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Abstract: Doping of transition metal diborides (TMB2) films with soft metals (Ag, Au, Pt) can
extend their application potential to tribological and biomedical fields. Here, a combination of
direct current unbalanced magnetron sputtering (DC-UBMS) with high-power pulsed magnetron
sputtering (HiPIMS) was used to synthesize silver-doped CrB2+x thin films on unheated substrates.
All Ag–CrB2+x thin films were over-stoichiometric with a B/Cr ratio ranging from 2.05 to 2.30
and silver content varying from 3 at.% to 29 at.%. X-ray diffraction demonstrates the amorphous
character of the structure in the case of films with silver content ranging from 0 at.% to 8 at.%. A
nanocrystalline structure containing a cubic Ag phase is formed in the films with higher silver content.
The highest hardness of 26.6 GPa accompanied by the highest value of elastic modulus of 362 GPa
was measured in undoped CrB2.3 films. As the silver content in the Ag–CrB2+x thin films increases,
the hardness and elastic modulus values gradually decrease to 7.8 GPa and 187 GPa, respectively.
The friction properties of CrB2.3 films, expressed by the coefficient of friction against a steel ball of
0.72, are insufficient and limit their use in demanding industrial applications. However, silver doping
significantly reduces the friction coefficient when the lowest value of 0.39 is measured in moderately
hard Ag–CrB2+x films with an Ag content of 17 at.%. The scratch test shows satisfactory adhesion of
films to substrates even without additional heating during deposition.

Keywords: chromium diboride; silver; HiPIMS; mechanical properties; tribology

1. Introduction

Transition metal diborides (TMBs) have received a lot of interest in recent decades
due to their excellent properties, such as high melting temperature, chemical and thermal
stability, high electrical and thermal conductivity, and high hardness level [1–4]. Among
them, TiB2 is probably the most studied [5]. Over-stoichiometric TiB2+x thin films with
a super-hardness of >40 GPa have a complex self-organized nanostructure that is ther-
mally stable up to 700 ◦C [4]. Disruptions in the hexagonal microstructure caused by
non-stoichiometry prevent dislocations from spreading throughout the unique nanostruc-
ture [4,6,7] and explain the high hardness level.

Among the TMBs, chromium diboride (CrB2) has received less attention [8–15] but
also offers promising properties. In bulk form, it possesses a melting temperature of
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2200 ◦C, a high bulk modulus (211 GPa), oxidation resistance up to 1000 ◦C, a low thermal
expansion coefficient, good wear resistance, and chemical inertness [7]. Compared to TiB2,
CrB2 has better corrosion resistance [16]. Thus, CrB2 is a promising candidate for various
high-temperature applications.

Several methods were used for CrB2 thin-film preparation, including, among others,
physical vapor deposition (PVD) methods such as magnetron sputtering. In contrast to
related diborides, the CrB2-x system has under-stoichiometric tendencies (B/Cr < 2) when
prepared by PVD methods [10,17]. Thus, the deposition of close-to-stoichiometric thin
films with desired properties is a challenge. Dahm et al. [12] prepared CrB2 thin films
by an unbalanced magnetron sputtering method at temperatures below 200 ◦C with high
hardness in the range of 42–49 GPa. Most of them had a strong (001) orientation, but
the exact stoichiometry was not declared. Audronis et al. [8] prepared fully dense and
crystalline CrB2±x thin films with a strong (001) orientation by pulsed magnetron sputtering.
CrB2 thin films were prepared in a wide concentration range with a B/Cr ratio from 0.92 to
2.3. The largest hardness of 39 GPa was observed for stoichiometric nanocrystalline thin
films. Excess boron led to a hardness decrease but the nanocrystalline structure remained.
CrB2.3 thin film had a hardness of 33.2 GPa. On the other hand, boron deficiency led to
X-ray amorphous structure and a significant decrease in hardness. A different approach
was used by Choi et al. [16], where CrB2 thin films were deposited by inductively coupled
plasma-assisted direct current magnetron sputtering (ICP-DCMS). By changing deposition
parameters, the orientation varied between (101) to (001) type and the hardness of thin
films was in the range from 30 to 54 GPa. Stoichiometric and hard CrB2 thin films were
also prepared by DC magnetron sputtering [10,15]. Zhang et al. [15] studied the influence
of deposition temperature on microstructure and mechanical properties. The deposition
temperature changed from 100 ◦C to 400 ◦C and the B/Cr ratio varied between 1.94 and
2.06. With increasing temperature, the coating texture changed from a random mixed
orientation to the preferred (001) orientation and a super-hardness of 51 GPa was achieved
for the highest temperature. Dorri et al. [10] prepared close-to-stoichiometric CrB2 thin
films with a B/Cr ratio from 1.9 to 2.08 and (001) texture at substrate temperatures of 500 ◦C
and 900 ◦C.

In terms of tribological properties of CrB2 thin films, pulsed magnetron sputtered
films exhibited coefficients of friction (COFs) of ~0.55 [9], ~0.6 [9], and ~0.5 [14] against
aluminum alloy, steel, and WC–Co, respectively. Such values are too high for low-friction
applications and/or wear-resistant coatings and, thus, improvement of tribological prop-
erties is desirable. Doping of thin films with soft metals such as silver could be one of
the possibilities.

Several research groups focused on doping silver into nitride films such as TiN [18]
or CrN [19–22] to study the tribological, mechanical, and even antimicrobial properties.
Soft and ductile silver plastically shears between the sliding surfaces and, therefore, offers
a lubricating function [18,23]. An increase in silver content provides a reduction in the
coefficient of friction but also a reduction in mechanical hardness and elastic modulus.
According to [20,22], decreasing the indentation hardness does not have to be connected to
a decrease in wear resistance. On the contrary, wear resistance may be improved.

In this work, we provide the first approach to doping silver into CrB2+x thin films
deposited by DC/HiPIMS technology. Undoped CrB2+x and Ag–CrB2+x thin films with
different silver contents are analyzed in terms of mechanical and tribological properties.
Depending on the stoichiometry, friction properties and specific wear rate are improved
at the expense of hardness and elastic modulus. Moreover, Ag–CrB2+x thin films exhibit
sufficient adhesion on unheated WC–Co substrates.

2. Materials and Methods

CrB2, Ag, and Ag–CrB2+x films were prepared by DC/HiPIMS magnetron co-sputtering
in the STATON OCTOMAG coating equipment (STATION, Turany, Slovakia) in the Ar
atmosphere on polished WC–Co and Si (001) substrates. Ag (D100 × 6 mm, 99.5% purity,



Coatings 2023, 13, 824 3 of 11

Kremnica mint, Kremnica, Slovakia) and CrB2 (D100 × 6 mm, 99.5% purity, Testbourne,
Basingstoke, UK) targets were used. Cr target (D100 × 6 mm, 99.95% purity, Testbourne,
Basingstoke, UK) was used for the deposition of the 150 nm thick Cr buffer layer. Ag was
sputtered by a DC power supply, while CrB2 was sputtered by a HiPIMS power supply.
Prior to depositions, the substrates were ultrasonically cleaned in acetone and isopropyl
alcohol and rinsed with distilled water for 5 min.

Before the deposition, the chamber was evacuated to the base pressure of 5 × 10−3 Pa.
Substrates were plasma etched using Ar+ glow discharge working at −800 V for 30 min,
and then additionally etched by Ar+ ions using ion source operating at a voltage of −2000 V
and a pressure of 0.1 Pa. A substrate bias was set to −800 V. Prior to each deposition, the
targets were pre-sputtered for 5 min at the same Ar pressure and target power as used
for the deposition. The frequency and pulse time of the HiPIMS discharge on the CrB2
target were set to 100 Hz and 250 µs, respectively. The CrB2 discharge was synchronized
with the bias power supply. A negative bias of –60 V was applied to the substrate holder
during deposition. The peak power for the CrB2 target was ~71–78 kW, and the DC power
for the Ag target varied in the range from 30 W to 110 W in order to obtain different
silver compositions. For all depositions, pAr was 0.40 ± 0.02 Pa corresponding to an Ar
flow of 155 sccm. Deposition parameters are summarized in Table 1. The DC/HiPIMS
co-depositions of Ag–CrB2+x films were performed without substrate heating, and thin
films were grown on substrates heated only by ion bombardment during plasma etching
and ion irradiation. The deposition time was 50 min; the thickness of the prepared thin
films is summarized in Table 2.

Table 1. Summary of EDS chemical composition, deposition parameters, and films thickness of
CrB2.3, Ag–CrB2+x, and Ag thin films.

Film
Sample

EDS Deposition Parameters

Ratio
B/Cr Ag [at.%] ICrB2 [A] UCrB2

[V]
PCrB2
[kW]

fCrB2
[Hz]

ptCrB2
[µs]

PAg
[W] Ib [A] Thickness

[µm]

CrB2.3 2.30 0

70 1300

78

100 250

- 1.5 1.1

Ag 3% 2.20 3 ± 1 78 30 1.4 1.2

Ag 8% 2.20 8 ± 1 73 40 1.5 1.3

Ag 13% 2.18 13 ± 1 71 50 1.5 1.3

Ag 17% 2.15 17 ± 1 71 60 1.5 1.4

Ag 18% 2.05 18 ± 1 77 70 1.6 1.5

Ag 29% 2.30 29 ± 1 77 110 1.6 1.9

Ag - 100 - - - - - 110 0.1 1.4

Table 2. Summary of hardness H, elastic modulus E, coefficient of friction COF, and specific wear
rate of CrB2.3, Ag–CrB2+x, and Ag thin films.

H
[GPa]

E
[GPa] COF Specific Wear

Rate [m3/Nm]

CrB2.3 26.6 ± 1.1 362 ± 11 0.72 1.61 × 10−13

Ag 3% 22.1 ± 0.8 325 ± 8 0.71 9.51 × 10−14

Ag 8% 18.3 ± 1.2 299 ± 9 0.49 8.38 × 10−14

Ag 13% 15.0 ± 0.6 268 ± 12 0.48 1.09 × 10−13

Ag 17% 13.1 ± 0.2 245 ± 5 0.29 1.12 × 10−13

Ag 18% 11.4 ± 0.1 231 ± 5 0.32 1.27 × 10−13

Ag 29% 7.8 ± 0.1 187 ± 4 0.36 1.39 × 10−13

Ag 1.2 ± 0.5 97 ± 27 0.39 6.10 × 10−15
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The chemical composition of the thin films was measured using energy-dispersive
X-ray spectroscopy (INCA Oxford Instruments, Oxford, England) attached to the TESCAN
VEGA scanning electron microscope (SEM, TESCAN, Brno, Czech Republic). The accelerat-
ing voltage was set to 10 keV. Before EDS measurements, calibration standards of the pure
elements Cr, B, and Ag were used.

The structural analysis was carried out by X-ray diffraction (XRD) using PANalytical
X’pert Pro MRD diffractometer (PANalytical, Almelo, The Netherlands) equipped with
CuKα (=0.15418 nm) radiation source and operating in standard Bragg–Brentano geometry.

Mechanical properties, including hardness and elastic modulus, were measured by the
nanoindentation method using nanoindenter Anton Paar NHT2 (Anton Paar, Graz, Austria)
equipped with a standard diamond Berkovich tip and determined via the Oliver and Pharr
method [24]. The penetration depth was less than 10% of the overall thickness to minimize
the influence of the substrate. Twenty valid indents (5 × 4 matrix) were performed on
each sample.

Adhesion properties were evaluated by a scratch test. The Bruker UMT-2 device
(Bruker, Billerica, MA, USA) was used to determine the adhesion properties in terms of
progressive loading up to 60 N. The evaluation of scratches was performed using SEM, and
critical load values Lc were determined according to [25].

For tribological properties, the Bruker UMT-2 device in ball-on-disc setup was used to
determine the coefficient of friction as a function of silver content in the Ag–CrB2+x thin
films. Parameters for ball-on-disc were as follows: load force of 2 N, rotation of 200 rpm,
race-track radius of 2.5 mm, time of 12 min, a sliding distance of 31.5 m, and a counterpart
of 100Cr6 bearing steel ball with a diameter of 6.3 mm. During the test, temperature and
relative humidity were 23.5 ◦C and 30%–33%, respectively. It should be emphasized that
the given temperature is the ambient temperature and the sample is not intentionally
heated during the measurement. However, the real temperature is higher because of the
frictional heat produced at the tribo-contact. The volume of worn material from wear tracks
after the ball-on-disc test was measured by confocal laser microscope Keyence VK-X 1050
(Keyence, Osaka, Japan). Furthermore, all wear tracks were analyzed by SEM in terms of
EDS chemical maps and higher magnification.

3. Results
3.1. Chemical Composition of Studied Thin Films

Semi-quantitative elemental EDS analysis of the reference sputtered CrB2+x films
reveals a slightly over-stoichiometric ratio of B/Cr ≈ 2.30. According to the elemental
analysis of Ag–CrB2+x thin films, co-deposition leads to the addition of silver to the grow-
ing films in the range from 3 at.% to 29 at.%, while the B/Cr ratio ranges from 2.05 to
2.30. Carbon and oxygen contamination does not exceed a total of 3 at.%. EDS chemical
composition of Ag–CrB2+x thin films is summarized in Table 1.

3.2. XRD Structure of Ag–CrB2+x Thin Films

The evolution of the structure of Ag-CrB2+x thin films with various compositions is
shown in Figure 1 by the XRD patterns on the selected 2θ range between 25◦ and 66◦. The
absence of CrB2 reflections in CrB2.3 thin film suggests an amorphous character of the film.
The lower content of silver (up to 8 at.%) in the films does not change the amorphous
structure. The XRD patterns of the Ag–CrB2+x thin films with higher content of silver
(>8 at.%) exhibit increased intensity (compared to the background) and comparatively
wider reflections (in range of ±2.5◦) centered at 2θ ≈ 38◦ and 44◦, indicating the presence
of a nanocrystalline structure. In the case of the films with the highest content of silver
(29 at.%), the narrow XRD reflections (111) and (200) located at 2 θ ≈ 38◦and 2 θ ≈ 44◦,
respectively, are identified as a cubic silver phase.
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3.3. Cross-Section of Ag–CrB2+x Thin Films

Figure 2 depicts SEM cross-section micrographs of studied thin films. The cross-section
structure exhibits dense (nonporous) morphology in all cases and a glassy structure with
the Ag content up to 18 at.%, which is in good agreement with the amorphous structure
measured by XRD.
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In the case of Ag 29%, the glassy and smooth structure disappears, and changes to
a globular-like morphology. Since the XRD reveals the crystalline nature of silver in all
samples, we assume that silver distributed in the film tends to aggregate and form larger
grains at a higher Ag content, which are embedded in an amorphous a-CrBx phase.

3.4. Mechanical Properties of Ag–CrB2+x Thin Films

The effect of structural evolution on the mechanical properties of Ag–CrB2+x films
as a function of the silver content is presented in Figure 3. The reference CrB2.3 film has
a hardness H of 26.6 ± 1.1 GPa and an elastic modulus E of 362 ± 11 GPa, which is
comparable to the previously published hardness values of X-ray amorphous CrB2 films [9].
However, doping with silver causes a monotonous decrease in hardness and elastic moduli.
For the sample with the Ag content of 29 at.%, hardness and elastic modulus decrease to
7.8 ± 0.1 GPa and 187 ± 4 GPa, respectively.
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We assume that such a significant change in mechanical properties is caused by the
fact that silver is an insoluble element in CrB2 and does not form hard nitrides or borides,
but rather precipitates at grain boundaries and forms a soft metal matrix [26]. In such a
case, the lower hardness may be attributed to a dislocation-based homogeneous plastic
deformation mechanism in the soft metal matrix due to the low shear strength of silver.
The reference sample of silver deposited by DC magnetron sputtering shows a hardness
and elastic modulus of 1.2 ± 0.5 GPa and 97 ± 27 GPa, respectively.

3.5. Adhesion Properties of Ag–CrB2+x Thin Films

As measured by the scratch test, CrB2+x and Ag–CrB2+x thin films have sufficient
adhesion on WC–Co substrates despite the low deposition temperatures. For all samples,
the critical load is over 35 N and adhesive failure in the form of wedging spallation occurs
in some cases at higher loads. The reference Ag thin film exhibits good adhesive strength
with a critical load over 60 N and no internal cracks or delamination from the substrate.
Overall, the films’ adhesion on the WC–Co substrates is slightly improved by adding silver
to the CrB2+x thin films.

3.6. Tribological Response of Silver-Doped CrB2+x Thin Films

The coefficient of friction of the Ag–CrB2+x thin films against 100Cr6 steel was mea-
sured by the ball-on-disc test (Figure 4A). COFs of reference undoped CrB2.3 and Ag thin
films are 0.72 and 0.39, respectively. The lowest value of COF is observed in the case of Ag
17 at.%, with a value of 0.29. Further incorporation of silver in the Ag–CrB2+x thin films
gradually leads to an increase in the average value of the coefficient of friction to 0.36 for
Ag 29 at.%. In general, the addition of silver into the CrB2+x thin films results in a decrease
in COF.
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Figure 4 depicts the effect of silver on the specific wear rate of the Ag–CrB2+x thin
films. Although the COF decreases with Ag content up to 17 at.% with a slight increase for
higher Ag content, the specific wear rate exhibits a significant non-linear behavior with a
valley for the sample Ag 8 at.%, where a value of 8.38 × 10−14 m3/Nm is measured. This
sample maintains a moderate hardness of 18.3 GPa. Two opposite effects take place: the
reduction in COF and the loss of hardness of the thin films with increasing Ag content.
Additional silver incorporation into the CrB2+x results in an increase in the specific wear
rate. The thin film with the highest amount of Ag 29 at.% shows the lowest hardness of
7.8 GPa and a specific wear rate of 1.39 × 10−13 m3/Nm. Although the COF is still reduced,
the specific wear rate increases due to the formation of large Ag clusters and the weakening
of the CrB2 matrix.

In general, mechanical hardness and specific wear rate are correlated. It is reasonable
to expect that as hardness decreases, so will wear resistance, and vice versa. This statement
is partially true if we are talking about mono-structural hard coatings. However, in our
experiments supported by other authors [10,17,21,22], there is a nanocomposite CrB2+x with
a boron tissue phase, and Ag atoms form clusters in the CrB2+x matrix. These Ag particles
are probably released and reduce friction during sliding. Such a structure, including a
crystalline and an amorphous component, can reduce friction and wear despite the lower
hardness. In order to achieve the potential of such a structure, it is necessary to ensure a
sufficient amount of this lubricating component (in our case, silver), which ensures the
formation of a continuous metallic lubrication film.

Mulligan et al. made a similar observation [27] in CrN–Ag thin films, where sufficient
silver content in thin films forms a solid lubricating film during the sliding. The more silver
used, the faster a lubricating film with greater thickness is formed. In our case, we do not
observe a continuous lubricating film. Silver particles are observed in thin film with the Ag
13 at.% and more.

A low COF does not guarantee a low specific wear rate, since the interplay between
COF, hardness, and wear is crucial. As shown in Figure 4, the lowest COF among the
Ag–CrB2+x thin films is for the sample with Ag 17 at.%, but the lowest specific wear rate is
observed on the sample with Ag 8 at.%. A higher amount of silver positively influences
friction, but the decrease in hardness results in more severe wear. In the case of the samples
with an amount of Ag ≥ 13 at.%, the latter effect prevails. Good wear resistance is related
to the beneficial and reasonable combination of hardness and chemical composition.

In the case of Ag reference thin film, the lowest specific wear rate is influenced by
the adhesion of silver from the film to the steel ball. Effectively, there is a silver-to-silver
tribo-contact and the average COF value of the Ag thin film is 0.39.

In Figure 5, the SEM–EDS map of the selected sample with Ag 29 at.% depicts the
detail of the bottom of the wear track with partially delaminated film from the adhesive Cr
layer. As can be further seen in the delaminated region, the strong signal of Cr (cyan) is from
the chromium adhesion layer, as is the strong signal of tungsten from the WC/Co substrate.
From SEM micrographs and the EDS chemical map of the bottom of the wear track, it is
obvious that during the sliding, silver is uniformly distributed over the whole analyzed
area, except for the area with delaminated films. In the delaminated area (highlighted by
the white arrow) and in the central asperity (highlighted by the red arrows), we observe a
higher presence of oxygen.
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During sliding, the material of the steel counterpart is transferred into the film’s surface
and mixed with a material of Ag–CrB2+x. If we consider the lower adhesive strength of thin
films, such delaminated film material is then milled inside the wear track, and wear debris
is formed. Debris includes the material of the steel ball and particles from the thin film.
Under the load of the sliding ball, there is notable intermixing and oxidation of transferred
wear debris material. This forms a metal oxide containing transfer film on the film’s surface.
This loose material acts as an additional abrasive media and facilitates abrasive wear, which
is the main wear mechanism. Similar behavior was observed in [9,13].

Abrasive wear and plowed grooves are clearly visible on the surface topography
image made by laser confocal microscopy (Figure 6). The abrasive nature of loose CrB2 and
oxidized debris particles naturally enhance the abrasive wear of the thin films. Oxidized
debris/particles are also observed at the bottom of the wear tracks. It was reported in
several research papers that during the sliding, a higher temperature (or flash temperature)
is generated and supports the oxidation of borides [13,28] and nitrides [29–32]. In our case,
the formation of oxides is reduced due to the low applied load of 2 N and the presence
of silver, as can be seen on the EDS map of oxygen (Figure 5). This could be explained
by the fact that soft metals have excellent heat conductivity, since they can diffuse out the
frictional heat generated at the contact. A similar observation was made by Erdemir [33].
According to Kalin [34], measuring the exact flash temperature is difficult due to the
different temperature models that could be used and the experimental setup.
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Figure 6. (A) Wear track topography of sample with Ag content of 29 at.%. The 3D profile measured
by laser confocal microscope with grooves after abrasive sliding of a steel ball. (B) The 2D profile of
the same wear track.

In Figure 7, SEM micrographs depict wear-related defects of worn Ag–CrB2+x thin
films. Here, the CrB2.3 thin film with strong delamination from the substrate is observed
(highlighted by the green arrow). As discussed above, lower coating-to-substrate adhesion
accelerates the wear rate of thin films due to the faster formation of wear debris. Cracks
formed in the tribo-oxide layer are perpendicular to the sliding direction due to tensile
stresses caused by the sliding ball and the applied load. The SEM micrograph in Figure 7B
of Ag 3 at.% depicts a notable improvement in the wear rate (see also Figure 4A) and its
nature. Adhesive delamination of the thin film from the substrate (highlighted by the green
arrow) is lower than for CrB2.3. In the case of Ag 17 at.% thin film, increased silver content
results in the lowest COF, attributed to the formation of the metal lubricating film. During
the sliding and plowing of the steel ball, silver grains/particles are abrasively exposed
and released from the thin film, and their spreading over the surface of the wear track
can be seen.
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Figure 7. (A) SEM micrographs of worn Ag–CrB2+x thin films. CrB2.3 with Ag 0 at.% with de-
laminated film from the substrate and tribo-oxidation of the films at the bottom of the wear track.
(B) Minor delamination of the thin film from the substrate in the case of Ag 3 at.%. (C) Ag 17 at.%
with silver particles (aggregates) on the film’s surface after the ball-on-disc. (D) A closer look at the
silver particles.

4. Conclusions

To conclude, a combination of direct current unbalanced magnetron sputtering and
high-power pulsed magnetron sputtering (HiPIMS) was used to synthesize silver-doped
Ag–CrB2+x thin films on unheated substrates. Over-stoichiometric Ag–CrB2+x films contain
silver in the range from 3 to 29 at.%. While thin films with lower Ag content are X-ray
amorphous in terms of structure, films with higher Ag content have a nanocomposite
structure containing silver grains embedded in an amorphous a-CrBx matrix.

The CrB2.3 thin film exhibits the highest hardness of 26.6 GPa and elastic modulus
of 362 GPa. The addition of silver leads to a decrease in the hardness of Ag–CrB2+x
from 22.1 GPa to 7.8 GPa, accompanied by a monotonic decrease in elastic modulus from
325 GPa to 187 GPa. Ag–CrB2+x films exhibit sufficient adhesion and the critical load is
over 35 N. Doping CrB2+x with silver significantly improves the frictional properties when
the coefficient of friction decreases from 0.71 to 0.29. In addition, an improvement in the
wear rate of the films is observed due to the formation of a lubricating metal film. The
studied silver-doped over-stoichiometric CrB2+x film appears to be a promising candidate
for tribological applications where moderate hardness combined with low COF is required.
In addition, this ceramic composite containing silver particles can also find application in
the biomedical field.
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