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Abstract: The most economical way to move liquids and gaseous hydrocarbons is by using pipelines.
According to several international organizations and oil companies, the use of fossil fuels will
continue in the following decades. For this reason, it is important to continue studying different
corrosion mechanisms and their origins. One of the mechanisms that provoke small leaks, affecting
pipeline hermeticity, is pitting corrosion. It is well-known that non-metallic inclusion dissolution can
trigger pit nucleation. As pitting corrosion is recognized to be random in nature, it is also interesting
to study the random nature of the inclusions present in API 5L X60 steel. Probability distributions
commonly used to describe pitting corrosion characteristics are appropriate for studying inclusion
characteristics. The size of inclusions plays a key role in pit nucleation because small inclusions
tend to generate more defects, especially when these inclusions are compounds of MnS, and the
steel is immersed in a corrosive solution. The results of this research work show that there is a close
relationship between the random nature of pitting corrosion and inclusions.

Keywords: pitting corrosion; pipeline steel; non-metallic inclusions; probability density function; MnS

1. Introduction

The importance of oil and gas pipelines is indicated by an estimated increase in their
construction in the future due to factors such as the discovery of reserves in remote and
landlocked locations, depletion of reserves near established markets, far distances from
oil refineries and big cities and improvements in technology related to exploration and
reserve production [1]. The IEA forecasts that oil consumption will remain above 85 million
barrels per day, and the amount of natural gas consumed will remain above 4 trillion cubic
meters until 2050 [2]. This means that pipelines will remain relevant for at least the first
half of the 21st century. Other issues important to mention when oil and gas pipelines
are studied are their safety and reliability. For example, these structures typically suffer
from third-party damage, corrosion and construction defects, natural hazards, operational
errors and material imperfections [3,4]. At present, aging of pipeline infrastructure is one
of the main problems confronting the oil and gas industry. According to a study presented
by Mojtaba Mahmoodian and Chun Qing Li [5], 50% of the USA’s oil and gas pipeline
network is over 40 years old. In Russia, 20% of the country’s oil and gas system is almost
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at the end of its design life, and it is expected that, at the beginning of the 2030s, half of
their pipelines will be at the end of their design life. In these aged structures, different
corrosion mechanisms threaten their mechanical integrity [3,6]. The strength of a pipeline
can be impacted by corrosion-induced reductions in pipe wall thicknesses [7,8]. In the
specific case of Mexican pipelines, the mechanism that causes the greatest threat to pipeline
integrity is pitting corrosion, provoking a substantial number of leaks [9]. To estimate the
damage provoked by this mechanism, pitting corrosion has been modeled using statistical
techniques such as non-linear regression and Markov chains [10,11]. Likewise, the impact of
the growth of these corrosion defects has been studied to determine pipeline reliability [12].
There are some theories regarding the origin of pitting corrosion: one is that pits occur
when the oxygen adsorption point on the surface is replaced by halide ions (e.g., chloride
ions); another theory is that the radius of chloride ions is small, and therefore, ions can
travel through the passivation film. The generated ions provoke the membrane to maintain
a current density at a specific point, causing the cations to move. When the electric field
at the membrane–solution zone reaches a critical value, pitting corrosion can occur [13].
Another possible cause of the origin of corrosion defects caused by the pitting mechanism
is the dissolution of non-metallic inclusions [13]. According to Smialowski et al. [13]
sulfide inclusions are very effective in pit nucleation. Other works proposed the following
mechanism of dissolution for MnS inclusions in steel [14–16]:

MnS + 3H2O→Mn2+ + HSO3
− + 5H+ + 6e− (1)

HSO3
− + 5H+ + 4e− → S + 3H2O (2)

The steel from which oil and gas pipelines are made has not only high yield strength
values but also high ductility [17]. This is the result of its chemical composition and the
manufacturing process. However, in pipeline steels, one can find many types of inclusions
besides MnS, such as Al2O3, silicates and complex oxides [18,19]. The chemical composition
of inclusions is strongly associated with the steelmaking process and demonstrates a key
role in the localized corrosion process. Some research works indicated that pitting corrosion
tends to start when non-metallic inclusions are dissolved [20,21]; others suggested that
dissolution started on the base material matrix around the inclusions [22]. For example,
Figure 5 from Reference [22] schematizes this process following studies involving EDX
spectra and FEM. Other research works have studied the shape of inclusions because, in
some cases, spherical inclusions tend to generate pits [23]. Another variable that exerts
influence in inclusion dissolution to generate pits is the chemical composition of the
environment [22–25].

After considering these observations from other research works, one can determine
that the actual mechanism of pitting corrosion defects caused by inclusion dissolution is not
totally well-understood. For this reason, in the present study, we studied the relationship
between inclusion characteristics and pitting corrosion defect characteristics found in
API 5L X60 steel (in the oil industry, the American Petroleum Institute designates the
standard API 5L [17] for pipe steel specifications; particularly, X60 is designated to pipeline
steel that exhibits at least 60 Ksi in yield strength) after being exposed to immersion tests.
These characteristics were analyzed using statistical techniques in order to determine the
predominant shape and type of inclusions. Likewise, we determined the probability density
function that best fits both inclusion characteristics and pit characteristics after different
immersion times.

2. Materials and Methods
2.1. Sample Preparation

The experimental procedure began with steel sample preparation. First of all, from
a half-round steel pipe, cubic samples (1 cm × 1 cm × 1 cm = 1 cm3) were mechanically
cut. After this process, samples were mounted in acrylic blocks. The samples were ground
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using 240, 320, 400 and 600 grit papers initially and then fine-polished using an Al2O3
suspension. Figure 1 schematizes this process:
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2.2. Microstructural Characterization and Chemical Composition

Table 1 shows the chemical composition of the API 5L X60 steel used in this research
work. The chemical composition of API 5L X60 steel was obtained through Spark Atomic
Emission Spectroscopy (SPECTRO Analytical Instruments GmbH, Kleve, Germany).

Table 1. API 5L X60 chemical composition.

Material C Mn Si P S Cu Cr Ni

Actual chemical
composition 0.2 1.22 0.070 0.019 0.021 0.035 0.013 0.011

Specifications according to
API 5L X60 (maximum

allowable) [17]
0.26 1.4 - 0.03 0.03 - - -

The quantitative analysis of the microstructural characteristics of the API 5L X60 steel
is presented in Table 2.

Table 2. API 5L X60 microstructural characteristics.

Ferrite Pearlite Grain Size [26]

% % ASTM µm
76 24 6 40

Figure 2 shows optical micrographs to illustrate the grain size and the percentages of
perlite and ferrite phases.
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2.3. Non-Metallic Inclusions Content in API 5L X60 Steel

Non-metallic inclusion content was determined according to ASTM E45 [27]. For the
sake of illustration, Figure 3 shows non-metallic inclusions found in the API 5L X60 steel.
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Figure 3. Typical non-metallic inclusions found in API 5L X60.

In addition to determining the density of inclusions, we estimated the chemical compo-
sition of the inclusions found using EDS. Likewise, we also estimated the shape of inclusions
(using optical microscopy) (Olympus, Center Valley, PA, USA) in order to determine if
circular inclusions have a greater influence on pit generation than elongated inclusions.

2.4. Immersion Test

Immersion tests were carried out to study the relationship between non-metallic inclu-
sions found in API 5L X60 steel and pit generation and growth. The chemical compositions
of solutions used in the immersion tests were similar to those found in a soil corrosive-
ness study in Mexico [28]. The chemical content of the prepared chemical solution was
16.84 ppm SO4

−2 and 289.5 ppm Cl−, and pH = 4.35 at room temperature. The immersion
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tests were carried out for two different periods of time. One battery of experiments was
carried out over short periods of time (15, 30, 60, 180 and 360 min). In the other series of
experiments, the immersion tests were accomplished after 1, 3 and 7 days. For illustration
purposes, Figure 4 depicts the immersion test performed as part of the present work.
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2.5. Non-Metallic Inclusion Locations, Morphological Analysis and Characterization of Inclusions
in API 5L X60 Steel

Non-metallic inclusion locational and morphological analyses were carried out using
optical microscopy (Olympus, Center Valley, PA, USA). Otherwise, the chemical composi-
tion of inclusions was obtained using the SEM–EDS method. For the sake of illustration,
an SEM image (obtained with the JEOL JSM-6300 (JEOL, Peabody, MA, USA)) of a non-
metallic inclusion and EDS analysis (Thermo Scientific, Madison, WI, USA) of the chemical
composition are shown in Figure 5.
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2.6. Inclusions’ Statistical Characterization for Pit Generation

Non-metallic inclusions were characterized statistically by size (length and width),
shape factor (width/length), chemical composition and area. Likewise, this information
was related to data obtained through the characterization of pits generated after the immer-
sion test over short periods of time (30, 60 and 180 min). The pit characteristics analyzed
were depth and area. Additionally, we characterized pits by their depth generated during
mid-term immersion tests (1, 3 and 7 days). All statistical analyses were performed using
Wolfram Mathematica [29].

3. Results and Discussions
3.1. Statistical Analysis

The first step to characterize the non-metallic inclusions was to measure their length
and width. With this information, one can calculate the shape factor (width/length). These
data were obtained after analyzing one sample in three directions (rolling direction (RD),
transverse direction (TD) and normal direction (ND)). Figures 6–8 show the histograms
of length, width and shape factor, respectively. These histograms were obtained after
characterizing all inclusions longer than 1 µm found in the analyzed sample.
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Comparing the results with others obtained in the literature [30–34], it is confirmed
that, in all cases, the tendency is that the most frequent size of the inclusions is attributed
to those inclusions that measure less than 10 µm in length.

These three histograms (Figures 6–8) were fitted to probability density functions
(PDFs). The best choice was the PDF that satisfies the tests of Kolmogorov–Smirnov,
Anderson–Darlin and chi-square. Regarding the random variable, inclusion length was
fitted to a Generalized Pareto distribution (GPD). This function is represented by the
mathematical expression indicated in Equation (3) [35].

f(x) =
1
σ

(
1 + k

x− µ

σ

)−1−1/k
(3)

where µ, σ and k are the parameters of location, scale and shape, respectively. Concerning
the inclusion width histogram, it was fitted to the Fréchet distribution, which is represented
by Equation (4) [36].

f(x) =
α

β

(
β

x

)α+1
exp

(
−
(
β

x

)α)
(4)

where α and β are the shape and scale parameters, respectively. The shape factor histogram was
fitted to the Generalized Extreme Value distribution (GEVD) expressed by Equation (5) [36].

f(x) =
1
b

Exp
[
−(1 + ξz)−1/ξ

]
(1 + ξz)−1−1/ξ (5)

where z = x−a
b , a is the location parameter, b is the scale parameter and ξ is the shape parameter.

After this analysis, it is feasible to affirm that inclusion shape characteristics in API
steel can be studied as random variables. This could help to estimate inclusion shape
characteristics in pipelines by using theories such as return period [37]. The average
non-metallic inclusion density is 160.5 inclusions per cm2.

After EDS analysis of the studied non-metallic inclusions’ chemical composition, it was
found that the vast majority of them were compounds of MnS (about 74%). Silicates were
the second most frequent type of inclusions (mainly SiO2 and CaOSiO2), accounting for
about 12% of the total. The remaining inclusions were compounds of Al2O3, 3CaO·Al2O3,
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CaO·Al2O3, CaO·2Al2O3, CaO·6Al2O3, FeSiC, FeSiO, AlCaO, AlMgCaO, etc. Figure 9
depicts the distributions of the non-metallic inclusions found.

Coatings 2023, 13, x FOR PEER REVIEW 11 of 16 
 

 

for about 12% of the total. The remaining inclusions were compounds of Al2O3, 
3CaO·Al2O3, CaO·Al2O3, CaO·2Al2O3, CaO·6Al2O3, FeSiC, FeSiO, AlCaO, AlMgCaO, etc. 
Figure 9 depicts the distributions of the non-metallic inclusions found. 

 
Figure 9. Non-metallic inclusions found in the API 5L X60 steel studied. 

3.2. Role of Non-Metallic Inclusions in Pitting Corrosion 
To understand the relationship between inclusions and pitting corrosion, we carried 

out immersion tests in a chemical solution as described in the previous section. In the first 
set of experiments, the immersion tests were performed for 30, 60 and 180 min. Once the 
microstructure was revealed (using a Nital solution) in each of the specimens, we pro-
ceeded to take micrographic sequences of the entire metallic surface (exposure area) in 
order to produce micrographic backups of each of the samples before micro-testing cor-
rosion and to document their state before the immersion test. 

After taking all the micrographs for a corresponding state, the micrographs taken at 
50× were stitched together in consecutive order to produce an image of the entire test area. 
The micrographs taken at 100× were used to carry out microstructure and inclusion anal-
ysis, and 200× images were used to learn more about the characteristics of the areas sur-
rounding the micro-pits that were generated after the immersion test. Figure 10 illustrates 
the micrographic compositions corresponding to a test for a given exposure time. For the 
sake of exemplification, Table 3 shows the number of inclusions found after a certain im-
mersion time.  

 
Figure 10. Mapping process to analyze the relationship between inclusions and pit nucleation. 

Table 3. Summary of the relationship between total non-metallic inclusions and the place where the 
pits were nucleated. 

13.79%

12.07%

74.14%

 MnS
 Silicates
 Others

Figure 9. Non-metallic inclusions found in the API 5L X60 steel studied.

3.2. Role of Non-Metallic Inclusions in Pitting Corrosion

To understand the relationship between inclusions and pitting corrosion, we carried
out immersion tests in a chemical solution as described in the previous section. In the first
set of experiments, the immersion tests were performed for 30, 60 and 180 min. Once the
microstructure was revealed (using a Nital solution) in each of the specimens, we proceeded
to take micrographic sequences of the entire metallic surface (exposure area) in order to
produce micrographic backups of each of the samples before micro-testing corrosion and
to document their state before the immersion test.

After taking all the micrographs for a corresponding state, the micrographs taken
at 50× were stitched together in consecutive order to produce an image of the entire
test area. The micrographs taken at 100× were used to carry out microstructure and
inclusion analysis, and 200× images were used to learn more about the characteristics of
the areas surrounding the micro-pits that were generated after the immersion test. Figure 10
illustrates the micrographic compositions corresponding to a test for a given exposure
time. For the sake of exemplification, Table 3 shows the number of inclusions found after a
certain immersion time.
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Table 3. Summary of the relationship between total non-metallic inclusions and the place where the
pits were nucleated.

Immersion
Time (min)

Number of
Inclusions

Number of Pits
Generated

Sites of
Nucleation (%)

Chemical Composition of Active Inclusions

MnS Silicates Others

30 600 14 2.33 14 0 0

60 717 25 3.49 16 3 6

180 610 18 2.95 13 1 4

For the sake of finding a relationship between inclusion area and pitting area, we
plotted a scatter diagram as shown in Figure 11. One can notice a greater correlation
between inclusion area and pit area when the inclusion area is smaller than 200 µm2

(Spearman’s rho (correlation coefficient) equal to 0.50). The smaller the inclusion area is,
the greater the probability of provoking pitting corrosion is.
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Figure 11. Scatter plot of relationship between non-metallic inclusion area and pit area.

Inclusions that encouraged pit nucleation are named “active inclusions”. Figures 12 and 13
show histograms for active inclusion area and their shape factor. The active inclusion area
histogram was fitted to the Generalized Pareto distribution (see Equation (3)). The histogram for
active inclusion shape factor was fitted to Gumbel’s minimum value distribution represented
by Equation (6) [36,37].

f(x) =
1
σ’

exp(z’− exp(z’)) (6)

where z’ = x−µ’
σ’ , and µ’ and σ’ are the location and scale parameters, respectively. In

Figure 11, we notice that inclusions with smaller areas tend to be more likely to cause
pitting corrosion than larger inclusions. Otherwise, inclusions with a shape factor close to
one tend to be more likely to provoke pits. However, it seems that elongated inclusions
are more active than circular inclusions because the ratio of active elongated inclusions is
higher than that of circular ones.
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For illustration purposes, as evidence that inclusions tend to generate defects, Figure 14
shows the appearance of a polished API 5L Grade B steel surface (see the inclusions in
Figure 14a) and the same steel surface after being subjected to immersion tests (see the
holes provoked by the pitting corrosion defects after the immersion test in Figure 14b).
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Figure 14. (a) API 5L X60 surface before immersion test and (b) after being immersed for 180 min.

Figure 15 shows micrographs of pits generated after the 30 min immersion test using
different magnifications in a chemically etched steel surface, where inclusions with a shape
factor close to one caused pit nucleation. Figure 15a–c do not allow to determine the shape
factor correctly until we increase the magnification (see Figure 15d).
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One characteristic that is typically studied when oil and gas pipelines are in service
is the pitting depth [10,12,38,39]. The main reason is that defects generated by localized
corrosion threaten the hermeticity of pipes that transport hydrocarbons because they
form stress concentrators that do not allow them to operate at the required pressure
conditions [7,8]. For example, F. Caleyo and coworkers [39,40] determined using Monte
Carlo simulations that localized corrosion defect depth exerts more influence in pipeline
failure pressure estimation. For this reason, a histogram of the pitting depths generated
due to inclusion dissolution (after 30, 60 and 180 min immersion tests) was plotted and
adjusted to the GEVD (see Equation (6)), observing a high probability of accepting the
null hypothesis (p-value greater than 0.05 in the K–S, A–D and chi-square tests). Figure 16
reflects this statement.
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3.3. Mid-Term Immersion Test

For the sake of analyzing the behavior of pitting corrosion depth evolution, the
observed data were fitted to the GEVD because this distribution has been used previously
to represent this evolution in the literature [40,41]. After fitting, it is feasible to observe the
evolution of the shape parameter towards less negative values (see Table 4). In Figure 17,
we notice that the pitting corrosion depth obtained after the 7-day immersion test shows
a more positive kurtosis (of the majority of observed values close to the mean). On the
other hand, the depths obtained after the 7-day immersion test generate a right-skewed
distribution. As an example of the pits generated after the 1-day immersion test, Figure 18
shows the appearance of corrosion pits after the dissolution of active inclusions.

Table 4. GEVD parameters obtained after mid-term immersion tests.

Parameter
Duration of Immersion Test

1 Day 3 Days 7 Days

ξ −0.29 −0.21 −0.19
b 5.18 5.94 8.55
a 15.66 16.70 19.86
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Figure 18. Pitting corrosion damage after 1-day immersion test.

3.4. Overall Analysis

The stochastic nature of pitting corrosion has been recognized since the 1950s [37,42,43].
It seems that this random characteristic could be caused by the same random nature of
non-metallic inclusion features (e.g., length, width and shape factor) studied in the present
research work. The Generalized Pareto distribution (GPD), Generalized Extreme Value
distribution (GEVD) and Gumbel distribution are functions typically used to study the
pitting corrosion phenomenon [37] and, in this investigation, remained as the preferred
distributions that fit several pit characteristics (e.g., area and depth). The GEVD prop-
erly represents the evolution of pitting corrosion depth undergone after 1, 3 and 7 days
of immersion.
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Most of the inclusions found and analyzed were compounds of MnS, and they tended
to become active inclusions when they came in contact with a corrosive environment.
From the total number of inclusions found (regardless of their chemical composition), only
about two to three percent of them became active. It seems that non-metallic inclusions
with smaller areas tend to generate pitting corrosion defects with greater probability than
bigger ones.

By observing Figures 15 and 18, we notice the darker aspect that can be attributed
to a burn-like appearance due to the solution’s acidity (pH = 4.3). This is evidence of the
inclusion dissolution that motivates pit nucleation with an autocatalytic nature because the
corrosion products and subproducts encourage further corrosion reactions, especially in
acidic environments [42,43].

4. Conclusions

After considering the results obtained and their corresponding analysis, we can state
the following conclusions to emphasize the relationship between non-metallic inclusions
and pitting corrosion defects:

• Probability distributions such as those of Generalized Extreme Value, Generalized
Pareto and Gumbel can satisfactorily represent the random nature of non-metallic
inclusion characteristics, namely length, width and shape factor;

• The Generalized Extreme Value distribution fits adequately for pit depth histograms
across mid-term immersion tests (1, 3 and 7 days). The shape parameter of this
distribution tends to capture the change in the skewness and kurtosis because of the
evolutions of the depth and the emergence of new and shallow pits;

• Inclusions with smaller areas tend to generate pits. In fact, there is a moderate
correlation between inclusion area and pit area;

• MnS inclusions are more frequent in API 5L X60 steel than other type of inclusions.
Likewise, MnS inclusions tend to be more active and prone to dissolution than others.
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