formed between the epoxy resin
and the ice crystals during the icing process, so the icing adhesion force on the surface of
the resin was larger.
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As shown in Figure 12, the initial deicing strengths of samples B, C, and D at −12 ◦C
were 50.44 kPa, 70.56 kPa, and 75 kPa, respectively, all of which were lower than 80 kPa.
With the increase in the number of icing–de-icing cycles, the de-icing strengths of the
samples gradually increased. After eight cycles, the shear strengths of samples B, C and D
increased to 90.64 kPa, 120.28 kPa, and 128.26 kPa, which were 1.8, 1.7, and 1.71 times their
initial shear strengths. The process of de-icing not only reduces part of the hydrophobic
modified TiO2 particles and destroys the low surface energy material on the particles but
deicing also causes damage to the rough structure of the coating due to the pulling effect of
the mechanical external force. Because of the “anchoring” effect of the ice layer in the void,
the pulling damage to the rough structure is serious, resulting in the next ice repellency of
the coating becoming worse when ice is applied, the ice layer is more closely combined
with the coating, and the shear strength increases sharply. After eight cycles, the contact
angle of the coating dropped to 146.2◦~155.9◦, and the rolling angle was 21.1◦~34.0◦, still
retaining some hydrophobicity. After 250 cycles of wear, the effect of the number of cycles
on the shear strength was approximately the same as before wear. Compared with the
pre-wear period, the shear strength increased slightly, and the excellent wear resistance of
the coating was verified.
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4. Summary

In this paper, a robust superhydrophobic polyurea coating with good anti-icing proper-
ties was prepared. When the mass ratio of modified TiO2 particles to PAE polyurea was 1.5,
the coating exhibited the highest superhydrophobic performance and the optimal anti-icing
performance. Compared with the uncoated samples, the static icing and dynamic icing
times of the superhydrophobic coating were prolonged, and the icing adhesion strength
was significantly reduced. This was mainly attributed to the double rough structure of the
surface, which made it difficult for ice to nucleate and reduced the nucleation rate. At the
same time, the presence of a large amount of air in the micro- and nanostructure reduced
the contact area between the ice and the substrate. In addition, the coating had excellent
mechanical stability and maintained certain hydrophobic properties after eight times of
icing–de-icing tests. After 250 times of sandpaper wear tests, it still maintained superhy-
drophobic performance. This study provides theoretical support for the commercialization
of superhydrophobic coatings applied to wind turbine blades.
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