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Abstract: Sulfamethoxazole (SMX) contamination in large quantities of wastewater can cause poten-
tial environmental problems. Due to difficulty in degrading SMX by natural processes, it is necessary
to develop a novel technology to solve this problem. Advanced oxidation processes (AOPs) have
been identified as methods with a high potential to treat recalcitrant organic pollutants. The nanoscale
schwertmannite (nano-SWT) was prepared with an indoor-temperature synthesis method facilitated
by polyvinylpyrrolidone (PVP). In this study, we performed a reaction of the nano-SWT materials
with Fenton-like catalysts for SMX degradation in hydrogen peroxide (H2O2) media. The findings
showed that the nano-SWT prepared by addition of 0.1 g·L−1 PVP (nano-SWT-n, n = 0.1) could
degrade 92.5% of the SMX within 90 min at indoor temperature, which was due to the nano-SWT
providing abundant reaction sites at the solid/solution interfaces. Additionally, SMX could be highly
mineralized with 75% TOC removal and H2O2 was efficiently utilized during the nano-SWT/H2O2

process. In addition, after six cycles of Fenton-like degradation, the nano-SWT remained stable
and reusable as a Fenton-like catalyst for SMX degradation. The nano-SWT performed well as a
catalyst for SMX degradation. Additionally, this work provides a feasible environmental purification
approach for the efficient degradation of SMX through the use of nanoscale schwertmannite as a
catalyst in heterogeneous Fenton-like systems.

Keywords: Fenton-like; sulfamethoxazole; nanoscale schwertmannite; degradation

1. Introduction

A crucial sulfonamide antibacterial agent known as sulfamethoxazole (SMX) is effec-
tive in treating people and animals with illnesses and infections [1,2]. As SMX is widely
used in the areas of industry and home activities, large quantities of wastewater that con-
tain SMX will be produced each year. However, due to its limited biodegradability, even
minute levels of SMX will lead to severe environmental problems and its degradation in the
environment is difficult [1,3]. For example, SMX can impede aquatic organism activity or
cause changes in microorganisms that lead to antibiotic resistance [4]. The German Federal
Environment Agency suggests a threshold of 100 ng·L−1 for the introduction of antibiotics
into groundwater [5,6]. Hence, an effective strategy to remove SMX from wastewater or
groundwater needs to be developed.

Advanced oxidation processes (AOPs) have been deemed a very popular method
for treating recalcitrant organic compounds through generating abundant, highly active
hydroxyl radicals (•OH), as it has a rapid rate of oxidation, a broad range of applications,
and a high level of mineralization [7–9]. In the presence of Fe(II) and H2O2, the Fenton
reaction is regarded as one of the most efficient AOPs [9,10], and is used for its simple
operation, high efficiency, and cost-effective production of •OH. However, as a wastewater
treatment process, the Fenton reaction is severely limited by the high H2O2 consumption,
the amount of ferric hydroxide sludge, and the difficulty in recovering the catalyst after
it has been used [11–13]. Heterogeneous catalysts for Fenton-like reactions have been
thoroughly investigated in order to solve these problems [14,15].
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Schwertmannite (Fe8O8(OH)8−2x(SO4)x, 1.75 ≥ x ≥ 1) is a secondary Fe(III)-
oxyhydroxysulfate mineral that is frequently found in acidic mining effluent, acid
sulphate soils, or the leachate of acidic sludge [2,16,17]. Generally, weakly crystalline
mineral particles with spherical shapes that range in size from nanometers to microns
are seen in schwertmannite [16,17]. In recent years, among the heterogeneous Fenton-
like reactions, schwertmannite can serve as a catalyst and shows excellent catalytic
performance [17–20]. Furthermore, both chemogenic and biogenic schwertmannites
have been used as catalysts to degrade organic pollutants in heterogeneous Fenton-like
reactions under difficult conditions [21,22]. It is important to note that chemically
synthesized schwertmannite (ferrous ions are readily oxidized by hydrogen perox-
ide) typically takes the shape of micron-sized spherical aggregates with diminished
catalytic activity and specific surface area. Higher H2O2 concentrations or catalyst
dosages are necessary to ensure the effective removal of organic contaminants since
the aggregation of schwertmannite particles may significantly impede oxidation pro-
cesses [23]. Hence, on the basis of synthetic design methodologies, it is extremely
important to investigate the connection between the morphology/micro-environment
and the catalytic capabilities of schwertmannite in Fenton-like systems.

Therefore, the aim of this study was to investigate the feasibility of nanoscale schw-
ertmannite (nano-SWT) as Fenton-like catalysts for SMX degradation in the presence of
H2O2 (nano-SWT system). The main objectives were to: (1) prepare nano-SWT through
the addition of polyvinylpyrrolidone (PVP), which is a type of organic surfactant that
is inexpensive, and characterize it; (2) investigate the SMX degradation efficiency using
nano-SWT as a Fenton-like catalyst in different conditions (such as nano-SWT dosage,
H2O2 concentration, or initial pH); (3) explore the SMX mineralization degree and the
utilization efficiency of H2O2 during the nano-SWT/H2O2 process; (4) study the stability
and reusability of the nano-SWT as a Fenton-like catalyst for SMX degradation after six
cycles of usage. This work can provide a feasible environmental purification approach for
the efficient degradation of SMX through the use of nanoscale schwertmannite as a catalyst
in heterogeneous Fenton-like systems.

2. Materials and Methods
2.1. Chemicals

Sulfamethoxazole (SMX, >99%) was obtained from Aladdin Co., Ltd. (Shanghai,
China). Polyvinylpyrrolidone (PVP, K30) was purchased from Solarbio Co., Ltd. (Beijing,
China). Methanol, acetonitrile, acetic acid, and formic acid were supplied by Tedia Co.,
Ltd. (Shanghai, China). Hydrogen peroxide (H2O2, >99.9%), sulfuric acid (H2SO4, >99%),
sodium hydroxide (NaOH, >99%), ferrous sulfate heptahydrate (Fe2SO4•7H2O, >99%),
and other analytical-grade chemicals were purchased from Shanghai Sinopharm Chemical
Reagent Co. Ltd. based in China, without further purification. Milli-Q water was employed
in this work to prepare the solutions and suspensions that were used.

2.2. Preparation and Characterization of Nano-SWT

Schwertmannite was prepared using the technique outlined in the literature [1]. Sim-
ply, in 100 mL deionized water, 5.56 g of FeSO4•7H2O and PVP (0, 0.1, 0.25 g) were
dissolved. Then, the solution pH was raised to 3.0 using 1.0 M H2SO4. After that,
3.0 mL of H2O2 (v/v 30%) was gradually added to the aforementioned mixture at a rate of
0.3 mL/min using an injection pump while stirring for 24 h at room temperature. The
resulting mixture was centrifuged at 10,000 rpm for five minutes, and water and ethanol
were used to rinse the precipitates three times. After that, the precipitates were dried
under vacuum at 60 ◦C to achieve a constant weight. Then, the sample were recorded as
nano-SWT-n (n = 0, 0.1, and 0.25), where n is the amount of PVP used.

Using an X-ray diffractometer (XRD, 40 kV, 40 mA, ThermoFisher XTRA, Waltham,
MA, USA), the crystal structure of the nano-SWT was analyzed. Using a scanning electron
microscope (SEM, Hitachi S-4700, Tokyo, Japan) with an accelerating voltage of 20 kV, the
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morphology of the nano-SWT was determined. The functional groups of the nano-SWT
were examined using Fourier transform infrared spectroscopy (FTIR, Nicolet iS50, Ther-
moFisher, Waltham, MA, USA). The specific surface area of the nano-SWT was measured
using the Brunauer–Emmett–Teller (BET, TriStarII 3020, Micromeritics, Norcross, GA, USA)
via N2 adsorption–desorption method. The sulfur (S) and iron (Fe) contents of the nano-
SWT were examined through inductively coupled plasma atomic emission spectrometry
(ICP–OES, Agilent 720, Santa Clara, CA, USA).

2.3. Catalytic Degradation of SMX

The SMX degradation experiments were conducted in a 250 mL flask without energy
input, and this procedure was regulated using the methods of previous research [2]. Briefly,
a specific amount of the nano-SWT was added into 100 mL of a SMX solution. Then, NaOH
(0.1 mM) or H2SO4 (0.1 mM) were used to bring the original pH levels of the suspensions
to the appropriate levels. After that, all suspensions in flasks were mixed under magnetic
stirring at 180 rpm, and the reaction temperature was controlled at 25 ◦C for half an hour
to achieve adsorption equilibrium. By adding a specific amount of H2O2 (v/v 30%) to
the aforementioned solution, the reaction was then started. To filter 0.5 mL suspension
samples from each flask at predetermined intervals, a 0.22 µm membrane filter was used.
To stop SMX from reacting with the reactive species, 0.5 mL of methanol was added to the
filtrate. Afterward, the concentration of SMX was determined using the treated filtrates.
No quenching agent was added before the TOC analysis; the filtrates were quickly cooled
down using ice packs for the TOC measurement. After the SMX degradation, suspensions
of the nano-SWT were gathered by filtration via a 0.22 µm filter paper and subjected to
reusability experiments using Milli-Q water. Duplicates of each degradation experiment
were run.

The following equation was used to compute the SMX degradation efficiency:

R =
(C0 − Ct)

C0
× 100%

In this equation, Ct represents the concentration of SMX at sampling time t, C0 repre-
sents the initial concentration of SMX, and R represents the degradation efficiency.

2.4. Analytical Methods

High Performance Liquid Chromatography (HPLC, Agilent, Santa Clara, CA, USA),
outfitted with a UV detector and a C18 chromatographic column (250 mm × 4.6 mm, 5 µm),
was used to determine the concentration of SMX. The SMX concentration was analyzed
in an eluent comprised of acetonitrile and 0.1% formic acid with volume ratio of 55:45
(v/v) at UV 270 nm. The eluent flowed at a rate of 1 mL per minute [2]. Shimadzu TOC-
LCPH/CPN analyzers were used to calculate the total organic carbon (TOC) [17]. The
titanium sulfate method was used to measure the concentration of H2O2 by combining
H2SO4 with K2TiO(C2O4)2 to create an orange complex with a maximum absorbance at
400 nm [23].

3. Results
3.1. Characterizations of Prepared Schwertmannite

According to Figure 1, the XRD patterns of the three prepared iron precipitates revealed
that seven typical broad characteristic peaks were observed in the diffraction spectrum of
the weak crystal structure (2θ: 18.2, 26.3, 35.2, 39.5, 46.5, 55.3, 61.3◦), which are all in agree-
ment with the standard diffraction data of schwertmannite (PDF#47-1775) [23]. This result
indicated the three iron precipitates that were created consisted of pure schwertmannite
particles. The surface morphology of the three schwertmannite materials (nano-SWT-n,
n = 0, 0.1, 0.25) was investigated using scanning electron microscopy (SEM) techniques
(Figure 2). The SEM showed that the nano-SWT-0 surface was relatively smooth, while the
nano-SWT-0.1 and nano-SWT-0.25 showed rather rough hierarchical structures. Moreover,
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at diameters of about 1.0 µm, the nano-SWT-0 particles were considerably agglomerated.
Nevertheless, with sizes ranging from 50 to 200 nm, the nano-SWT-0.1 and nano-SWT-0.25
particles were evenly scattered nanoparticles, which may be due to the lowered surface
energy of the nano-SWT and the surfactant-like behavior of PVP [23]. Evidently, the PVP
coating decreased the size of the nanoparticles, causing them to aggregate and form a loose
spherical structure that produced a lot of active sites in the nano-SWT.
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Figure 1. XRD analyses of nano-SWT-n (n = 0, 0.1, 0.25).

The chemical formula of the nano-SWT-n (n = 0~0.25) were determined as Fe8O8
(OH)5.92(SO4)1.14, Fe8O8(OH)5.84(SO4)1.08, and Fe8O8(OH)5.78(SO4)1.11, respectively
(Table 1), which are consistent with those reported by previous studies [17,24–26].
In these schwertmannite samples, the Fe/S molar ratio ranged from 7.03 to 7.44 with
nano-SWT-0.1 having the highest Fe/S ratio of 7.44 and having more hydroxyl (OH)
and fewer sulphate (SO4

2−) groups in its structure (Table 1). These findings indi-
cated that nano-SWT-0.1 had a greater surface area available since the aggregation of
nanoparticles was reduced [23,27].

Table 1. Sulfur (S) and iron (Fe) contents, as well as BET surface areas in nano-SWT.

Sample Fe (wt.%) S (wt.%) Molar Ratio (Fe/S) n Formulae Bet (m2/g)

Nano-SWT-0 46.88 6.67 7.03 1.14 Fe8O8(OH)5.92(SO4)1.14 4.58
Nano-SWT-0.1 39.73 5.34 7.44 1.08 Fe8O8(OH)5.84(SO4)1.08 130.12

Nano-SWT-0.25 30.08 4.17 7.21 1.11 Fe8O8(OH)5.78(SO4)1.11 85.40

Indeed, the study showed that the specific surface areas of the nano-SWT-n (n = 0~0.25)
were 4.58, 130.12, and 85.40 m2·g−1, respectively. It is clear that the introduction of PVP
is conducive to increasing the BET surface area. Meanwhile, the optimal nano-SWT-0.1
would be produced if the amount of the PVP surfactant could be controlled. More catalytic
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active sites might be provided by the relatively high BET surface area of the nano-SWT,
which would be advantageous for increasing catalytic efficiency [28–30]. Moreover, the
N2 adsorption–desorption isotherms of the nano-SWT-n (n = 0~0.25) were determined,
and these three samples represented type IV isotherms with hysteresis loops (Figure 3),
indicating that these nanoparticles formed a porous structure [31,32].
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3.2. Catalytic Performances of Catalyst for SMX Degradation

The SMX degradation conditions in the nano-SWT/H2O2 system were optimized
under a variety of significant factors, such as nano-SWT dosage, H2O2 concentration,
and initial pH of the reaction solution. The impact of nano-SWT dosage on the catalytic
degradation of SMX was examined. According to Figure 4a, when the dosage of the
nano-SWT was increased from 0.1 g·L−1 to 0.2 g·L−1 within 90 min of the reaction, the
degradation efficiency of SMX rose from 72.1% to 92.5%. The findings showed that the
increased number of higher dosages of ≡Fe(OH)2+ on nano-SWT led to the production of
more ≡Fe2+ and •OH [2,17,33], which was the cause of the better SMX degrading efficiency.
However, when the nano-SWT loading was raised to 0.5 g·L−1, the considerable “screen
effect” on SMX degradation in the nano-SWT/H2O2 system prevented a significant increase
in SMX degradation efficiency [34,35]. Thus, 0.2 g·L−1 of nano-SWT was appropriate for
SMX degradation in the nano-SWT/H2O2 system.
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Figure 4. The degradation efficiency of SMX at various catalyst (nano-SWT-0.1) dosages (a), H2O2

concentrations (b), initial pH values (c), and columns marked with the same letter in the group of
SMX degradation efficiency do not differ significantly from each other at p < 0.05, and TOC removal
and H2O2 decomposition (d).

Investigations were conducted into how H2O2 concentration affected the rate of SMX
degradation in the nano-SWT/H2O2 system. Figure 4b demonstrates that the degradation
efficiency of SMX noticeably increased from 36.1% to 92.2% in the nano-SWT/H2O2 system
as the H2O2 concentration was increased from 1 mM to 5 mM. This phenomenon signified
that more reactive species might be generated at higher H2O2 concentrations in the nano-
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SWT/H2O2 system. Nevertheless, the subsequent increase in H2O2 concentration from
5 mM to 10 mM caused the SMX degradation efficiency in the nano-SWT/H2O2 system
to drop from 92.5% to 83.1%. The result can be explained by the fact that reactive species
were mixed again or quenched by excess H2O2 [2,18,36]; similar phenomena appeared
in previous studies [2,17]. The ideal H2O2 concentration for the SMX degradation in the
nano-SWT/H2O2 system was 40 µM because too much H2O2 would undoubtedly increase
the treatment cost.

Because pH affects the surface charge of catalysts and SMX molecules, as well as the
conversion of reactive species [37,38], the nano-SWT was also investigated for catalytic
activity in the pH range of 2 to 9. Figure 4c shows that the catalytic activities for the
degradation of SMX in acidic conditions (pH = 2, 3, 5) was more efficient than that in
neutral (pH = 7) or alkaline (pH = 9) conditions. The efficiency of SMX degradation reached
a high at pH 3. The following points may help to explain the findings. Previous studies
have shown that Sch has a pHzpc of 5.3, and SMX has a pKa,1 and pKa,2 of 1.6 and
5.7, respectively [33,39]. Hence, the surface charge of the nano-SWT increased when the
pH was lowered from 5 to 2, and the SMX molecule mostly existed in the neutral phase
(pKa,1 < pH < pKa,2). Based on the above theory, the nano-SWT electrostatically adsorbs
SMX and H2O2, thus facilitating the heterogeneous activation of H2O2 to the reactive
species for SMX degradation. The electrostatic repulsion between the nano-SWT and the
SMX molecule occurred as the pH rose from 5 to 7 or 9, resulting in the nano-SWT becoming
negatively charged (pH > pHzpc) and SMX entering an anionic phase (pH > pKa,2). This
prevented the heterogeneous activation of H2O2 to the reactive species for SMX degradation.
It is worth noting that at an initial pH of 7 or 9, the SMX degradation efficiencies were
35.8% and 36.8% in the nano-SWT/H2O2 process, respectively, and there was no difference
(p > 0.05) between the two conditions. This result can be explained that, in the nano-
SWT/H2O2 process, when the pH value drops from 7 or 9 to close to 4 [2], it creates a
more acidic environment for the nano-SWT to adsorb and activate H2O2 into the reactive
species for the degradation of SMX. Meanwhile, the consumption of OH− from H2O by the
nano-SWT at pH > pHzpc may be the source of the pH drop in the solution.

Moreover, the degradation efficiency of SMX at pH 2 (80.1%) was slightly lower than
that of pH 3 (92.2%). A possible reason is that the degradation of SMX may be converted to
reactive species by various solution pH levels [40,41]. At pH 2, •OH may be scavenged
more readily by H+ in the nano-SWT/H2O2 system [42,43], whereas at pH 5 to 9, the
conversion of •OH was facilitated, but the redox potential of •OH was reduced [44].
Based on the above results, the nano-SWT demonstrated excellent catalytic activity under
acidic conditions (pH 2–5) with its SMX degradation efficiency ranging from 49.5% to
92.5% after only 90 min. Moreover, the optimal environments for SMX degradation in
this nano-SWT/H2O2 system were H2O2 5.0 mM, schwertmannite 0.2 g·L−1, and pH 3.
The SMX mineralization degree in the nano-SWT/H2O2 system was assessed by TOC
removal. Figure 4d shows that the nano-SWT/H2O2 system removed 75% of the TOC
within 90 min, and this result further proved that the nano-SWT/H2O2 system has the
ability to degrade SMX and mineralize it efficiently. The result implied that the •OH from
the nano-SWT/H2O2 system promoted the degradation of SMX and its intermediates, such
as 4-aminobenzenesulfonic acid, 4-nitro sulfamethoxazole, and nitrosobenzene [2]. The
concentration of H2O2 steadily dropped in line with the decline in TOC. H2O2 utilization
efficiency can be reflected by the ratio of the stoichiometric consumption of H2O2 to the
actual consumption for the degradation of SMX during the nano-SWT/H2O2 process. After
almost all the SMX disappeared from the nano-SWT/H2O2 system, the utilization efficiency
of H2O2 reached up to 60.5%, which was much higher than of Sch in the degradation of
some organic pollutants, such as nitrobenzene and phenanthrene, through Fenton-like
reactions [17,22].
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3.3. Stability and Reusability of the Nano-SWT in the SMX Degradation Process

The long-term stability and reusability of the nano-SWT in the SMX degradation
process should also be taken into account from an application standpoint. Therefore,
the catalytic performance of the nano-SWT was examined via multi-cycle experiments.
The initial concentrations of SMX, H2O2, and nano-SWT were 50 µM, 5.0 mM, and
0.2 g·L−1, respectively, in each cycle, the reaction time was 90 min, and the initial pH
of the solution was 3. Figure 5 shows that when the nano-SWT was reused for six cycles,
the SMX degradation efficiency decreased from 92.5% to 85.2%. The slight decrease in
performance of the nano-SWT/H2O2 system may be attributed to the decrease in surface
iron content on the catalyst after each cycle [2]. This result demonstrated that the nano-SWT
can be reused as a Fenton-like catalyst for SMX degradation because it still maintained
up to 85.2% of its catalytic capacity after six cycles of reuse. The stability and reusability
properties of the nano-SWT in the nano-SWT/H2O2 system are similar to those for the
previous reports using schwertmannite as a catalyst [45,46].
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Figure 5. SMX degradation efficiency during repeated nano-SWT applications. Experimental con-
ditions: H2O2 concentration = 5 mM, nano-SWT dosage = 0.2 g·L−1, SMX concentration = 50 µM,
initial pH =3.0, and reaction time = 90 min.

The FTIR spectra of newly synthesized nano-SWT and nano-SWT after being used for
six cycles are shown in Figure 6. It was found that the absorption peaks were caused by the
stretching of free or bound hydroxyl groups at a wavelength of 3217 cm−1. The structural
OH groups or the O-H vibrations of H2O molecules were responsible for the absorption
peaks at 1631 cm−1. The absorption peaks at 609 cm−1 were attributed to the vibration of
SO4

2−. The wavelengths of 1117 and 982 cm−1 corresponded to the γ1 and γ3 vibrations
of SO4

2−, respectively. The vibration of the Fe-O bond was a contributing factor to the
absorption peaks at 483 cm−1. The FTIR spectra of all functional groups matched those
of Sch as stated in previous investigations [17,24,47,48]. The FTIR spectrum of the reused
nano-SWT was consistent with that of the newly synthesized nano-SWT. The findings
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showed that the structure and functional groups of the nano-SWT were minimally affected
by the nano-SWT/H2O2 reaction. This result suggests that the mineral structure of the
nano-SWT, a great Fenton-like catalyst for SMX degradation, remained unchanged over the
course of multiple uses. Above all, after six cycles of Fenton-like degradation, the nano-SWT
maintain stability and was reusable as a Fenton-like catalyst for SMX degradation.
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Figure 6. FTIR spectra of newly synthesized nano-SWT and nano-SWT after six cycles of use.
Experimental conditions: H2O2 concentration = 5 mM, nano-SWT dosage = 0.2 g·L−1 , SMX
concentration = 50 µM, initial pH =3.0, and reaction time = 90 min.

4. Conclusions

A simple PVP-assisted synthetic method was used to synthesize nano-SWT. By adding
a small amount of PVP, the structure and surface characteristics of synthesized nano-SWT
can be engineered. The nano-SWT can be used as a catalyst to efficiently degrade SMX
in a heterogeneous Fenton-like reaction (nano-SWT/H2O2 reaction). The degradation
efficiency of SMX was more than 92.5% within 90 min of reaction time under suitable
reaction conditions, which is due to the nano-SWT providing abundant reaction sites at the
solid/solution interfaces. Moreover, the SMX could be highly mineralized with removal
of 75% of the TOC within 90 min, and the utilization efficiency of H2O2 could reach up
to 60.5% after almost all the SMX disappeared from the nano-SWT/H2O2 system. In
addition, the nano-SWT had good stability and reusability as a Fenton-like catalyst for
SMX degradation, as evidenced by the fact that repeated use did not appreciably alter its
catalytic capacity and function groups. As a result, in heterogeneous Fenton-like reactions,
the nano-SWT is a great catalyst for the degradation of SMX. Hence, the nano-SWT/H2O2
system was verified to be a promising method for the efficient degradation of SMX.
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