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Abstract: In this paper, the applicability of Ti6Al7Nb as a more biocompatible alternative for bone
and dental implants than Ti6Al4V and pure titanium in terms of corrosion resistance and electro-
chemical inertness is investigated. The chemical inertness and corrosion resistance of the Ti6Al7Nb
biomaterial were characterized by a multi-scale electrochemical approach during immersion in sim-
ulated physiological environments at 37 ◦C comparing its behavior to that of c.p. Ti, Ti6Al4V, and
stainless steel. The establishment of a passive regime for Ti6Al7Nb results from the formation of
a thin layer of metal oxide on the surface of the material which prevents the action of aggressive
species in the physiological medium from direct reaction with the bulk of the alloy. Conventional
electrochemical methods such as potentiodynamic polarization and electrochemical impedance
spectroscopy (EIS) provide quantified information on the surface film resistance and its stability
domain that encompasses the potential range experienced in the human body; unfortunately, these
methods only provide an average estimate of the exposed surface because they lack spatial resolution.
Although local physiological environments of the human body are usually simulated using different
artificial physiological solutions, and changes in the electrochemical response of a metallic material
are observed in each case, similar corrosion resistances have been obtained for Ti6Al7Nb in Hank’s
and Ringer’s solutions after one week of immersion (with a corrosion resistance of the order of
MΩ cm2). Additionally, scanning electrochemical microscopy (SECM) provides in situ chemical
images of reactive metal and passive dielectric surfaces to assess localized corrosion phenomena. In
this way, it was observed that Ti6Al7Nb exhibits a high corrosion resistance consistent with a fairly
stable passive regime that prevents the electron transfer reactions necessary to sustain the metal
dissolution of the bulk biomaterial. Our results support the proposition of this alloy as an efficient
alternative to Ti6Al4V for biomaterial applications.

Keywords: implant biocompatibility; Ti6Al7Nb; corrosion resistance; passivity; electrochemical activity;
simulated physiological environment

1. Introduction

Titanium and titanium-based alloys constitute the main type of biomaterials used for
the replacement of lost or diseased bone and dental parts, due mainly to their low density
(4.7 g/cm3) compared to other metallic biomaterials such as stainless steel (7.9 g/cm3)
or the Co–Cr–Mo alloy (8.3 g/cm3) and their mechanical properties which are closer
to those of bone (e.g., Young’s modulus less than 110 GPa) [1–6]. These are materials
of great chemical inertness, low toxicological effects, and high resistance to corrosion,
which render them highly biocompatible [7–9]. Their chemical inertness and corrosion
resistance derive from the development of a somewhat stable passivity regime due to
the spontaneous formation of a compact oxide layer, generally TiO2, both in air and in
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aqueous solution, thus protecting the bulk material from attack by oxidants present in the
physiological environment [7,10]. Unfortunately, this passivating oxide layer undergoes
localized decomposition in the ubiquitous presence of chloride ions [11–13], as is the case
in physiological and marine environments [14]. The combined effect of these aggressive
ions and electrical polarization enhances passive-layer thinning and dissolution rates and
triggers hydrogen evolution in these materials [15–20]. Therefore, electrochemical methods
are employed to investigate the stability and modification of the protective oxide layers
in simulated physiological conditions [21–24], as well as the protectiveness and effects of
surface-modification procedures in terms of composition and thickness [25–28].

Although Ti6Al4V is the most widely used biomaterial [29], there is growing concern
due to carcinogenic reports related to the release of vanadium [30–32]. More controversial
is the eventual involvement of aluminum in some neurological diseases [32,33], whereas
alloying aluminum benefits microstructure control which is of interest for implantation. As
a result, Ti6Al7Nb has been proposed as a more biocompatible alternative to Ti6Al4V [34].
In fact, Ti6Al4V and Ti6Al7Nb present similar microstructural characteristics consistent
with a Widmansttaten structure formed by coarse β-phase grains containing a lamellar
α-phase [35]. On the other hand, the substitution of vanadium by niobium cations in
the Ti6Al4V alloy has been claimed to improve the passivation properties of the surface,
eliminating the stoichiometric defects (anionic vacancies) present in the titanium-dioxide
layer [36].

The corrosion of metallic implant materials in a physiological environment is due to
electrochemical processes [9,24,34]; that is, distributed local microcells consisting of anodes
(sites where metal oxidation occurs) and cathodes (sites where certain chemical species are
reduced) form because the material is in direct contact with an aqueous electrolytic fluid
phase. The corrosion rate is affected by local chemical heterogeneities in the material which
give rise to a galvanic coupling [10]. Although cathodic and anodic sites may sometimes
occur close to each other on the metal surface, the two reactions cannot occur simultaneously
at the same location. Since these processes are electrochemical in nature, they can be best
studied using electrochemical techniques [23,25,35,37,38]. Unfortunately, the knowledge
gathered until now on the corrosion resistance and stability of the passive regime of
Ti6Al7Nb has been solely obtained using classical electrochemical techniques, including
potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) [26,38].
Given that such techniques are based on signals resulting from averaging the response of
all surface sites, they lack spatial resolution and are thus unable to resolve the contributions
of the various microstructural components of the alloy. Spatially resolved measurements of
the electrochemical activity on the complex microstructures of titanium-based alloys have
become possible by using scanning electrochemical microscopy (SECM) in amperometric
operation [39], a technique that scans a polarizable microelectrode (ME) close to the surface
of the alloy under study. In this way, the kinetics of electron transfer rate reactions and
the dielectric characteristics of passivated nitinol [18,40,41] and Ti6Al4V [42,43] have been
determined as a function of the applied polarization and compared to the properties of
the passive film on pure titanium [19,44]. However, to the best of our knowledge, the
characterization of surface-reactivity distribution by such a procedure remains unexplored
for Ti6Al7Nb until now.

In this paper, we report a multiscale electrochemical characterization of Ti6Al7Nb
in artificial physiological solution at 37 ◦C, comparing its behavior with other commer-
cial titanium-based biomaterials and various stainless steels. Electrochemical character-
ization was performed using potentiodynamic polarization, electrochemical impedance
spectroscopy, and scanning electrochemical microscopy.

2. Materials and Methods
2.1. Materials

Rods of as-cast Ti6Al7Nb were produced by the Rare and Non-Ferrous Metals Institute
(Bucharest, Romania), while commercial rods of c.p. Ti (grade 2) and Ti6Al4V (grade 5)
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were purchased from Nobel Biocare (Kloten, Switzerland). For the sake of comparison,
plates of stainless steel of biomaterial grade 316L (Fe18Cr10Ni3Mo) and nonbiomaterial
grade 304 (Fe18Cr10Ni) were supplied by Goodfellow (Cambridge, UK).

The samples employed for electrochemical characterization were prepared by em-
bedding the metallic material in an inert epoxy resin (Epofix, Struers, Ballerup, Germany)
in order to control the surface area exposed to the test solution, as well as to regenerate
a reproducible clean surface through surface abrasion using a sequence of SiC abrasive
paper ranging from 800 to 4000 in grit size. The samples were degreased and ultrasonically
cleaned in ethanol and then dried under air.

The electrochemical behavior of the different materials was tested in two simulated
physiological media types, namely Ringer’s and Hank’s solutions, thermostatted at 37 ◦C.
Ringer’s solution was prepared with the composition of 8.50 g/L NaCl, 0.400 g/L KCl, and
0.340 g/L CaCl2·H2O, and the composition of Hank’s solution was as follows: 8.00 g/L
NaCl, 0.400 g/L KCl, 0.185 g/L CaCl2·H2O, 0.200 g/L MgSO4·7H2O, 0.0600 g/L Na2HPO4,
0.0460 g/L KH2PO4, and 1.00 g/L glucose. These solutions have been chosen in order to
match the average mineral composition of the physiological fluid in the human body, but
only the latter exhibits pH-buffering characteristics. The redox mediator employed for
electrochemical imaging using SECM was ferrocene-methanol (Sigma Aldrich, St. Louis,
MO, USA), which was added to the simulated physiological solution at a concentration
of 0.5 mM. All solutions were prepared using analytical grade reactants and deionized
Milli-Q®-grade water.

2.2. Methods

Classical electrochemical testing was performed in a three-electrode corrosion cell
using PARSTAT® (model 2263 potentiostat/galvanostat, PowerSUITE® software) from
Princeton Applied Research (Ametek, Berwyn, PA, USA). A saturated calomel electrode
(SCE) and a platinum grid were used as reference and auxiliary electrodes, respectively. All
potential values herein are referenced to SCE unless otherwise indicated. The experimental
testing sequence for each sample consisted of recording the open circuit potential (OCP) of
the material in the test solution for 1 h, followed by recording a series of electrochemical
impedance spectra (EIS) at various elapsed times for up to 1 week. The amplitude of
the sinusoidal AC signal was 10 mV around the OCP at frequencies between 105 and
10−2 Hz. Finally, a cyclic potentiodynamic curve was recorded in the potential range
between −0.25 V vs. OCP and +1.10 V at a scan rate of 1 mV/s. The initial scan direction
was towards more positive potential values.

Microelectrochemical testing was performed using a SECM instrument built by Sen-
solytics (Bochum, Germany) containing an Autolab bipotentiostat (Metrohm Autolab,
Utrecht, Netherlands), as sketched in Figure 1. Amperometric operation in the feedback
mode was performed with a Pt microelectrode (ME) tip of 25 µm in diameter connected to
the WE#1 input of the bipotentiostat using ferrocene-methanol as a redox mediator [45].
The geometrical factors of the ME were characterized by recording a cyclic voltammogram
for the oxidation of the redox mediator in Ringer’s solution modified by the addition of
0.5 mM ferrocene-methanol, as shown in Figure 2. The reference was an Ag/AgCl/KCl
(sat.) electrode, and a Pt wire served as the auxiliary electrode. In SECM operation under
the feedback mode, the variation in the measured stationary diffusion current, ilim = iT,∞,
at the surface of the ME while it is scanned near the surface of the substrate provides
spatially resolved information on the local electrochemical activity of the studied metal.
Normalized current values, I, were determined by dividing the measured current values,
iT, by ilim. The tip potential for the oxidation of the redox mediator was set at +0.50 V, and
the scan rate for 2D mapping was 15 µm/s, and the step size was 15 µm. The operating
tip-substrate distance was established by recording a Z-approach curve on a location over
a resin area close to the metal sample until the current measured at the tip dropped to 50%
of the iT,∞ value recorded in the bulk of the electrolyte (see Figure 2); that is, approximately
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15 µm, which is then the spatial resolution of the 2D maps. In selected experiments, the
polarization of the metal sample was performed using the WE#2 input of the bipotentiostat.
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ferrocene-methanol. ME diameter, 25 µm; scan rate: 50 mV/s.

3. Results

Two simulated physiological solutions were used in this work for the multiscale elec-
trochemical characterization of Ti6Al7Nb at 37 ◦C, namely Ringer’s and Hank’s solutions.
Subsequently, Ringer’s solution was chosen for the comparison of this alloy with samples
of two other alloy groups of materials due to the simpler composition of this medium.
The selection of the two groups of alloys, namely titanium-based and stainless steel (SS)
samples, was motivated by two aims: firstly, to compare the performance of Ti6Al7Nb with
the most widely employed Ti-based biomaterials (c.p. Ti and Ti6Al4V); secondly, stainless
steels were selected mainly to compare the electrochemical characteristics of other passive
systems exhibiting surface-film breakdown within the potential range recorded under
infection conditions in the human body [46]. In the latter case, the selected stainless steels
included biomaterial-quality 316L SS, whereas 304 SS is not adequate for implantation.
The electrochemical results are described first on the basis of conventional electrochemical
testing using open-circuit electrochemical impedance spectroscopy and potentiodynamic
polarization measurements, followed by spatially resolved surface characterization using
scanning electrochemical microscopy.
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3.1. Macroelectrochemical Characterization

Immediately after preparation of the Ti6Al7Nb samples, their open-circuit potential
(OCP) was recorded as a function of time in Ringer’s and Hank’s solutions. As shown
in Figure 3, the OCP values in Hank’s solution stabilize faster at a less noble stationary
potential (ca. −0.30 V vs. SCE), suggesting that in this solution, the corrosion resistance
is lower for this alloy. In this case, the presence of phosphate and carbonate ions can
facilitate the formation of a passive layer more quickly, although with less protective
characteristics. In contrast, after a transient state of electrochemical reactivity during
approximately 250 s after immersion in Ringer’s solution, associated with the formation
and subsequent compaction of the passivating oxide layer, the potential evolves towards
more positive values during the rest of the measurement. This increase in potential reflects
a less active electrochemical behavior of the surface due to the development of a thicker
passive layer until reaching a dynamic equilibrium condition.
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Figure 3. Open-circuit potential (EOCP) versus time for Ti6Al7Nb immersed in a simulated physio-
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The evolution of OCP values towards more positive values due to the formation of a
more protective oxide layer on the Ti6Al7Nb alloy after immersion in Ringer’s solution was
also observed for the other alloys studied in this work. In Figure 4, the potential rises to a
stable value for most materials, albeit without showing the initial drop to more negative
potentials displayed by Ti6Al7Nb, which was followed by a less stationary system for the
rest of the experiment. Both c.p. Ti and 316L SS samples reached a constant potential value
within short times. For 304 SS, although it managed to quickly reach a stable potential
value, it underwent, at certain moments in time, abrupt drops in potential that subsequently
returned to the previous values—a sign of rupture of the passive layer and momentary
loss of its protective character until it is protected again. This is evidence of the dynamic
nature of the oxide layer developed on 304 SS that undergoes transient film breakdown
and metastable pitting in this chloride-containing solution [47]. A similar process occurs
with the Ti6Al4V sample, although to a lesser degree; although the oxide layer formed on
Ti6Al4V is of a more compact and protective nature than those formed on 304 SS and similar
stainless steels [23,35], it also experiences some degree of passivity breakdown in Ringer’s
solution at 37 ◦C, and yet it quickly repairs without showing signs of localized corrosion
propagation [13]. In general, for passivated metallic materials, the higher the OCP of the
metal, the more corrosion resistance they will exhibit. Therefore, the Ti6Al7Nb, c.p. Ti, and
316L SS samples that show the highest OCP values in Figure 4 after 1 h immersion can be
regarded as the most resistant to corrosion in this environment. In contrast, 304 SS exhibits
the lowest potential values, revealing a more electrochemically active surface.
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Next, we studied the evolution of the passive layer formed on the biomaterial sample
in regard to the electrochemical characteristics and eventual aging along immersion in
simulated body fluid for up to 1 week using electrochemical impedance spectroscopy (EIS).
Impedance spectra in Bode form obtained at the open-circuit potential for Ti6Al7Nb in
Ringer’s and Hank’s solutions are given in Figure 5. Regardless of the duration of exposure
and the composition of the testing environment, the impedance spectra are dominated by
phase angles greater than 45◦ in a wide frequency range, a feature typically related to a
capacitive behavior with a high resistance towards electron transfer reactions on the surface.
This capacitive behavior is more evident in the case of Ringer’s solution, where values
close to 80◦ are observed in a wide frequency range. This indicates a broad capacitive
response of the material, which is attributed to the presence of a protective passive layer.
This capacitive behavior improves even more after 1 week of exposure to the medium, as it
extends up to higher frequency ranges (ca. 103 Hz). However, when Ti6Al7Nb is exposed
to Hank’s solution, this capacitive behavior worsens as the exposure time elapses, as both
the phase angle decreases (maximum of only 65◦) and the frequency range in which it
remains constant becomes narrower. Moreover, the appearance of two maxima is better
resolved, a feature showing that the passive layer becomes more porous as the exposure
time progresses. On the other hand, it is observed that in Ringer’s solution, the impedance
modulus at the low frequency limit (effectively determined at 10 mHz) increases as the
exposure time increases, reaching values of 4.9 × 105 Ω cm2 at the end of the experiment.
In contrast, when this material is exposed to Hank’s solution, only small changes in the
low frequency of the impedance modulus can be observed from inspection of Figure 5C, in
spite of the shape of the Bode-phase graphs changing significantly in Figure 5D. Thus, the
impedance modulus shows a maximum of 3.0 × 105 Ω cm2 after one day of exposure and
then slowly decreases to values close to those determined at the beginning of the immersion
(ca. 2.6 × 105 Ω cm2). Although there are certain differences, the electrochemical behavior
of Ti6Al7Nb in both electrolytic media at their OCP is characterized by the presence of
a passive oxide film with dielectric characteristics. These EIS observations are consistent
with the extrapolation of the OCP observations over extended time periods, reflecting
a quick formation of a stable yet poorly protective (eventually porous) passive layer in
carbonate and phosphate-containing Hank’s medium, whereas Ringer’s solution promotes
the progressive development of a protective film with a greater ability to isolate the metal
from the environment.

A more detailed inspection of the spectra shows that the electrochemical behavior of
the alloy is better described by identifying two time constants, an electrochemical behavior
typically found for pure titanium [26,40] and some of its alloys [16,21,22,24,48] (including
Ti6Al7Nb at ambient temperature [35,40]). This is regarded to result from the development
of a bilayer oxide film on the surface that is composed of a relatively thin and very compact
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inner oxide film and a thicker and somewhat porous outer layer [24]. The latter only
partially seals the surface and contains pores that can be filled by the aggressive electrolyte,
leading to the formation of ionic pathways.
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Such physicochemical behavior can be described using the equivalent circuit shown
in Figure 6, and its electrical parameters can be employed to model and quantify the
system [24]. At the highest frequencies, the system behaves purely resistively, and RΩ
describes the uncompensated ohmic resistance of the simulated fluid solution. The subse-
quent increase in both the impedance amplitude and the phase angle in the Bode plots with
decreasing frequency reveals the impedance characteristics arising from the penetration
of the electrolyte into the pores of the outer oxide layer, which is described by the resis-
tance Rp and the capacitance Qp of the outer film. At lower frequencies, the high resistive
behavior of the impedance values is associated with the sealing effect of the inner thin
oxide film characterized by Rb and Qb, respectively. Due to surface roughness and chemical
heterogeneities, constant phase elements (CPE, Q) were used instead of ideal capacitances,
C [49]. Capacitance values can be derived from the CPE parameters (Y0, n) using [50]:

C = (R1−n Y0)1/n (1)

This fitting procedure was employed to determine the values of the impedance pa-
rameters for Ti6Al7Nb samples immersed in Hank’s and Ringer’s solutions for various
exposure times, as listed in Table 1. When the Ti6Al7Nb alloy is immersed in Ringer’s
solution, the values of Rb increase considerably during the first day of exposure, increasing
from an order of 104 Ω cm2 to almost 106 Ω cm2 and then remaining in this order of
magnitude until completing the experimental series. This feature evidences a reinforcement
of the passive layer after completing 1 day of exposure and its permanence with time.
However, when the material is exposed to Hank’s solution, Rb remains somewhat constant
throughout the exposure period at values below 106 Ω cm2, although the highest value is
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observed after 1 day. This feature may indicate that the passive layer is fairly protective
and stable. Nevertheless, Rp significantly differs in both conditions, reaching up to the
105 Ω cm2 range in Ringer’s solution yet never reaching above the kΩ cm2 range in Hank’s
solution. This observation suggests that the outer oxide film is indeed a determinant for
the material’s performance, even behaving as a leaky capacitor (np between 0.60 and 0.88)
when compared to that formed in Ringer’s environment (np always approximately 0.9).
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Table 1. Impedance parameters of Ti6Al7Nb samples in Ringer’s and Hank’s solutions at 37 ◦C.

Solution Immersion
Time/h Rp/kΩ cm2 105 Qp/

S cm−2 sn np
Rb/

kΩ cm2
105 Qb/

S cm−2 sn nb

Ringer’s
1 63.6 ± 13.8 1.85 ± 0.14 0.92 ± 13.8 94.7 ± 43.13 8.82 ± 6.19 1.00 ± 0.32

72 38.8 ± 7.2 1.23 ± 0.07 0.95 ± 0.01 835 ± 59 1.12 ± 0.16 0.84 ± 0.12
168 197 ± 120 1.70 ± 0.06 0.87 ± 0.01 1057 ± 143 0.40 ± 0.14 0.90 ± 0.13

Hank’s
1 0.022 ± 0.020 1.21 ± 1.49 0.88 ± 0.10 721 ± 20 1.01 ±1.48 0.72 ± 0.02

24 1.42 ± 0.20 1.51 ± 0.09 0.73 ± 0.01 1722 ± 109 0.60 ± 0.11 0.92 ± 0.04
168 3.20 ± 0.65 1.34 ± 0.15 0.74 ± 0.01 978 ± 80 1.36 ± 0.16 0.78 ± 0.02

For the sake of comparison, the electrochemical impedance spectroscopy responses of
c.p. Ti, Ti6Al4V, 316L SS and 304 SS were recorded in Ringer’s solution. From a cursory view
of the impedance spectra depicted in Figure 7, the electrochemical response of the stainless
steels can be distinguished from those of the titanium-based materials. In fact, whereas
a mostly capacitive behavior accompanied by high values of the impedance magnitude
values can be observed for c.p. Ti and Ti6Al4V, smaller impedance values and narrower and
shallower capacitive loops are observed for 304 SS and 316L SS. Despite these differentiating
features, two time constants are still observed in all cases, and the EC of Figure 6 can be
employed for the analysis and comparison of the impedance spectra. The values of the
impedance parameters for each material are given in Table 2.

The comparison between the different materials was made on the basis of the pa-
rameter Rb, which accounts for the main barrier to electron transfer (i.e., electrochemical
reactivity) for the surface covered by a compact film; the impact on the total resistance of the
passive layers is shown in Figure 8 in the form of bar diagrams. In most cases, high values
are observed, evidencing the existence of a highly protective passive layer. For the Ti6Al4V
sample, after one day of exposure, the values of Rb increase up to an order of 107 Ω cm2,
but after one week of exposure, they abruptly decrease to approximately 103 Ω cm2, a value
that is even smaller than that observed at the beginning of the experiment (approximately
105 Ω cm2). This fact reveals that although there is some reinforcement of the passive layer
upon immersion in the solution during the initial 24 h, the subsequent decrease must be
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related to the partial dissolution and increased porosity of the oxide layer. In contrast,
in the case of c.p. Ti, Rb gradually increases, indicating that the passive layer becomes
more protective over time, stabilizing even after one week. This behavior is similar to
that described for the Ti6Al7Nb alloy in Ringer’s solution during the initial days, since Rb
increases considerably during the first day of exposure, from approximately 104 Ω cm2 to
almost 106 Ω cm2. Although the individual tendencies of Rb in c.p. Ti and Ti6Al7Nb differ
(i.e., maximum values are found after one week and one day for c.p. Ti and Ti6Al7Nb,
respectively), the total resistance progressively increases over time for both materials.
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Table 2. Impedance parameters of c.p. Ti, Ti6Al4V, 316L SS, and 304 SS samples in Ringer’s solution
at 37 ◦C.

Sample Immersion
Time/h

Rp/
kΩ cm2

105 Qp/
S cm−2 sn np

Rb/
kΩ cm2

105 Qb/
S cm−2 sn nb

c.p. Ti
1 19.6 ± 17.6 6.22 ± 3.01 0.80 ± 0.06 30.2 ± 26.5 32.3 ± 69.4 0.82 ± 0.41

24 69.8 ± 4.1 4.55 ± 0.22 0.81 ± 0.01 98.3 ± 13.1 75.4 ± 11.8 1.00 ± 0.13
168 17.9 ± 7.54 4.16 ± 0.13 0.82 ± 0.12 2027 ± 3070 3.50 ± 0.60 0.40 ± 0.05

Ti6Al4V
1 110 ± 20 4.00 ± 0.16 0.78 ± 0.01 222 ± 44 6.23 ± 3.43 1.00 ± 0.17

24 10.3 ± 5.2 8.14 ± 1.00 0.67 ± 0.01 1050 ± 210 14.8 ± 3.7 1.00 ± 0.10
168 3.48 ± 1.48 5.40 ± 0.98 0.73 ± 0.02 7.49 ± 2.76 14.1 ± 4.94 0.72 ± 0.22

316L SS
1 50.7 ± 10.6 2.53 ± 0.22 0.89 ± 0.01 74.2 ± 5.2 0.94 ± 0.07 0.42 ± 0.09

24 7.54 ± 1.70 3.53 ± 0.16 0.92 ± 0.01 60.5 ± 7.3 6.05 ± 0.56 0.58 ± 0.05
168 6.61 ± 1.16 3.51 ± 0.11 0.92 ± 0.01 72.1 ± 7.1 5.93 ± 0.34 0.53 ± 0.03

304 SS
1 3.69 ± 0.67 12.8 ± 0.54 0.78 ± 0.01 258 ± 38.2 14.2 ± 0.82 0.63 ± 0.02

24 3.43 ± 0.41 40.9 ± 1.8 0.64 ± 0.01 28.3 ± 9.2 164 ± 41 0.64 ± 0.07
168 0.44 ± 0.08 42.0 ± 4.3 0.67 ± 0.01 13.9 ± 1.9 113 ± 6.7 0.57 ± 0.03
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In the case of the stainless steels 304 and 316L, they experience a behavior typical
of a material with a low stability in prolonged exposure. Thus, for 316L SS, although Rb
slightly increases during the first day, it then shows a pronounced decrease after 1 week,
which indicates the dissolution of the passive layer and therefore compromises corrosion
protection. However, in 304 SS, an abrupt decrease in Rb values mainly occurs during the
first day of exposure from approximately 105 Ω cm2 to 104 Ω cm2, which indicates the
incomplete sealing of the passive layer, a trend that is observed to continue at the end of
the one-week exposure to the test solution, although with a greater decrease that maintains
the value of Rb on the order of 104 Ω cm2 during the process of aging.

Finally, upon completing a one-week exposure to the test medium, each of the samples
was subjected to potentiodynamic polarization, and the plots obtained for the Ti6Al7Nb
alloy in Ringer’s and Hank’s media are given in Figure 9; Figure 10 shows the plots obtained
for the other alloys in Ringer’s medium. The electrochemical parameters extracted from
the analysis of the potentiodynamic polarization curves shown in Figures 9 and 10 are
summarized in Table 3.
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Figure 10. Cyclic polarization curves recorded after 1 week of immersion in Ringer’s solution at
37 ◦C for: (red line) c.p. Ti, (black line) Ti6Al7Nb, (dark red line) 316L SS, and (blue line) 304 SS. Scan
rate: 1 mV/s. Arrows indicate the sweep direction for potential.

Table 3. Electrochemical parameters extracted from the potentiodynamic polarization curves shown
in Figures 9 and 10 recorded after 1 week immersion in Ringer’s solution at 37 ◦C for Ti6Al7Nb,
Ti6Al4V, c.p. Ti, 316L SS, and 304 SS samples.

Sample and Solution Ecor, V vs. SCE jcor, A/cm2 jpas, A/cm2 Erep, V vs. SCE

Ti6Al7Nb in Hank’s −0.132 1.25 × 10−8 1.58 × 10−6 −
Ti6Al7Nb in Ringer’s +0.090 1.12 × 10−7 3.16 × 10−6 −
Ti6Al4V in Ringer’s −0.183 9.47 × 10−8 5.01 × 10−7 −
c.p. Ti in Ringer’s −0.498 7.52 × 10−7 1.60 × 10−6 −
316L SS in Ringer’s −0.185 2.78 × 10−7 4.07 × 10−6 +0.654
304 SS in Ringer’s −0.354 4.18 × 10−6 2.04 × 10−5 +0.550

In general, it is possible to observe four domains in the potentiodynamic curves:
first, a current response corresponding to a cathodic behavior due to the reduction of the
dissolved oxygen present, since the tests are carried out in the naturally aerated solution.
As more positive potentials are applied, it is possible to distinguish a cathodic–anodic
transition (that is, the current density changes from a negative to a positive sign), where
the magnitude of the faradaic current decreases until it reaches a minimum at the curve
at a potential known as the corrosion potential (Ecor). At this potential, the potentiostat
does not impose any overvoltage on the system; thus, the material is capable of behaving
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as an electrochemical cell by itself, where anodic processes that involve the oxidation of the
metal and cathodic processes that involve the reduction of oxygen occur simultaneously on
the exposed surface. In this way, both half-reactions compensate for each other, since the
electrons released during metal oxidation are used to reduce oxygen on the metal surface,
leading to a net current close to zero. Therefore, the exchange current due to these anodic
and cathodic processes, jcor, can only be obtained from interpolations on the graph.

In the third region of these curves, as more positive potentials are applied to the sam-
ples, they experience anodic behavior; that is, the material oxidizes, increasing the Faradaic
current and generating corrosion products capable of creating a passive layer on the surface
of the alloy that acts as a dielectric barrier beyond a certain point. This gives rise to a plat-
form where the current density values remain constant in this passivity regime (jpas), even
though the polarization increases, thus exhibiting resistance to corrosion. However, such a
passive state with a stationary current regime is not found for the two stainless steels, thus
they are not completely passivated. In addition, as the potential increases, activation events
corresponding to metastable pitting and subsequent repassivation can be observed on their
polarization curves. In contrast, the best behavior in terms of passivation is observed with
the Ti6Al7Nb alloy, since it attains the lowest jpas values both in Ringer’s and in Hank’s
media, and these values remain nearly constant throughout the polarization procedure.

The stability of the stationary passive regime attained by Ti6Al7Nb was further
checked by allowing the potential excursion to extend to even higher potential values
for the sample immersed in Hank’s solution. In this way, the eventual occurrence of tran-
sient passive regime breakdown could be monitored. Indeed, the occurrence of a transient
breakdown of the passive layer occurred at approximately +1.20 V, as indicated by an
event of increased current that subsequently decayed back to the stationary values as the
surface became passivated again within a short time and then remained passive up to
+1.60 V. Although these anodic potential values are more positive than the highest value
recorded in the human body under infection conditions to date (ca. +0.71 V vs. SCE) [42],
and the surface of the alloy may be regarded to remain passive, this observation confirms
the dynamic nature and transient breaking and rebuilding of the oxide layer in a simulated
physiological solution at body temperature that was previously found for the Ti6Al4V
alloy [12] and even c.p. Ti [13]. This feature must be taken into account for adequate
biocompatibility assessment because transient breakdown of the passive layer is due to
the occurrence of metastable pitting [47], and it may account for a certain amount of metal
release despite most of the material remaining passive [10].

Potential reversal allows knowledge of the regeneration capacity of the oxide layer
formed on the metal surface. Although hysteresis loops are recorded in all cases, a ma-
jor difference is observed between the titanium-based materials and the stainless steels.
Namely, positive hysteresis cycles are found for the latter; that is, the anodic current density
values are higher in the negative-direction scan than they were measured to be during the
previous anodic sweep, indicating that the localized damage produced in the passive layer is
maintained, leading to a greater surface of the steel exposed to the electrolyte, and the mate-
rial continues corroding in the test solution at a greater rate than during the previous sweep.
In this way, a repassivation potential (Erep) can be identified for both steels, as indicated in
Table 3. Therefore, the oxide layer present on the steel samples cannot self-repair, although
the magnitude of the electrical polarization is decreased. Conversely, for the titanium-based
alloys in general, and more particularly for Ti6Al7Nb in both test media types, the hysteresis
loop is such that significantly smaller currents are measured during the negative-direction
sweep compared to the previous anodic scan. Therefore, the corrosion rate associated with
the passive regime is smaller during the subsequent cathodic scan than before the passive
layer was generated, indicating effective protection of the metal surface.

3.2. Scanning Electrochemical Microscopy Measurements

Amperometric operation in SECM consists of plotting the change in the current mea-
sured iT at the biased microelectrode ME that occurs when it is moved close to the surface
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of the biomaterial sample immersed in a simulated physiological solution containing an
added redox mediator (ferrocene-methanol in this work). In this way, the SECM maps
depict the changes in local electrochemical reactivity associated with the structure of the
material as a function of the electrical polarization applied to it. For the sake of simplicity,
the simpler Ringer’s solution was chosen for the characterization of the passive regime of
Ti6Al7Nb, and ferrocene-methanol added to the test solution at a 0.5-mM concentration
was employed as a redox mediator by polarizing the ME tip at +0.50 V. For comparative
purposes, a sample of 304 SS was imaged under the same experimental conditions because
it undergoes localized passivity breakdown and pitting corrosion within the potential range
of the passive regime of Ti6Al7Nb (as shown by the potentiodynamic curves in Figure 10).
The changes associated with passivity breakdown and the nucleation of a corrosion pit
for 304 SS in aqueous solution at ambient temperature have already been imaged using
SECM [51,52].

SECM maps of the surfaces were recorded at different potentials applied to the samples,
in a four-electrode configuration where both the tip of the ME and the samples themselves
acted as working electrodes. Scans of the surfaces were conducted at a fixed height
(approximately 15 µm), in the X−Y directions of the plane at a speed of 15 µm/s. The tip
potential was set at +0.50 V vs. Ag/AgCl/KCl (sat.). First, the SECM map was obtained
with the samples left unpolarized, effectively at their spontaneous OCP; then, the potential
applied to the studied alloy was varied from −0.25 V to +1.00 V vs. Ag/AgCl/KCl (sat.)
in 50-mV intervals. Figures 11 and 12 show selected SECM maps recorded at random
locations on the Ti6Al7Nb and 304 SS surfaces immersed in Ringer’s solution at 37 ◦C,
respectively. The maps are plotted using the normalized current values, I, determined at
each location in the measuring grid.
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For both the Ti6Al7Nb alloy and the 304 SS, the current variations mostly reflect the 
topographic influence when the map was recorded while the materials were left unpolar-
ized at their corresponding OCP value, as evidenced by normalized current values lower 
than one. This reveals that, despite the spontaneously attained potential being sufficiently 
cathodic (cf. Table 3) to promote the regeneration of the ferrocene-methanol and the pro-
motion of positive feedback, the passive layer hinders any electrochemical reaction of the 
redox mediator. Therefore, only a very small tilt of the samples that could not be com-
pletely compensated can be observed in Figures 11A and 12A. However, it must be ob-
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Figure 11. Images generated by SECM of a Ti6Al7Nb sample immersed in Ringer’s solution + 0.5 mM
ferrocene-methanol at 37 ◦C while (A) left unpolarized (i.e., at its corresponding OCP value), and
(B–F) polarized using the WE#2 connection of the bipotentiostat built into the instrument. Substrate
potential: (B) −0.20, (C) 0, (D) +0.20, (E) +0.40, and (F) +0.60 V vs. Ag/AgCl/KCl (sat.). Tip–substrate
distance: 15 µm; scan rate: 15 µm/s; tip potential: +0.50 V vs. Ag/AgCl/KCl (sat.). The images
represent a scan of 100 µm × 100 µm along the X and Y directions.

For both the Ti6Al7Nb alloy and the 304 SS, the current variations mostly reflect the
topographic influence when the map was recorded while the materials were left unpolar-
ized at their corresponding OCP value, as evidenced by normalized current values lower
than one. This reveals that, despite the spontaneously attained potential being sufficiently
cathodic (cf. Table 3) to promote the regeneration of the ferrocene-methanol and the pro-
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motion of positive feedback, the passive layer hinders any electrochemical reaction of the
redox mediator. Therefore, only a very small tilt of the samples that could not be completely
compensated can be observed in Figures 11A and 12A. However, it must be observed that
the contribution of this small tip due to sample positioning cannot be observed in any of
the remaining maps, and they can therefore be considered to depict local variations in
the electrochemical response due to the combination of sample polarization and eventual
heterogeneous reactivity.
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Figure 12. Images generated by SECM of a 304 SS sample immersed in Ringer’s solution + 0.5 mM
ferrocene-methanol at 37 ◦C while (A) left unpolarized (i.e., at its corresponding OCP value), and
(B–F) polarized using the WE#2 connection of the bipotentiostat built into the instrument. Substrate
potential: (B) −0.25, (C) −0.20, (D) 0, (E) +0.20, and (F) +0.40 V vs. Ag/AgCl/KCl (sat.). Tip–substrate
distance: 15 µm; scan rate: 15 µm/s; tip potential: +0.50 V vs. Ag/AgCl/KCl (sat.). The images
represent a scan of 100 µm × 100 µm along the X and Y directions.

When a negative potential is applied to the samples, the normalized current measured
at the tip becomes greater than unity, indicating the occurrence of positive feedback on both
surfaces; this occurs as a consequence of both surfaces becoming more electrochemically
active than at the OCP, thus being able to regenerate the redox mediator consumed at the
ME tip. This is observed in both samples for the application of substrate potentials of −0.20
and 0.00 V vs. Ag/AgCl/KCl (sat.) (cf. Figures 11B,C and 12C,D). Interestingly, the 304 SS
sample still shows a mostly inert surface towards mediator regeneration at the applied
potential of –0.25 V vs. Ag/AgCl/KCl (sat.) (Figure 12B), reflecting a thicker oxide layer.
Such electrochemical activation is greater and more heterogeneously distributed in steel
than in the titanium-based alloy, as reflected by larger current values. In addition, on the
SECM map recorded for 304 SS, it is possible to observe localized areas of high activity,
suggesting local activation. Likewise, these high values may also indicate the release of
Fe2+ ions from the surface that are detected by the ME surface at the same potential through
a generation-collection mode [51,52], which suggests the initiation of degradative processes
on the steel. With the increase in the potential applied to the substrate towards positive
values, the currents measured at the tip decrease progressively until values close to those
obtained at the OCP are measured again. This feature is observed when the samples are
subjected to a potential ≥+0.20 V vs. Ag/AgCl/KCl (sat.), although a certain amount of
localized electrochemical activity remains on 304 SS due to the formation of a less stable
passive layer and the possible release of iron ions. The application of a substrate potential
in excess of +0.25 V vs. Ag/AgCl/KCl (sat.) suppresses the positive feedback effect, as the
surfaces do not have a sufficiently cathodic potential to regenerate the mediator. Finally,
further polarization at more positive potentials may lead to the establishment of redox
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competition for the mediator between the tip and the substrate, and its magnitude depends
on the conductivity of the surface layers present on the alloys. This explains the small
currents measured at the tip in Figures 11E,F and 12F. Most importantly, no localized
domains of enhanced electrochemical activity are detected at any applied potential for
the Ti6Al7Nb sample, supporting that the oxide layer responsible for its passive regime
is compact and mostly homogeneous on the micrometer scale. Furthermore, it becomes
progressively more insulating (i.e., hindering redox mediator regeneration) as it thickens
when more positive potentials, within the potential range reached in the human body, are
applied. Conversely, competition between oxide layer growth and localized breakdown
leading to the nucleation of corrosion pits occurred for 304 SS, indicating that the passive
layer is not effective for corrosion protection with increasing anodic polarization.

4. Conclusions

All of the alloys studied in this work are capable of forming an oxide layer, although
significant differences can be distinguished in their compactness and corrosion resistance
on the basis of conventional electrochemical characterization. Since the electrochemical
impedance spectra could be satisfactorily fitted using two time constants, the formation
of bilayer oxide films with different sealing characteristics was considered. Among them,
the titanium-based materials exhibited the most protective oxide layers (higher resistance
values) in Ringer’s solution at 37 ◦C, which was employed as a testing media for the
comparison of the different materials. Interestingly, although the choice of physiological
solution has an impact on the compactness of the oxide film spontaneously formed after
immersion of a fresh polished surface, Ti6Al7Nb shows quite similar total resistance
values—albeit with different contributions of the inner and outer layers.

The observations drawn from the electrochemical impedance studies are supported
by the cyclic polarization curve measurements, despite the perturbation effect of sample
polarization. In particular, the Ti6Al7Nb alloy exhibited polarization plots with a negative
hysteresis curve, demonstrating that this material can achieve a stable passive behavior
within the range of electrical potentials that can be experienced in the human body. Al-
though the oxide film is macroscopically stable, the occurrence of localized breakdown and
repair events has also been shown.

The SECM results show that the oxide layer formed on the Ti6Al7Nb alloy is more
homogeneous and less conductive than that generated on 304 SS, with the observation of
lower electrochemical activities at potential values of E ≥ +0.20 V vs. Ag/AgCl/KCl (sat.).
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