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Abstract: A Cr3C2-Al2O3-NiCr composite coating was prepared on an INCONEL600 alloy surface
through high-velocity oxygen-fuel spraying followed by further processing through high-energy shot
peening to create the composite coating. The microhardness and friction properties of the composite
coating are analyzed by a microhardness tester and reciprocating friction tester. The microscopic
structure and wear trace of the composite coating were analyzed by scanning electron microscope
(SEM). The element distribution of the coating was analyzed by energy-dispersive spectroscopy
(EDS). The porosity of the coating was detected by industrial CT. The phase and residual stress
of the coating were tested by X-ray diffraction (XRD). The electrochemical corrosion and friction
wear performance of the samples under different surface states were discussed. The results showed
that the compactness of the coating was improved and the porosity was significantly reduced after
high-energy shot peening. The high-energy shot peening did not alter the phase composition of the
coating but introduced residual compressive stress. The microhardness of theCr3C2-Al2O3-NiCr
high-velocity oxygen-fuel coating can reach 2.9 times that of the INCONEL600 substrate, and the
hardness of the coating after high-energy shot peening can reach 3.9 times of that of the substrate.
After high-energy shot peening, the corrosion resistance of the coating in HCl solution is improved.
Compared with the INCONEL600 substrate, the friction coefficient and calculated wear rate of the
Cr3C2-Al2O3-NiCr high-velocity oxygen-fuel coating decrease by 62.5% and 79.6%, respectively. After
high-energy shot peening, the friction coefficient and calculated wear rate of the coating decrease by
75% and 98.7%, respectively.

Keywords: coating; high-energy shot peening; wear; corrosion

1. Introduction

INCONEL600 alloy has excellent high-temperature strength, good oxidation resistance
and thermal corrosion resistance; it is a high-temperature metal material suitable for long-
term work above 760–1500 ◦C [1,2]. However, the alloy has some problems, such as low
hardness and insufficient wear resistance, which limit the industrial application of the
alloy. Studies have shown that INCONEL 600 alloy is prone to wear failure due to fretting
wear and sliding wear [3,4]. Wear failure not only causes a lot of waste of materials and
components, but may also lead to disastrous consequences. Particularly for equipment
with flowing media inside, the abrasion of key parts has a great impact on the service of
equipment, so it is particularly critical to strengthen the surface of the key parts of said
equipment [5,6].

To improve the wear resistance of workpieces, apart from the changing of matrix
materials and of workpiece structures, wear-resistant coatings are generally prepared on
the surface of workpieces. Wear-resistant coatings can generally be divided into diffusion
coatings and overlay coatings, such as C-diffusion coatings [7] and N-diffusion coatings [8].
Overlay coatings are formed by utilizing physical or chemical methods to directly deposit
coating materials on the alloy surface. Unlike diffusion coatings, the substrate does not
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participate in the formation of the coating during the preparation of overlay coatings, so the
selection of the coating’s composition is more diverse; multiple preparation methods have
also been developed, such as laser cladding [9], surface overlay welding [10], and explosion
spraying [11]. Thermal spraying, as an overlaying coating making method, is a scalable
and cost-efficient surface engineering method which can deposit thick coatings with a wide
variety of metallic and non-metallic feedstock materials. Xiao et al. [12] applied APS to
prepare NiCrBSi-Zr coating and found that it has lower porosity and excellent anti-friction
and wear resistance. Ding et al. [13] used HVOF technology to prepare WC-12Co coating,
and the results showed that the coating has a higher bonding strength and more excellent
wear resistance.

Cr3C2-NiCr cermet composite coating has attracted wide attention because of its
high hardness of hard phase Cr3C2 and high toughness of binder phase NiCr [14,15].
Many studies have analyzed the relationship between process parameters and coating
microstructure and properties and discussed the failure mechanisms of the coating, such as
corrosion, wear and high-temperature oxidation [16,17]. Previous studies show that the
coating often has defects such as poor porosity and poor bonding with the substrate, which
lead to the failure of the coating under harsh working conditions. Therefore, it is necessary
to adjust the microstructure or properties of the coating using high-quality and efficient
post-treatment technology. Annealing [18,19] and laser remelting [20–22] are mostly used
in coating post-treatment, which improves the bonding strength, microhardness and wear
resistance of the coating to a certain extent. It is challenging to completely remove the
residual tensile stress on the coating surface with heat treatment [23], and this is not
conducive to the long-term service of the coating. High-energy shot peening can improve
the surface structure and hardness of materials, and introduce residual compressive stress
to optimize the service performance of materials [24,25].

In this study, post-process shot peening was used to improve the structures and
tribological properties of a cold-sprayed Cr3C2-Al2O3-NiCr coating. The influence of shot
peening on phase compositions, microstructures, mechanical and corrosion properties
of Cr3C2-Al2O3-NiCr coatings was investigated, respectively, and its mechanism was
further discussed.

2. Materials and Methods

The substrate material is INCONEL600 alloy, manufactured by Western Supercon-
ducting Technologies Co., Ltd. (Xi’an, China) The chemical composition is listed in Table 1.
Before preparing the spraying, the surface of INCONEL600 alloy was polished, degreased
and sandblasted. The spraying powder is 25% Cr3C2 powder, 5% Al2O3 powder and
70% NiCr powder, which are uniformly mixed by ball mill. The spraying powder is
manufactured by Xi’an Surface Material Protection Co., Ltd. (Xi’an, China).

Table 1. Chemical composition of INCONEL600 alloy.

Element C Mn Si P S Cr Ni Cu Fe

wt.% ≤0.15 ≤1.00 ≤0.50 ≤0.030 ≤0.015 14.0–17.0 71.0–78.0 ≤0.50 6.0–10.0

The spraying equipment is a KY-HVO (A) F(Xi’an, China) high-velocity spraying
machine, which uses aviation kerosene as fuel, high pressure oxygen as combustion-
supporting gas and nitrogen as powder feeding gas. Figure 1 explain the principle of its
operation. The fuel is mixed with high-pressure oxygen and burned in a nozzle to produce
a high -temperature, high-speed flame flow. The coating powder is accelerated, mixed
and melted by high-speed flame flow, and finally hits the substrate surface at high speed
to form the coating. The high-energy shot peening treatment was carried out using air
pressure shot peening equipment (DT1480, Shanghai, China), the shot medium is a glass
ball with a diameter of 0.3 mm, the working pressure is 0.2 MPa, and the shot peening time
is 5 min.
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Figure 1. Schematic diagram of high-velocity spraying.

A JSM-6460 (JEOL Ltd.,Tokyo, Japan,) scanning electron microscope (with EDS) was
used to observe the micro-morphology of the coating pores, and the wear marks and
element distribution of the samples. An MH-5 (Shanghai Hengyi Technology Company,
Shanghai, China) microhardness tester was used to measure the microhardness of the
samples (loading load 5N, loading time 15 s, taking 5 points for each datum and taking
the average value); a CHI800D (Shanghai Chenhua Instrument Co., Ltd., Shanghai, China)
electrochemical workstation, was used to detect the Taffel curve of the samples. The
scanning range was −1.0–1.0 V, and the corrosion medium was 5% HCl solution. The phases
of the coatings before and after shot peening were characterized by XRD (SHIMADZU,
Kyoto, Japan), with Cu-Ka radiation. The diffraction angle was in the range of 30–85◦.
An X-ray stress analyzer (SHIMADZU) was used to measure the surface residual stress
of coating before and after shot peening with sin2ψ method. Industrial CT (Huiyan
Technology Co., Ltd., Beijing, China) was used to measure the porosity of the coating before
and after shot peening.

All of the surfaces to be rubbed were uniformly polished with #1500 sandpaper. The
friction time was 30 min and the load was 200 g. The wear test was conducted using
an MSR-2T type reciprocating friction and wear tester, as shown in Figure 2. The upper
specimen was a 6 mm diameter Al2O3 ball with a Vickers hardness of approximately
2035 HV and a density of 3.6 g/cm3. The lower specimen was the test specimen, and the
load was provided by the upper weight, with a test speed of 40 mm/min and a stroke of
5 mm. The dry friction test was conducted at room temperature. In the friction and wear
test, the software MSR-2T (Lanzhou Zhongke Kaihua Technology Development Co., Ltd.,
Lanzhou, China) recorded the changing trend of the friction coefficient with time. A DSX510
(Olympus) three-dimensional profilometer was used to measure the cross-sectional area
of the wear area of the material, and the wear rate was calculated using the following
Formula (1):

Wr =
Wv

S × L
(1)

Wr—Rate of wear mm3/(m·N)
Wv—Wear volume (mm3)
S—Sliding distance (mm)
L—Load (N)
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3. Results
3.1. SEM and EDS Investigation of Coating

The coating section before and after high-energy shot peening was investigated by
SEM, as shown in Figure 3. Prior to investigation, all the specimens’ observed surfaces
were polished. It can be seen that the coating structure is loose and has many pores both
before and after shot peening. Image J 1.54c software was used to mark the images before
and after shot peening, with the yellow area in the figure marked as pores. Through
software analysis, the average pore area on the coating before shot peening was found to
be 563.642 µm2, while after shot peening it decreased to 277.197 µm2. This indicates that
the coating was compressed and the compactness was improved after shot peening.
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The coating surface before and after shot peening was investigated by SEM and EDS,
as shown in Figure 4. It can be seen that after shot peening, elements C, Cr and Ni on
the coating surface are more evenly distributed than those before shot peening, and the
agglomeration of elements disappears. The results indicate that the distribution of Cr3C2
and NiCr phases in the coating was more uniform after shot peening.
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3.2. Porosity Analysis

In order to investigate the distribution of pores in the coating before and after shot
peening, this study used industrial CT to detect the coating before and after high-energy
shot peening, as shown in Figure 5. The red areas in the figure represent the pores dis-
tributed in the coating. After statistical analysis, it was found that the porosity of the coating
sample was 12.68%, which decreased to 4.75% after high-energy shot peening. Porosity is
an important factor affecting the corrosion resistance of the coating. Kawakita J et al. [26]
found that an increase in porosity would result in reduced corrosion resistance. The above
results show that the porosity of the coating can be significantly reduced by high-energy
shot peening.
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3.3. Hardness Test

Hardness is one of the most important indices for measuring the wear resistance of
materials, and the remarkable improvement of hardness can effectively improve the wear
resistance of materials. Mechanical surface hardening treatments such as shot peening [27],
laser shock peening [28], and rolling [29] can induce elastic-plastic deformation on the
surface, and may improve the hardness of thermal sprayed coatings. In order to fully
describe the coating hardness, 5 points were measured randomly for each sample. Figure 6
shows the mean microhardness test results of three samples. It can be seen that the hardness
of the substrate is 172.7 ± 3.3 HV, the hardness of the coating is 497.3 ± 25.4 HV, and the
hardness of the coating + shot peening sample is 674.0 ± 6.8 HV. The mean hardness of the
coating reaches 2.9 times that of the substrate, and the hardness of the coating is further
improved after high-energy shot peening, reaching 3.9 times that of the substrate.
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After high-energy shot peening, the standard deviation of hardness is significantly
reduced, which indicates that the hardness distribution of the coating is more uniform
after shot peening. It can be seen from the surface EDS results that after high-energy shot
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peening, the distribution of Cr3C2 and NiCr phases in the coating is more uniform, which
is indeed due to the uniform distribution of phase leading to the uniform distribution
of hardness.

3.4. XRD Phase and Residual Stress Detection

In order to study the effect of high shot peening on the phase and residual stress of
coatings, the samples were tested by XRD, and Jade 6.5 software was used to mark the
phase. The XRD diffractograms of the coating before and after high-energy shot peening is
shown in Figure 7. It can be seen that the coating is mainly composed of NiCr phase and
Cr3C2 phase. A small amount of Cr7C3 and Cr23C6 phases also appeared, which proved
that a slight decarburization occurred during the spraying process. As can be seen in the
diffractogram, no phase changed, indicating that the crystallinity of these coatings was not
changed in the process of shot peening.
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Another characteristic of shot peening was the introduction of compressive residual
stress. As shown in Table 2, the residual stress of the thermal-sprayed coating was found to
be 15 MPa. After shot peening, the tensile residual stress was transformed into compressive
stress with a value of −131 MPa. Zhao et al. found that coating corrosion resistance may be
improved by optimizing the residual stress in conjunction with coating thickness and the
geometry of common defects [30]. Ma et al. reported that inducing a compressive residual
stress field can hinder the fatigue crack initiation and growth [31]. Therefore, the corrosion
or other mechanical properties of the coating may be improved by introducing residual
compressive stress after high-energy shot peening

Table 2. Residual stress results of coating before and after shot peening.

Sample Coating Coating + Peening

Residual stress (MPa) 15 ± 4 −131 ± 7

3.5. Electrochemical Corrosion Resistance

The electrochemical corrosion polarization curve of the coating is shown in Figure 8.
The analysis showed that the self-corrosion potential of the coating sample was −0.356 V,
and the self-corrosion potential of the coating + shot peening sample was −0.337 V. The self-
corrosion potential can characterize the corrosion tendency of the material to a certain extent,
and the more positive the potential, the smaller the corrosion tendency. The self-corrosion
current density was obtained by polarization curve extrapolation, and the self-corrosion
current density of the coating decreased from 3.301 × 10−4 A/cm2 to 1.978 × 10−4 A/cm2

after shot peening. The above results showed that the density of the coating was improved
and the surface porosity was decreased after high-energy shot peening, so the corrosion
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tendency of the coating was reduced and the corrosion resistance was improved in the
HCl environment.
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3.6. Friction and Wear Properties

The friction coefficient is a physical quantity that mainly reflects the friction state of
contact surface. Figure 9 shows the friction coefficient curves of different samples and Al2O3
ceramic balls. It can be seen that the friction coefficient of the substrate is about 0.8, and the
friction coefficient of the coating sample is about 0.3. After high-energy shot peening, the
friction coefficient of the coating is further reduced to about 0.2. The results show that the
surface hardness of NiCr-Cr3C2-Al2O3 coating is obviously improved after spraying on the
surface of the sample, and the existence of hard particles resists the intrusion of friction
pairs, which reduces the contact area between them and friction coefficient [32,33]. After
high-energy shot peening, the density of the coating is improved, as well as the hardness.
The ability to resist the cutting of friction pairs is stronger, and the friction coefficient is
further reduced.
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In order to clarify the friction and wear properties of three different samples, the wear
marks are analyzed by 3D contour scanner, and the results are shown in Figure 10a. It
can be seen from the figure that a deep furrow is formed on the surface of the original
sample after friction experiment, while the wear marks on the sprayed sample are very
shallow. Figure 10b is the cross-sectional profile of the wear mark. After calculation, the
depth of the wear mark of the original sample is 8.7 µm, and the width reaches 434.7 µm.
The depth and width of the wear marks on the surface of the coating samples are 2.9 µm
and 204.6 µm, which shows that the coating can effectively resist the invasion of wear balls
during reciprocating friction due to the improvement of hardness, thus showing better
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wear resistance. After high-energy shot peening, the depth and width of the wear marks
are further reduced to 0.5 µm and 104.9 µm, and the penetration depth of the wear balls is
further reduced due to the continuous increase in hardness of the coating.

Figure 10. Friction test results: (a) 3D trace after friction test images. (b) Surface profiles of wear scar
depth. (c) Wear rates.
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Figure 10c shows the calculated wear rates of the three samples. The wear rates of the
original sample are 4.32 × 10−5 mm3/Nm, the sprayed sample is 8.8 × 10−6 mm3/Nm,
and the high-energy shot peening sample is 5.6 × 10−7 mm3/Nm. The results show
that the wear rate is reduced by 98.7% compared with the original sample through the
composite treatment of spraying and high-energy shot peening, and the wear resistance is
significantly improved.

4. Discussion
4.1. Morphology Analysis of Friction Marks

In order to further analyze the mechanism of improving the wear properties of the
composite coating, the wear surfaces of the substrate and the composite coating are ana-
lyzed by SEM. As shown in Figure 11, deep furrows and peeling pits caused by repeated
friction appear on the surface of the original sample. The friction marks on the surface
of the sprayed sample are very smooth and shallow, but there are white particles on the
surface of the sprayed sample after friction, and local fracture marks on the coating surface
(circle area); meanwhile, the surface of the sprayed + shot peened sample has few particles,
and the surface is smoother.
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It is thought that the NiCr bonding phase is easily extruded by Cr3C2 particles due to
the plastic deformation of the surface layer at a certain depth under the action of friction
during the wear process, which leads to the exposure of Cr3C2 particles, making it easy
for them to fall off under the action of friction on the wear parts. Luo et al. [34] also
reached a similar conclusion when studying the wear resistance of WC-Co coating. After
high-energy shot peening, a residual compressive stress layer with a certain depth is
formed on the surface of the binder. Under the action of residual compressive stress, Cr3C2
particles are more firmly fixed and do not fall off easily during friction. High-energy
shot peening refines Cr3C2 particles on the surface, and the refinement of hard particles
weakens the extrusion effect of the NiCr binder phase by Cr3C2 particles, thus avoiding
excessive exposure. Therefore, high-energy shot peening can significantly improve the
wear resistance of the coating.

4.2. Morphology and EDS Analysis of Friction Pair

The friction pair is tested using SEM and EDS. As shown in Figure 12, it can be seen
from the friction marks on the friction pair that the friction mark width of the original
sample is 230 µm, the coating sample is 110 µm wide, and the coating + shot peening
sample is 80 µm wide. The narrower the width, the deeper the friction pair cuts into the
substrate and the better the wear resistance. The EDS results of the friction pair surface of
the original sample show that the element on the friction trace is mainly Ni, which indicates
that there are elements bonded to the friction pair on the matrix. EDS results of sprayed
and sprayed + shot peened samples show that the friction trace is mainly C element, the
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main source is hard particle Cr3C2, and there is no Ni or Cr element in the bonding phase.
EDS results further show that the hard particle Cr3C2 effectively resists the friction pair
cut-in, and the friction pair basically only abrades with Cr3C2 during the friction process;
therefore, there is basically no damage to the bonding phase. The ability of the coating to
resist the friction pair cut-in is further improved after high-energy shot-treatment peening.
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4.3. Stress Analysis

Figure 13 is a schematic diagram of the stress of the material during the friction process.
During the grinding process between the coating sample and the friction pair, the hard
particles Cr3C2 resist the cutting of the friction pair and avoid direct contact between the
friction pair and the binder phase. The forces of the friction pair on the hard particles
mainly include downward pressure N, horizontal friction f, and the binding force F around
the bonding phase on hard particles. In addition to the aforementioned forces, the hard
particles of the coating + high-energy shot peening samples are also affected by the residual
stress δ in the binder phase. It is thought that F is the main cause of extrusion of the binder
phase and the shedding of hard particles. When the force exceeds the tensile strength of
binder phase, the binder phase fails.
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Under the influence of residual stress δ and lower friction force f, the binding force F
of the coating + high-energy shot peening samples is smaller. The friction resistance of the
coating + shot peening sample surface layer is better, indicating that the friction resistance
of the coating is significantly improved by high-energy shot peening.
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4.4. Effect of Surface Strengthening Layer on Wear Properties

After high-energy shot peening, a strengthened layer with a certain depth is formed
on the surface of the coating, and the hardness is high. Some studies have shown that
there is a residual compressive stress layer with a certain depth in the coating after shot
peening [35–37]. According to the Archard equation [38], the relationship between hardness
(H) and wear rate (W) is shown in Equation (2):

W = K
P
H

(2)

where K is the friction coefficient of materials, P is the applied load, and H is the hardness.
As described in Equation (2), the wear rate w decreases with the increase in hardness (H).
The existence of residual compressive stress can effectively inhibit the fatigue wear caused
by periodic load at the contact point during friction [39,40], and inhibit the initiation and
development of fatigue cracks in the coating.

5. Conclusions

1. After high-energy shot peening, the compactness of the coating was improved and
the porosity was significantly reduced.

2. The microhardness of the Cr3C2-Al2O3-NiCr high-velocity oxygen-fuel coating can
reach 2.9 times of that of the INCONEL600 substrate, and the hardness of the coating
after high-energy shot peening can reach 3.9 times of that of the substrate.

3. After high-energy shot peening, the corrosion tendency of the coating was reduced
and the corrosion resistance was improved in the HCl environment.

4. Compared with the INCONEL600 substrate, the friction coefficient and calculated
wear rate of the Cr3C2-Al2O3-NiCr high-velocity oxygen-fuel coating decrease by
62.5% and 79.6%, respectively. After high-energy shot peening, the friction coefficient
and calculated wear rate of the coating decrease by 75% and 98.7%, respectively.
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