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Abstract: In this study, we employed a polymer processing method based on solvent vapor anneal-
ing in a confined environment to swell-rich thin films of polybutadiene-b-poly(2-vinylpyridine)-b-
poly(ethylene oxide) triblock copolymers and to promote their crystallization. As revealed by optical
and atomic force microscopy, thin films of triblock copolymers containing a rather short crystalline
poly(ethylene oxide) block that was massively obstructed by the other two blocks were unable
to crystallize following the spin-casting process, and their further swelling in solvent vapors was
necessary in order to produce polymeric crystals displaying a dendritic morphology. In comparison,
thin films of triblock copolymers containing a much longer poly(ethylene oxide) block that was less
obstructed by the other two blocks were shown to crystallize into dendritic structures right after the
spin-casting procedure, as well as upon rich swelling in solvent vapors.

Keywords: block copolymers; thin films; solvent vapor annealing; polymer crystallization; atomic
force microscopy

1. Introduction

The wide diversity of polymeric properties has its first source in the nature of poly-
mers’ soft material component units named monomers [1–11]. The capability of long
polymer chains to adopt, after specific processing conditions, a multitude of conforma-
tional arrangements at multiple length scales, represents a second consistent source that
nourishes the development of new and/or enhanced polymer properties in thin films and
on various surfaces of interest, in solutions and in the solid state [2,9,12–16]. Obviously,
the optimized polymer properties can be advantageously employed to design and pro-
duce various functional devices, develop new technologies, and engineer high-impact
applications [7,17–27].

There is a broad range of prominent processing methods that can efficiently alter the
microstructure of various polymer chains and tune their molecular arrangements at mi-
crometer and nanometer scales [10,14,28–34]. Such methods can be used to align polymer
molecules in thin films during [35–37] or after [15,33,38–43] their fabrication, as well as in
solutions [44–46] and in the solid state [14,47,48], and may include the selection of solvent
quality [49] and polymer concentration [50], addition of non-solvents [51], employement
of convective forces [31,34], thermal annealing [40], pressure [52] or mechanical stretch-
ing [53], and use of space confinements [54,55] or annealing in solvent vapors [39,41]. The
aforementioned methods mainly rely on physical processes such as self-assembly [56–58]
or crystallization [40,41,59–62]. In particular, the crystallization process becomes important
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when employed to control the mechanical [63,64], optoelectronic [64,65] or other [64,66]
properties of polymeric materials. Interestingly, while the confinement of polymer chains
has been reported to exhibit significant impact on the kinetics of crystallization [67] of block
copolymers (BCPs), the solvent vapor annealing procedure has proved to be critical in the
ordering of a large variety of BCPs [68–70] inclusively when investigating highly complex
molecules [39].

In this study, we relied on a processing approach that takes advantage of both con-
finement and solvent vapor annealing (C-SVA) and further induces crystallization of BCP
systems based on rather short crystallizable poly(ethylene oxide) (PEO) blocks. The PEO
blocks are composed of only about 104 and 154 monomer units, with their correspond-
ing number average molecular weights being determined as MnPEO104 = 4600 g/mol and
MnPEO154 = 6800 g/mol, respectively [71]. We show that although the aforementioned
blocks are capable of crystallizing at temperatures below 40 ◦C [72], triblock copolymers
based on such blocks will not crystallize into large dendritic crystals under spin-casting
conditions, unless further processed by utilizing the improved C-SVA approach [73,74]
(note that polymer chains containing much larger numbers of ethylene oxide monomers
are known to crystallize following spin casting or thermal annealing processes at room
temperature or various higher crystallization temperatures; such macromolecules are often
used as model systems for studying general concepts of the crystallization process [38,75]).
Compared to other SVA-based studies [39,41,42], this improved approach was recently
shown to be capable of self-assembling various BCP systems into highly ordered nanos-
tructures [73,74]. It consists of a sample chamber of reduced depth and well-regulated
temperature and a “bubbling” system able to inject precise amounts of solvent vapors
inside the sample chamber (Figure 1). With this design, the rich-swelling of BCP films
is possible without encountering weak variations in the sample temperature during the
swelling-deswelling processes, and thus without experiencing unwanted fluctuations in
the swollen-film thickness that can generate film defects upon drying [73].
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Figure 1. Schematic representation of the experimental setup used to process thin BCP films. In
this setup, the Peltier module was connected both to a temperature controller and a PT100 sensor.
Meanwhile, the heat sink was coupled to a fan. At the same time, the pipe transporting solvent vapors
was connected to a nitrogen-based “bubbling” system depicted on the left. The scheme shows both
the unswollen (on the left) and swollen (on the right) states of a BCP film. Note that the dimensions
are not drawn at scale.

2. Materials and Methods

The polymer system employed in this study was a polybutadiene-b-poly(2-
vinylpyridine)-b-poly(ethylene oxide) (PB-b-P2VP-b-PEO) triblock copolymer (see its chem-
ical structure depicted in Figure 2). We employed four different BCP systems displaying
number average molecular weights of Mn = 20,500 g/mol (PB100-b-P2VP100-b-PEO104),
Mn = 28,200 g/mol (PB185-b-P2VP108-b-PEO154), Mn = 76,000 g/mol (PB348-b-P2VP252-
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b-PEO697) and Mn = 26,400 g/mol (PB66-b-P2VP69-b-PEO356), respectively [71]. These
polymer systems were synthesized by living anionic polymerization in tetrahydrofuran
(THF) in the presence of cumyl potassium (PIK) as initiator, and through the employment
of well-established procedures [71,76,77].
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Figure 2. Chemical structure of the PBx-b-P2VPy-b-PEOz triblock copolymer employed in this study.
Here, x, y and z are the degrees of polymerization corresponding to each of the three blocks (x is
representing the values of 66, 100, 185 and 348, y is representing the values of 69, 100, 108 and 252,
and z is representing the values of 356, 104, 154 and 697, respectively).

The reagent used for the preparation of copolymer solutions was toluene (98%),
purchased from the Chemical Company (Iasi, Romania). Toluene was employed because it
is a good solvent for both PEO and PB. Copolymer solutions were prepared by dissolving
10 mg of copolymer powder in 1 mL of toluene. The process was followed by gentle stirring
to further stimulate dissolution and homogenization. Afterwards, polymeric solutions
were annealed at 70 ◦C in a silicon oil bath (ONE 7-45, Schwabach, Germany) for 30 min to
complete the dissolution of copolymers in toluene.

Thin triblock copolymer films of a thickness of 79 ± 5 nm (this value was determined
after scratching a film and measuring the corresponding height profile with the atomic force
microscopy/AFM) were obtained by spin casting copolymer solutions onto solid silicon
substrates using a WS-650mz23nppb spin coater from Laurell Technologies Corporation
(North Wales, PA, USA). Films were deposited at a speed of 2000 rpm for 30 s. Type
4PO/5-10/380 ± 15/SSP/TTV < 5 silicon substrates were acquired from Siegert Wafer
GmbH (Aachen, Germany) and were subjected to UV-ozone treatment for 20 min (in a
PSD Pro Series-Digital UV Ozone System from Novascan; Boone, IA, USA) before their
further use.

For the swelling and deswelling of BCP films via their exposure to toluene vapors in a
quasi-confined environment (C-SVA), we have used a home-made equipment consisting
of an aluminum chamber with a high-performance Peltier element (15.4 V/8.5 A from
Stonecold) placed beneath (see Figure 1). The 100 W powerful Peltier module permitted
the setup to exhibit a maximum temperature difference ∆T between the two sides of about
58 ◦C. The temperature of the Peltier module (i.e., the temperature of the bottom of the
sample chamber and thus, the temperature of the film; note that the bottom of the chamber
was thermally separated from the rest of the chamber by design) could be regulated by a
temperature controller (model TCM U 10 A from Electron Dynamics Ltd.; Southampton,
UK) that received feedback from a PT100 temperature sensor located in the chamber, in
the vicinity of the BCP film. The PT100 sensor was continuously communicating the film
temperature to the controller. The latter could change the strength and direction of the
electric current depending on whether it needed to cool or heat the system (electricity
was provided by a 12 V/10 A power supply). Moreover, an aluminum heat sink and a
fan were placed on the other side of the Peltier module, which helped to equalize the ∆T
temperature. The controller was connected to computer software that used proportional
integral derivative technology to accurately set the temperature within the desired time.
With the above-described device, it was possible to control the sample temperature with a
precision of 0.01 ◦C and to keep it constant over time. Furthermore, the time required to
reach a specific temperature could be varied within the seconds–hours range. This allowed
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us to finely tune the rate at which the temperature changed and to avoid weak variations
in the sample temperature, which may appear when reaching a specific temperature
setpoint during a swelling or deswelling procedure. Finally, note that the sample chamber
was saturated with toluene vapors using a nitrogen-based “bubbling” system that was
connected to a flow meter that allowed the amount of vapors to be regulated.

The following experimental procedure was used to swell/de-swell thin BCP films in a
quasi-confined environment saturated with toluene vapors. A PB-b-P2VP-b-PEO triblock
copolymer film was placed in the sample chamber. While the chamber was heated up to
40 ◦C, the desired quantity of toluene vapors was bubbled inside. Next, the film tempera-
ture was set to 15 ◦C. While the temperature was decreasing at a rate of 0.3 ◦C/s, at around
22 ◦C the toluene vapors started to condense gradually on the surface of the film and
the latter started to swell and change its color. This change in the interference colors was
associated with the changes in the film thickness and could be used to monitor the thickness
of the latter in its swollen state (an interference color–film thickness calibration can be gen-
erated before the start of the swelling experiments by measuring the thickness of many BCP
films using the AFM technique and then associating each thickness to the corresponding
film color observed under the optical microscope; see additional details on the procedure
elsewhere [39,41,78]). At 15 ◦C there were enough toluene vapors condensed on the film
to transform it into a quasi-two-dimensional (2D) “solution” with a polymer concentra-
tion (cp) of about 7% ± 3% (this concentration value was calculated as the ratio between
the initial film thickness and the thickness of the swollen film; see details in [39,41,78]).
After about 30 s at this low cp, we reversed the process and initiated the deswelling pro-
cess when the film temperature was increased slowly back to 40 ◦C, at a rate of only
0.01 ◦C/s. During this time, toluene vapors began to gradually evaporate and the film
slowly returned to its original thickness, but with its surfaces covered with newly induced
crystalline structures.

For the acquisition of AFM images, a system from Molecular Devices and Tools for
Nano Technology (NT-MDT) mounted on an Olympus IX71 optical microscope was used
in noncontact (tapping) mode. The AFM measurements were conducted utilizing high
resolution Noncontact Golden Silicon probes from NT-MDT. These probes had a tip radius
of curvature smaller than 10 nm and a tip height in the range of 14–16 µm. Moreover,
they were coated with Au on the detector side cantilever. The latter had a length of
125 ± 5 µm, and displayed a resonance frequency in the range of 187–230 kHz and a
nominal force constant ranging between 1.45–15.1 N/m. The AFM images (256 × 256 lines)
were obtained using a scanning speed of about 1–2 µm/s and a setpoint ranging between
9 and 12 V. The setpoint was adjusted so that a very soft tapping regime was obtained. The
optical microscopy micrographs were acquired using a KERN OKN-177 optical microscope
operating in reflection mode.

3. Results and Discussion

The main objective of this study was to reveal the impact of C-SVA processing on
the crystallization of thin BCP films. To achieve this objective, we firstly used a triblock
PB100-b-P2VP100-b-PEO104 copolymer system containing one crystalline [40] PEO block.
Because the PEO block was rather short (it comprised only 104 repeating monomers)
and comparable to the lengths of the other two constituent PB and P2VP blocks (each
containing 100 corresponding monomers), we expected that this triblock copolymer would
face difficulties in crystallizing (i.e., to nucleate and grow into single crystals) due to
unavoidable obstructions exerted by the non-crystalline blocks. Indeed, many attempts
to nucleate and crystallize thin PB100-b-P2VP100-b-PEO104 films from the melt at various
temperatures below 40 ◦C were unsuccessful (although partial melting of such films was
observable under the optical microscope at 67 ◦C and above, the subsequent crystallization
in the temperature range of 26–38 ◦C would not occur, possibly due to insufficiently
increased chain mobility combined with the inhibitions generated by the non-crystalline
blocks). Moreover, crystallization would also be difficult under normal, high-speed spin-
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casting conditions that would kinetically trap the films in a rather disordered state, as
there is only limited time for the BCP to initiate nucleation and subsequent crystallization
prior to the loss of solvent. This latter statement was confirmed by the results presented in
Figure 3. As we can observe in the optical micrograph in Figure 3b, there were no crystals
forming during and/or after the spin-casting process, besides some irregular and randomly
distributed elongated objects (of a length of 10–20 µm, as indicated by the yellow dotted
arrows; a part of such a quasi-flat object was further indicated by the dotted shape in
Figure 3d). The AFM height images presented in Figure 3d,f further demonstrated that the
rest of the film surface was covered with bright-colored domains a few tens of nanometers
tall, surrounding some “empty” and dark-colored irregular regions. Nonetheless, these
latter regions appeared brighter in the AFM phase image in Figure 3h, indicating that at
the bottom they were made of rather stiffer structures, possibly some poorly developed
aggregates or crystalline objects. Instead, the taller bright-colored domains visible in
Figure 3f were composed of a rather soft, amorphous material, as indicated by their darker
appearance in the AFM phase image (Figure 3h). Here, some rather circular sub-50 nm
nanostructures, emphasized in Figure 3j by the dotted circular shapes, could nonetheless
be observed.

In comparison, the as-cast PB100-b-P2VP100-b-PEO104 BCP film that was further pro-
cessed with the C-SVA method exhibited a morphology composed of essentially single
crystals randomly distributed over the whole surface and displaying a dendritic structure
(Figures 3a,c and 4a). This observation proved that processing with the C-SVA method
favored and induced crystallization, even though the crystalline PEO block was short and
well obstructed by the other two blocks and otherwise did not form crystals. Moreover, the
dendritic crystals shown in Figure 4a nucleated and grew during the C-SVA processing,
within the range of 17–20 ◦C while the cp was determined to increase from about 20% to
around 40% (note that the four crystals numbered in their centers are “deformed” due to
their partial coalescence).

All the above experimental observations suggested that dendritic crystals only formed
when polymer chains experienced high mobilities conferred by the rather diluted quasi-2D
“film-solution” regime. This was not the case during the thermal annealing, when chain
mobilities are expected to be lower than those in solutions or during the spin-casting process,
when such mobilities are rapidly decreasing with the dramatic evaporation of the solvent.
Clearly, the dendritic crystals are a result of (partial) alignments of, at least, PEO molecular
chains (i.e., their crystallization). The growth of these crystals was driven not only by the
transport of the molecules to the crystal (which is ultimately dictated by the concentration
of polymer molecules in rich-swollen “film-solutions” and most probably by their diffusion
rate [75]), but also by the probability of a polymer chain attaching to the surface of a crystal.
Considering that the dendritic crystals formed in about 5 min (while increasing the sample
temperature from about 17 ◦C to 20 ◦C, with a rate of 0.01 ◦C/s) in a regime where the
molecules most likely experienced high mobilities that favored the diffusion of molecules,
we tentatively conclude that the corresponding attachment probability was rather high
and most probably dominated by the diffusion-limited aggregation that finally led to a
dendritic morphology [75].
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Figure 3. Optical micrographs (a,b) and AFM height (c–f) and phase (g–j) images depicting the
surface microstructure observed in a thin film of PB100-b-P2VP100-b-PEO104 after (a,c,e,g,i) and before
(b,d,f,h,j) its exposure to toluene vapors in a rather confined sample chamber. While height (e) and
phase (g) images each represent a zoom-in of a region depicted in (c), images in (f,h) correspond to
a zoom-in of a region shown in (d). Moreover, images presented in (i,j) are each a zoom-in of the
images portrayed in (g,h), respectively. The only purpose of the dotted arrows, shapes and lines is to
guide the eye.
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Figure 4. (a) Four (partially) coalesced single crystals of dendritic structures observed under the
optical microscope in a PB100-b-P2VP100-b-PEO104 thin film after its rich-exposure to toluene vapors.
(b) Zoom-in and a 230◦ rotation of the AFM phase micrograph shown in Figure 3g realized in order
to better emphasize the existence of 16 ± 2 nm large substructures.

Furthermore, the average thickness of the dendritic crystal presented in Figure 3c,e
was extracted from multiple AFM cross-section profiles and was estimated to be
26 ± 5 nm. This value seemed to match the thickness of a PEO crystalline lamella, if
considering that the maximum length of a crystalline PEO chain in its fully extended con-
formation is almost 29 nm (according to the literature, the dimension of one ethylene oxide
monomer is 0.2783 nm [79]). Nonetheless, we do not know whether the crystal extended
deeper within the 79 nm thick film, below the surface probed by the AFM. Additionally,
the semicrystalline P2VP block could possibly extend the lamellar thickness by another
25 nm (100 × 0.25 nm [80,81]). Therefore, it is not possible to conclude whether the observed
crystals were made of folded, tilted or fully extended chains without a further structural
analysis employing X-ray experiments. Nonetheless, by comparing the crystal with its
surrounding areas in the AFM phase image shown in Figure 3g, we observed that the color
of the crystalline regions appeared to be slightly lighter than that of the surrounding areas,
pointing towards a stiffer material. This was in accordance with the expectation that a
crystalline material should be stiffer than its uncrystallized counterpart. A further analysis
on the crystal morphology revealed not only that the dendritic crystals were composed, as
expected, of a multitude of orthogonal branches, but also that these branches exhibited fine,
rather orthogonal substructures of a lateral dimension of 16 ± 2 nm (see the dotted lines in
the AFM image of Figure 3i and the high magnification of substructures in Figure 4b). To
corelate this value with the dimension of the polymer chains and their precise arrangements
within the crystal, a full structural analysis based on X-ray measurements will be needed in
the future.

In order to further demonstrate that the C-SVA approach can efficiently induce and
promote the crystallization process even under unfavorable conditions (i.e., when the PEO
block is well obstructed by the other two blocks), we have further increased the length
of all blocks, while maintaining a similar ratio between the number of ethylene oxide
monomers and the number of total butadiene and 2-vinylpyridine monomers (~0.52). In
this case, the resulting PB185-b-P2VP108-b-PEO154 BCP system possessed a longer PEO
crystalline chain, but was still well obstructed by the other two blocks. Figure 5 shows
structures obtained in a PB185-b-P2VP108-b-PEO154 film after and before its processing in
toluene vapors. While the optical micrograph presented in Figure 5a and corresponding
to the processed film clearly emphasized the presence of crystals of a seaweed dendritic
morphology [82,83] with growing tips splitting intermittently during crystallization, the
optical micrograph shown in Figure 5b and recorded for the unprocessed film suggested
that there were no signs of crystals. In this latter case, the film surface was covered with
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irregular and randomly distributed structures of a few micrometers in size. These are
better visualized in Figure 5d as bright, irregular aggregates indicated by the dotted arrows.
In between these aggregates, the surface was covered with sub-500 nm structures that
exhibited various irregular shapes and were randomly distributed on the surface. One such
structure is pointed out in Figure 5f,h by the dotted square shapes, and further magnified in
Figure 5j. These structures appeared to be composed of roundish substructures of molecular
dimension (32 ± 3 nm in diameter; see the dotted circular green shapes in Figure 5j). The
regions in between the sub-500 nm structures were also covered with spherical objects of
a molecular diameter (see the dotted circular yellow shapes in Figure 5j). Knowing that
PB185-b-P2VP108-b-PEO154 BCP displays, under specific conditions, a micellar nature [84,85],
with micelles that could be exhibiting a total hydrodynamic radius of up to 28.5 nm [84],
we cannot exclude the possibility that the as-cast morphology of this BCP system is based
on randomly distributed 32 ± 3 nm large micellar objects.
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Figure 5. Optical micrographs (a,b) and AFM height (c–f) and phase (g–j) images depicting the
surface microstructure observed in a thin film of PB185-b-P2VP108-b-PEO154 after (a,c,e,g,i) and before
(b,d,f,h,j) its exposure to toluene vapors. While height (e) and phase (g) images each represent a
zoom-in of a region depicted in (c), images in (f,h) correspond to a zoom-in of a region portrayed
in (d). Moreover, micrographs presented in (i,j) are each a zoom-in of the images shown in (g,h),
respectively. The purpose of the dotted shapes is for the eye guiding only.
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Instead, when the same BCP system was processed by utilizing the C-SVA method,
the morphology was composed of crystalline seaweed dendrites of an average height
of 29 ± 7 nm (determined by evaluating several cross-sections of the dendrites shown
in Figure 5c). As it can be observed in Figure 5e, the dendrites had a rather irregular
shape and were surrounded by a rather porous, yet amorphous morphology. Obviously,
the latter displayed a darker color in the AFM phase micrograph when compared to the
dendritic crystal (Figure 5g). Interestingly, a further magnification of the dendritic area
revealed the existence of both folded “stripe”-like and spherical substructures of a few tens
of nanometers in lateral dimension (Figure 5i). In conclusion, the comparison between
the two morphologies of the PB185-b-P2VP108-b-PEO154 film obtained before and after its
exposure to toluene vapors, revealed again that the crystallization process was induced
only in the diluted quasi-2D “film-solution” regime when the C-SVA method was utilized.

Finally, in order to compare the resulting crystalline structures when they are also
generated during the spin-casting process, we have massively increased the crystalline PEO
block within the BCP system (the ratio between the number of ethylene oxide monomers
and the number of total butadiene and 2-vinylpyridine monomers was increased to more
than 1.16; in this case the PEO block was expected to be less obstructed by the other
two constituent blocks when undergoing crystallization). In Figure 6 we compare a film
of PB345-b-P2VP252-b-PEO697, after and before being processed using the C-SVA method.
When the BCP system contained 697 ethylene oxide monomer units, the crystallization
process was spotted right after the spin-casting procedure. In this case, the BCP film
exhibited a uniform morphology fully covered with densely packed dendritic crystalline
structures (23 ± 5 nm in height; Figure 6b,d). Similarly, the film that was processed with
the C-SVA method also displayed a surface covered with dendritic crystalline structures,
but of a height about 33 ± 7 nm (Figure 6a,c; note here that the dendritic structures formed
during the initial spin casting process were dissolved during the exposure of the film
to toluene vapors in the “film-solution” configuration and then re-crystallized). In this
latter case, some “empty” regions, most probably depleted of chain molecules by the
crystallization process, were observed in between the dendrites. Clearly, the dendrites
grown in the C-SVA processed film were larger than those grown in the as-spin-cast film
(compare Figure 6c with Figure 6d). Moreover, the former dendrites were visibly covered
with various polymer decorations of an average height of 20 ± 5 nm (Figure 6e,g). This
was not the case for the as-spin-cast dendrites, which only displayed a rather uniform
surface (Figure 6f). Interestingly, the decorations were composed of spherical substructures
that had an average diameter ranging from ~30 nm to ~55 nm (Figure 6g) and displayed
a rather soft texture (as inferred from the AFM phase micrograph shown in Figure 6i).
These spherical structures failed to develop during the spin-casting process (Figure 6h,j). In
conclusion, when dealing with BCPs composed of rather long crystalline PEO blocks, the
crystallization process occurred both after the spin casting and after the C-SVA processing.
Nonetheless, only in the latter case were the crystalline dendrites larger, better defined, and
displaying decorations composed of spherical soft structures of molecular dimensions.

Similar results to those reported in Figure 6 were also obtained for the PB66-b-P2VP69-
b-PEO356 triblock copolymer. Although composed of a shorter PEO block that contained
only 356 monomer units, this BCP also exhibited crystalline structures in both C-SVA
processed and unprocessed films (Figure 7). Nonetheless, in this case the ratio between the
number of ethylene oxide monomers and the number of total butadiene and 2-vinylpyridine
monomers was more than 2.63, as the PB and P2VP blocks were reduced to only 66 and
69 monomers, respectively. Therefore, there was not much obstruction of the crystallization
process that could have been exerted by the latter two PB and P2VP blocks. Moreover, the
fine substructures that can be seen in Figure 7i,j and that form the dendritic crystals shown
in Figure 7a,b, are displaying a rather lamellar appearance with lateral dimensions of
18 ± 3 nm in width. Thus, these substructures are not spherical as those observed in
Figure 6i,j for the BCP containing a much longer PEO block.
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Figure 6. Optical micrographs (a,b) and AFM height (c–h) and phase (i,j) images depicting the
surface microstructure observed in a thin film of PB348-b-P2VP252-b-PEO697 after (a,c,e,g,i) and before
(b,d,f,h,j) its exposure to toluene vapors in a confined sample chamber. Height images in (e,f)
each represent a zoom-in of regions depicted in (c,d), respectively. Similarly, the height images
in (g,h) each correspond to a zoom-in of regions portrayed in (e,f), respectively. Moreover, phase
images shown in (I,j) are each a zoom-in corresponding to the regions delimited by dotted shapes in
(g,h), respectively.
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Figure 7. Optical micrographs (a,b) and AFM height (c–h) and phase (i,j) images depicting the
surface microstructure observed in a thin film of PB66-b-P2VP69-b-PEO356 after (a,c,e,g,i) and before
(b,d,f,h,j) its rich-swelling in toluene vapors. Height images in (e,f) each represent a zoom-in of
regions depicted in (c,d), respectively. Similarly, the height images in (g,h) each correspond to a
zoom-in of regions portrayed in (e,f), respectively. Moreover, phase micrographs shown in (i,j) are
each a zoom-in corresponding to the regions delimited by dotted shapes in (g,h), respectively.
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4. Conclusions

We have used a polymer processing approach based on solvent vapor annealing
in a space-confined environment in order to induce crystallization in thin films of PB-
b-P2VP-b-PEO triblock copolymers that contained a rather short crystalline PEO and
which would not crystallize otherwise. Indeed, the obtained optical microscopy and
AFM results have shown that the PB-b-P2VP-b-PEO films based on short PEO blocks (i.e.,
104–154 monomer units) that were well hindered by the other two constituent blocks led
to crystals of (seaweed) dendritic morphology only following their generous swelling
in solvent vapors. As expected, the BCP films based on a much longer PEO crystalline
block (i.e., 356–697 monomers) that were less hindered by the other two constituent blocks
underwent crystallization inclusively under normal spin-casting conditions.
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