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Abstract: Ag2O thin films have been applied in various devices, such as photodetectors, photo-
catalysts, and gas sensors, because of their excellent thermal stability, strong electrical properties,
and stable structures. However, because various phases of silver oxide exist, the fabrication of
single-phase Ag2O thin films using a general deposition system is difficult. In this study, Ag2O thin
films were deposited on glass substrates at different working pressures and O2 gas flow rates using
a facing-target sputtering (FTS) system. After optimizing the working pressure and O2 gas flow
rate, the Ag2O thin films were post-annealed at different temperatures ranging from 100 to 400 ◦C to
improve their crystallographic properties. The X-ray diffraction patterns of the as-fabricated Ag2O
thin films indicated the presence of a single phase of Ag2O, and the ultraviolet–visible (UV–vis)
spectral analysis indicated transmittance of 65% in the visible light region. The optimum working
pressure and O2 gas flow rate were determined to be 4 mTorr and 3.4 sccm, respectively. Finally, the
effect of the post-annealing temperature on the thin film was investigated; the Ag2O peak had high
intensity at 300 ◦C, suggesting this as the optimum post-annealing temperature.

Keywords: Ag2O; working pressure; oxygen; post-annealing; FTS system

1. Introduction

p–n junctions are widely employed in various applications, such as photodetectors and
gas sensors [1,2]. Several materials are used for the construction of p–n junctions; among
them, ZnO, β-Ga2O3, and MoS2 have been used as n-type semiconductor materials, and
silver oxide, copper oxide, and nickel oxide have been employed as p-type semiconductor
materials for the manufacturing of p–n junction-based photodetectors [3,4]. In particular,
AgxOy (silver oxide) exists in different crystal forms, such as AgO, Ag2O, Ag3O4, and
Ag2O3, which result in different electrical, chemical, and optical properties [5–7]. Among
them, Ag2O exhibits a stable structure, excellent thermal stability, and photoreactivity [8,9].
Ag2O has a cubic structure with six atoms per unit cell, and its lattice constant a = 0.47 nm.
The optical band gap energies of Ag2O thin films range across 1.2–3.4 eV depending on
the fabrication method [10,11]. The thin films have been applied in many practical fields,
such as gas sensors, photocatalysts, and photodetector manufacturing [12,13], owing to
their excellent electrical properties and wide and strong light absorption in the visible
light region [14]. However, fabricating single phase Ag2O thin films using conventional
deposition systems remains challenging [6].

Ag2O thin films have been fabricated using various methods, including solution
processing, sputtering, and e-beam evaporation [15–17]. Compared to other methods,
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sputtering can deposit thin films at low temperatures with excellent deposition rates. Fur-
thermore, the thicknesses and structures of thin films can be easily controlled by adjusting
the sputtering conditions, such as the partial pressures of O2 and Ar [18]. However, in a
typical sputtering system, the substrate is located within the plasma area, which causes
damage to the surfaces of the films owing to high-energy particle collisions, resulting in
nonuniformity. In contrast, the structure of a facing-target sputtering (FTS) system com-
prises two targets facing each other, with the substrate being located outside the plasma
area generated by the targets; this minimizes damage to the substrate and thin film due
to the high-energy particles emitted during sputtering [19,20]. In addition, it enables the
deposition of high-quality thin films because the high-speed accelerating particles moving
between targets form a magnetic field with a high ionization rate [21,22].

In this study, Ag2O thin films with excellent properties were fabricated by varying the
working pressure and O2 gas flow rate of an FTS system. The optimal working pressure
and O2 gas flow rate at which only Ag2O existed without impurities were determined. The
chemical compositions of the thin films fabricated under the optimal sputtering process
conditions were confirmed from X-ray photoelectron spectroscopy (XPS) data. In addition,
rapid thermal annealing (RTA) was conducted on the Ag2O thin film fabricated under
the optimal sputtering process conditions to improve the crystallographic properties and
rearrange the atoms in the film [23,24]; changes in the properties caused by varying the
annealing temperature over the range of 100–400 ◦C were investigated. Finally, the post-
annealed Ag2O thin films fabricated under the optimal sputtering process conditions were
evaluated using X-ray diffraction (XRD) and UV–vis spectroscopy.

2. Experimental Section
2.1. Fabrication

Each Ag2O thin film was deposited on a soda–lime glass substrate (75 mm × 25 mm;
thickness: 1 mm; Marienfeld, Lauda-Königshofen, Germany) with 4-inch Ag targets
(99.99%; RND Korea, Gwangmyeong-si, Republic of Korea) using an FTS system, as shown
in Figure 1. The glass was ultrasonically cleaned for 10 min with isopropanol (C3H8O;
99.5%, extra pure; Daejung Chemicals & Metals Co., Ltd., 186 Seohaean-ro, Siheung-si,
Republic of Korea) and acetone (C2H6O; 99.5%, extra pure; Daejung Chemicals & Metals
Co., Ltd., 186 Seohaean-ro, Siheung-si, Republic of Korea), following which it was rinsed
with deionized water. N2 gas was blown to remove watermarks, and the samples were
finally dried in an oven for 15 min. Table 1 lists the sputtering conditions for the Ag2O thin
films. For sputtering, 4-inch Ag targets (99.99%; RND Korea, Gwangmyeong-si, Republic
of Korea) were used, and samples were deposited at different working pressures and O2
gas flow rates. A post-annealing process was conducted to investigate the effect of the
annealing temperature on the properties of the Ag2O thin films using rapid thermal an-
nealing (RTA). The post-annealing temperature was varied from 100 to 400 ◦C at intervals
of 100 ◦C.

Table 1. Sputtering conditions for Ag2O thin films.

Parameters Conditions

Thickness 150 nm
Targets Ag (99.99%), 4′′

Substrate Soda–lime glass
Input power 50 W

Working pressure 1, 2, 3, and 4 mTorr
Gas flow rate O2: 2.5, 3.4, and 5 sccm; Ar: 10 sccm
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Figure 1. Schematic of the Facing Targets Sputtering (FTS) system.

2.2. Evaluation of Samples

To optimize the oxygen flow rate and working pressure conditions, Ag2O thin films
with a thickness of 150 nm were deposited on glass substrates, and their properties were
analyzed with respect to changes in the O2 gas flow rate and working pressure.

The electrical, structural, and optical properties of the fabricated Ag2O films were
analyzed. The crystallographic properties of the thin films were evaluated using XRD
(Smartlab, Rigaku, Tokyo, Japan) at the Smart Materials Research Center for IoT, Gachon
University. Scanning electron microscopy (SEM; SU8600, Hitachi, Tokyo, Japan) was used
to observe the surface morphology. XPS (K-alpha+, Thermo Fisher Scientific, Waltham,
MA, USA) was used to investigate the composition ratio and binding energy of Ag. The
thicknesses of the as-fabricated Ag2O films were measured using an Alpha-Step profilome-
ter (Alpha-Step-500 Profiler, KLA-Tencor, Milpitas, CA, USA). The optical properties of
the samples, such as transmittance and optical bandgap energy, were evaluated using a
UV–vis spectrometer (Lambda 750 UV–vis–NIR, Perkin Elmer, Waltham, MA, USA).

3. Results and Discussion
3.1. Evaluation of Ag2O Thin Films

Figure 2A shows the XRD patterns of as-deposited Ag2O thin films fabricated at a
constant working pressure of 4 mTorr and varied O2 gas flow rates of 2.5–5.0 sccm. In the
case of 2.5 sccm, a Ag peak appeared at 2θ = 64.7◦ corresponding to the (220) plane (JCPDS
File No. 04-0783). In addition, the peaks of the (100) and (002) planes of Ag2O (ICDD
card 01-072-2108) were observed, representing a mixed phase of Ag and Ag2O. For the
film deposited at 3.4 sccm, Ag2O peaks were observed at 2θ = 33.6◦ and 55.7◦ without the
presence of other impurity peaks, and the intensity of the Ag2O peak at 2θ = 33.6◦ increased
with the increasing O2 gas flow rate. However, for the film deposited at 5.0 sccm, AgO
peaks appeared at 2θ = 32.3◦ (JCPDS File No. 84-1547), and no Ag2O peaks were observed.
Therefore, as the O2 gas flow rate increased, a phase change occurred. This is because the
increase in the O2 gas flow rate resulted in the reaction of the sputtered Ag metal atoms
in the chamber with the O atoms, forming silver oxides in the presence of plasma [9].
Thereafter, based on the XRD data, the crystallite sizes of the samples were calculated using
the Debye–Scherrer equation [25]. The Debye–Scherrer equation is as follows:

τ =
Kλ

βcosθ
(1)

where β is the full width at half-maximum (FWHM); τ is the crystallite size; θ is the Bragg
angle; K is the Scherrer constant (0.9); and λ is the X-ray wavelength.
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Table 2 lists the calculated crystallographic parameters of the Ag2O thin films de-
posited at different O2 gas flow rates. When the O2 gas flow rate was increased, the lattice
constant also increased because of the presence of interstitial oxygen, which expanded the
lattice [26].

Table 2. Calculated lattice constants and crystallite sizes of Ag2O films deposited at various O2 gas
flow rates.

O2 Gas Flow Rate (sccm) Lattice Constant (Å) Crystallite Size (nm)

2.5 4.65 8.63
3.4 4.67 11.25
5.0 4.77 15.68

Figure 2B shows the XRD patterns of the as-deposited Ag2O thin films obtained by
varying the working pressure from 1 to 4 mTorr. The thin films were fabricated at the
same O2 gas flow rate of 3.4 sccm, and the working pressures were changed from 1 to 2,
3, and 4 mTorr. At 1 mTorr, Ag peaks appeared at 2θ = 38.2◦ and 64.7◦, corresponding
to the (111) and (220) planes, respectively. Furthermore, the (100) peak of Ag2O was
observed, indicating a mixed phase of Ag and Ag2O. At 2 and 3 mTorr, the intensity of
the Ag2O peak was lower than that at 4 mTorr. Meanwhile, the intensity of the peaks
related to the (100) and (003) planes of Ag2O, which represented the intensity of the Ag2O
peak, increased the most in the film deposited at 4 mTorr. Therefore, a working pressure of
4 mTorr and an O2 gas flow rate of 3.4 sccm were determined to be the optimal conditions for
the fabrication of single-phase Ag2O thin films. Table 3 lists the calculated crystallographic
parameters of Ag2O thin films deposited at different working pressures; the films exhibited
no significant changes.

Table 3. Calculated lattice constants and crystallite sizes of Ag2O films deposited at various working
pressures.

Working Pressure (mTorr) Lattice Constant (Å) Crystallite Size (nm)

1 4.71 12.77
2 4.66 12.13
3 4.66 12.49
4 4.67 11.25

Figure 3A–D compare the SEM images of Ag2O thin films deposited at working
pressures of 1, 2, 3, and 4 mTorr, respectively. As shown in Figure 3B,C, the surfaces of the
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thin films deposited at 2 and 3 mTorr were not homogeneous, and the grains were unclear.
As expected, the observance of the broad peaks of amorphous AgOx at 2 and 3 mTorr in
the XRD patterns was in agreement with the results of the SEM images.
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Figure 3. SEM surface morphology images of Ag2O thin films deposited at a constant O2 gas flow
rate of 3.4 sccm and different working pressures of (A) 1, (B) 2, (C) 3, and (D) 4 mTorr.

Figure 4 shows the UV–vis spectra of the Ag2O thin films deposited at different
working pressures and O2 gas flow rates. Figure 4A shows the UV–vis spectra of the
thin films deposited at working pressures of 1, 2, 3, and 4 mTorr and an O2 gas flow rate
of 3.4 sccm. A change in the UV–vis spectra was observed when the thin film changed
from mixed-phase to single-phase Ag2O. Similar UV–vis spectra were observed for the
single-phase Ag2O obtained at working pressures of 3 and 4 mTorr. Furthermore, UV–
vis spectral analysis could explain the transition from a mixed phase to a single phase.
As shown in Figure 4A, the samples deposited at working pressures of 1 and 2 mTorr
exhibited low transmittance. This is because the patterns of the two samples exhibited
mixed peaks of Ag and Ag2O, based on the XRD results. However, the thin films deposited
at working pressures of 3 and 4 mTorr had high transmittance, indicating that at working
pressures >3 mTorr, single-phase Ag2O thin films were formed [27]. In this study, the
samples deposited at a working pressure of 4 mTorr exhibited the clearest XRD peak and
the highest transparency at a wavelength of approximately 790 nm. However, the spectra
of samples deposited at 1, 2, and 3 mTorr, in which a mixed phase of Ag and Ag2O was
formed, exhibited the highest transmittance at wavelengths over 800 nm. Figure 4B shows
the UV–vis spectra of Ag2O thin films deposited at a working pressure of 4 mTorr and
O2 gas flow rates of 2.5, 3.4, and 5 sccm. The transmittance of the films decreased when
the O2 gas flow rate was increased from 3.4 to 5 sccm. Based on the XRD analysis, at a
working pressure of 4 mTorr, AgO appeared when the O2 gas flow rate was increased
from 3.4 to 5 sccm. Consequently, the decrease in transmittance was due to light scattering,
which occurs when two or more phases are present. Figure 4C,D show the optical bandgap
energies of the as-deposited and post-annealed Ag2O thin films calculated using the Tauc
plot equation. Based on the optimal conditions determined from the XRD and UV–vis
spectral analysis results, the optical bandgap energy of the Ag2O thin film deposited at a
working pressure of 4 mTorr and an O2 gas flow rate of 3.4 sccm was calculated. The optical
band gap energy was calculated using the Tauc plot equation [28]. The Tauc plot was used
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to determine the band gap using the optical absorbance data plotted appropriately with
respect to energy [29].

αhv = β(hv − Eg)n (2)

where h is Planck’s constant; α is the absorption coefficient; v is the frequency of the photon;
Eg is the band gap; β is the slope of the Tauc plot in the linear region; and n is the power
coefficient, which depends on the transition type. As the Ag2O film had a direct allowed
transition, n = 1/2 was used in the above equation [30,31]. The optical bandgap energy of
the Ag2O thin film deposited at a working pressure of 4 mTorr and an O2 gas flow rate of
3.4 sccm was calculated to be 3.16 eV.
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Table 4 lists the ratios of Ag and O in the Ag2O thin films. The O to Ag ratio was also
calculated. Comparing the samples deposited at the same O2 gas flow rate of 3.4 sccm,
as the working pressure increased, the amount of O also increased. Similarly, when the
working pressure was constant and the O2 gas flow rate was varied from 2.5 to 3.4 and
5.0 sccm, the amount of O increased. Figure 5A,B show the XPS spectra of Ag and O in the
Ag2O thin films deposited at an O2 gas flow rate of 3.4 sccm. Although the amount of O2
used for sputtering was the same, the O 1s peak intensity in the XPS spectrum increased
with increasing working pressure. This phenomenon confirms that a high working pressure
facilitates an efficient reaction of O2 with Ag. As shown in Figure 5A, the samples deposited
at 3 and 4 mTorr had higher Ag3d peaks than the samples deposited at 1 and 2 mTorr. The
difference in the stoichiometry of Ag oxides was the reason for this. As we observed from
the XRD result, at the O2 gas flow rate of 3.4 sccm, the mixed phase of Ag and Ag2O at the
working pressure of 1 and 2 mTorr changed into the single-phase Ag2O at the working
pressure of 3 and 4 mTorr. This concludes that the difference in the stoichiometry of the
Ag oxides caused the change in the peak [32]. Moreover, the O 1s peak shifted slightly to
the right, to a higher binding energy, as shown in Figure 5B. This is because the samples
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were exposed to air before XPS analysis and contaminated [33]. Figure 5C,D show the XPS
spectra of Ag and O, respectively, for the Ag2O thin films deposited at a working pressure
of 4 mTorr.

Table 4. Ag and O content ratios of Ag2O thin films.

Sample Identifier Ag 3d% O 1s% Oxygen Versus Silver

1 mTorr, 3.4 sccm 28.30 16.03 1.77
2 mTorr, 3.4 sccm 25.05 16.41 1.53
3 mTorr, 3.4 sccm 33.67 22.08 1.52
4 mTorr, 2.5 sccm 31.92 20.29 1.57
4 mTorr, 3.4 sccm 33.55 23.80 1.50
4 mTorr, 5.0 sccm 26.98 19.30 1.40
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3.2. Evaluation of Ag2O Thin Films Post-Annealed at RT to 400 ◦C

The effect of post-annealing on the Ag2O thin films was also evaluated. An appropriate
post-annealing temperature improves the quality of thin films by reducing the internal
defects [34]. As the crystallographic properties of the deposited Ag2O thin films were
affected by the post-annealing temperature, heat treatment using RTA was performed to
investigate the variation in the structural properties of Ag2O.

Figure 6 shows the XRD patterns of Ag2O thin films post-annealed at room tempera-
ture (RT) and at 100, 200, 300, and 400 ◦C. The films were deposited at a working pressure
of 4 mTorr and an O2 gas flow rate of 3.4 sccm. As the post-annealing temperature was
increased from 100 to 300 ◦C, the Ag2O peak intensity also increased. The Ag2O peak
intensity at 2θ = 33.6◦ increased the most at 300 ◦C, indicating that the crystallite size in-
creased with the increasing annealing temperature (RT: 11.31 nm, 100 ◦C: 12.66 nm, 200 ◦C:
16.02 nm, 300 ◦C: 20.45 nm, and 400 ◦C: 19.16 nm). These results indicate that the crys-
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tallinity of the thin films improved with an increase in the post-annealing temperature [35].
However, as the post-annealing temperature was increased from 300 to 400 ◦C, the intensity
of the Ag2O peak at 2θ = 33.6◦ slightly decreased. Moreover, at the annealing temperature
of 400 ◦C, a Ag peak was observed at 2θ = 44.5◦, which corresponded to the (200) plane.
This indicated that the Ag2O single phase was changed to a mixed phase of Ag and Ag2O
after heat treatment at 400 ◦C. This is because most of the oxygen atoms were diffused to
the surface of the thin film; it was adsorbed in the form of oxygen molecules or escaped
from the surface [36].
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Figure 6. XRD patterns of Ag2O thin films post-annealed at different temperatures in the range of
room temperature (R.T.)–400 ◦C (u: Ag; ∗: Ag2O).

A Ag2O thin film was deposited under the optimal conditions of a working pressure
of 4 mTorr and an O2 gas flow rate of 3.4 sccm and then post-annealed at a temperature
of 300 ◦C. Figure 7A shows the UV–vis spectra and optical bandgap energy of the film
deposited at the optimal working pressure and oxygen flow rate and post-annealed at
300 ◦C. The Ag2O thin film post-annealed at 300 ◦C showed transmittance and optical
band gap energy values similar to those of the as-deposited Ag2O thin film.
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4. Conclusions

Ag2O thin films were deposited using an FTS system. The optimal conditions for the
fabrication of the single-phase Ag2O thin films were determined using various measure-
ments. In the XRD pattern of the thin film deposited at a working pressure of 4 mTorr and
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an oxygen flow rate of 3.4 sccm, only the Ag2O peak appeared, and peaks corresponding
to impurities were not observed. In addition, transmittance of 65% was observed in the
visible light region in the UV–vis spectra. Furthermore, the influence of the post-annealing
temperature on the thin films was investigated by varying the temperature from 100 to
400 ◦C and using XRD and crystallinity data. The Ag2O peak intensity increased the most
when the post-annealing temperature was increased from 100 to 300 ◦C, and the crystallite
size also increased at 300 ◦C. XPS analysis confirmed that a higher working pressure caused
a greater amount of O2 to react with Ag. Future study of electric devices using p–n junctions
with a single-phase Ag2O thin film will be conducted.
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