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Abstract: Icing is a common phenomenon in nature and has a serious impact on wind turbines.
Anti-icing coatings have become a major focus of industrial applications and academic research. In
this study, a hydrophobic nano-carbon coating was prepared from corn-straw-biogas residue. The
characterization results of the SEM, BET, FTIR, and XRD analyses showed that the hydrophobic
nano-carbon has good pore structure and crystal structure. The hydrophobic and anti-icing effects of
the carbon were confirmed by contact-angle measurements and anti-icing experiments. The ice thick-
nesses of the hydrophobic nano-carbon-coated aluminum-alloy blade (AAB) and bakelite blade (BB)
were found to decrease by 1.20 mm and 1.10 mm, respectively, compared with those without coating;
their weights decreased by 2.00 g and 1.31 g, respectively. The ratios of the icing areas before and
after the hydrophobic nano-carbon coating of the AAB and BB were 8.15% and 9.65%, respectively.
In brief, this method is a more effective technique for creating anti-icing coatings on wind-turbine
blades and other outdoor apparatus.

Keywords: anti-icing coating; biogas residue; hydrophobic; wind turbine blade; wind tunnel test

1. Introduction

Natural energy resources are continuously reducing, since they are largely consumed
in industry and our daily lives [1]. Wind energy, as a renewable energy source, has been
found to have abundant reserves and promising development prospects [2,3]. Due to the
high air densities and low population densities in cold marine environments, wind energy
can often be used more efficiently [4]. However, in addition to the characteristics of marine
environments, such as wind, waves, and currents, sea-ice hazards are significant factors to
be considered in the design and operation of offshore wind farms in cold regions (such as
the Baltic Sea, Bohai Bay, and Bothnian Bay) [5]. If ice is not removed from wind-turbine
blades in a timely manner, this leads to a reduction in power output [6], thus limiting
the performance of the wind turbine [7]. As a result, the use of anti-icing and de-icing
technologies for wind turbines should be investigated to improve their efficiency [8]. Active
and passive approaches are the two basic ways to lessen or eliminate the formation of ice
on wind-turbine blades [9]. The active methods consist of thermal and mechanical methods.
Active ice-protection systems consume a considerable amount of energy and are expensive
to manufacture and operate [10]. In contrast, passive anti-icing methods (such as anti-icing
coatings) are environmentally friendly and do not require external energy technologies,
reducing the maintenance costs of wind-turbine equipment and preventing ice accumula-
tion [11]. Thus far, passive anti-icing research has centered on the use of special coatings,
particularly superhydrophobic nano-coatings. Based on recent advances in nanotechnology
and material engineering, biomass nano-coating will become a multifunctional, intelligent,
efficient, adaptive, and durable form of hydrophobic coating [12]. Lignocellulosic biomass,
which is currently undervalued, is a common raw material for anaerobic digestion [13].
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Improper disposal methods of biogas residue can lead to environmental pollution, while
its resourceful use to prepare hydrophobic nanomaterials would benefit the development
of anti-icing wind-turbine blades.

Superhydrophobic surfaces have been extensively researched in nature (e.g., lotus
leaves and butterfly wings) [14]. Water droplets generate spherical droplets on super-
hydrophobic surfaces in general and minimize the surface area of contact between the
solid and the water droplets. Droplets roll off superhydrophobic surfaces quickly if the
tilting angle is sufficiently small; thus, the non-wettable property of these surfaces is good.
Moreover, the pockets in the superhydrophobic surface’s micro/nano-scale hierarchical
structure can operate as a thermal barrier, reducing the heat-transfer effect during the
freezing process, thus significantly reducing the likelihood of ice adhesion [15,16]. Cui
et al. proposed a new approach for fabricating superhydrophobic coatings using nano-
SiO2 and a hydrophobic hyperbranched polymer as a binder [17]. Coatings made with
this technology have higher adhesion strength and mechanical stability than those made
using a hybrid procedure. Liu et al. reported a superhydrophobic surface created us-
ing spin coating and chemical-vapor-deposition processes from a nanocomposite based
on nano-SiO2 particles and self-assembled monolayers of POTS [18]. The correlation
between the properties and the hydrophobicity of the nanocomposites was examined.
Thus, more approaches that are novel and simple for manufacturing hydrophobic nano-
coatings on wind-turbine blades should be developed. To this end, numerous studies
have been conducted to develop highly efficient hydrophobic carbon materials, including
diamond [19], graphene [20], and carbon nanotubes (CNT) [21]. Eseev et al. studied a
simple method proposed to obtain a superhydrophobic coating made from onion-like car-
bon nanoparticles manufactured with a low-cost, high-tech approach [22]. The developed
relief of the onion-like carbon agglomerates was the physical reason for the appearance
of the coating’s superhydrophobic properties, thus leading to the reproduction of the lo-
tus effect. In short, carbon nano-materials have great application potential as excellent
superhydrophobic materials.

Since superhydrophobic materials do not necessarily exhibit anti-ice properties, practi-
cal studies have focused on the supericephobicity properties of superhydrophobic materials.
Zhang et al. applied molecular dynamics simulations to investigate the icephobicity of
carbon surfaces functionalized with Na+, Cl+, or CH4 [23]. Valentini et al. reported that
nanocomposites had an ice-phobic surface [24]. These researchers rationalized their results
by observing the synergies between the expansion and nano-carbon phases in the compos-
ite’s ice-phobic properties. Thus, the nano-carbon materials exhibiting super-hydrophobic
and super-icephobic properties were found to have good anti-icing effects. However, the
application of these materials is limited because of their high synthesis costs. Compared
with these carbon materials, biomass carbon has been reported as a promising hydrophobic
material, since it is plentiful, reproducible, avirulent, and inexpensive compared with
other carbon materials. Table 1 shows that using biogas residue as biomass carbon can
shorten the time and reduce the cost. Table 2 lists the reduced contents of lignin, cellulose,
and hemicellulose in corn stalks fermented with fermented cow manure as an inoculum,
which contributes to the opening of spatial structures and helps obtain hydrophobic carbon
materials with rough structures through annealing.

In this study, a practical method for preparing hydrophobic carbon coatings on wind-
turbine blades using rice-straw-biogas residue is proposed. The anti-icing mechanism of
nano-carbon was analyzed, and the morphology and structure were investigated through
FTIR, SEM, XRD, BET, and a video-based optical-contact-angle measuring instrument,
to analyze the wetting characteristics. Moreover, the dynamic freezing adhesion, ice
resistance, and change in mechanical characteristics of the adhesive force during the ice-
layer pull-off failure of an icing blade coated with corn-straw-biogas-residue carbon with
a hydrophobic coating were investigated through wind-tunnel experiments. In brief, the
superhydrophobic nano-carbon coating of the corn-straw-biogas residue on the wind-
turbine blade showed outstanding hydrophobic and anti-icing effects.
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Table 1. Comparison of reaction conditions for the preparation of carbon.

Raw Materials Pretreatment
Autoclave Conditions

Ref.
Activator T (◦C) Time (h)

Corn-straw biogas
residue - 5% H2SO4 130 12 This study

Rice husk Ethanol 95%–98% H2SO4 170 48 [25]
Corn straw - - 150–190 24 [26]
Corn straw - >98% H2SO4 180 12 [27]

Wheat straw - 85% H3PO4

175
24 [28]200

225

Corn straw 4% H2SO4 50% NaOH 200

24

[29]
36
48
60

Corn straw - - 220 12 [30]
Corn straw - 5% HCl 220 12 [31]

Wheat straw - 12% HCl 180
12 [32]36% HCl 210

Table 2. Chemical-composition comparison after fermentation.

Biomass Species Cellulose (%) Hemicellulose (%) Lignin (%)

Corn straw 39.29 30.21 14.42
Corn straw

biogas residue 21.53 18.59 9.59

2. Materials and Methods
2.1. Materials

Commercial-grade polyvinylidene difluoride (PVDF, obtained from Harbin Lithium
battery factory in China) was applied without additional treatment. The wind-turbine
blade was a laboratory-made NACA0018 blade airfoil with chord length of 100 mm [33]. N-
methyl pyrrolidone (NMP), and sulphuric acid (5%, Guangzhou Chemical Reagent Factory)
were purchased from Tianjin Zhiyuan Chemical Reagent Co., Ltd. (Tianjin, China). Carbon
in corn-straw-biogas residue was made from a small amount of cow dung as inoculum,
using pure-cor- straw fermentation.

2.2. Fabrication of Biomas-Based Carbon Nano-Coating Blades

The first step was the preparation of biomass carbon. A pre-fermented cow dung
inoculum was employed in the experiment to inoculate the pretreated water-immersed
corn-straw fragments with 36 ◦C constant-temperature water-bath fermentation for twenty
days. The solid was sifted and then dried to obtain dry corn-straw-biogas residue. The
dried corn-straw-biogas residue was combined with 5% sulfuric acid before it was heated
in the reaction kettle (HUASI Instrument Co., Ltd., Changsha, China) at 130 ◦C for 12 h. In
the tube furnace (OTF-1200X, HF-kejing Material Technology Co., Ltd., Hefei, China), the
carbonized product was heated to 400 ◦C for 0.5 h before it was heated to 800 ◦C for 1 h.
The final product was corn-straw-biogas-residue nano-carbon.

Subsequently, superhydrophobic biomass-nano-carbon coating blades were fabricated.
To make a homogeneous solution, 10 g PVDF was mixed with 133 g N-methyl pyrrolidone
(NMP). Next, 56 mg biomass carbon was dispersed in 100 mg PVDF solution. After stirring
under ultrasound for 4 h, the solution was applied to the wind-turbine blades using the
scraping method. Lastly, the wind-turbine blades coated with nano-carbon were dried
at 100 ◦C for 12 h, and then a porous superhydrophobic biomass carbon nano-coating
was obtained on the wind-turbine blades. Figure 1 compares two blades before and after
coating, and the coating thickness was 1.6 mm.
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Figure 1. (a) Uncoated AAB, (b,c) coated AAB, (d) uncoated bakelite alloy blade, (e,f) coated bakelite
alloy blade.

2.3. Characterizations

In this study, the chemical compositions of biomass nano-carbon were investigated
using FTIR (ALPHA-T, Brooke Germany Ltd., Ettlingen, Germany) for recording the spectra
of the biomass nano-carbon. A D8 Advance Diffractometer was used to record XRD patterns
(X’Pert Pro MPD, PANaiytical, Almelo, The Netherlands). The video-based optical-contact-
angle measuring instrument (OCA20, Data Physics, Santa Clara, USA) was adopted to
examine the hydrophobic properties of the coatings. The FESEM (S-4800, Hitachi, Tokyo,
Japan) was adopted to characterize the morphology of the coatings. The BET (ASAP2460,
Mike, Arlington, VT, USA) was used for the analysis of pore structure.

2.4. Anti-Icing Test

Anti-icing tests were conducted using an icing wind-tunnel system to perform dy-
namic icing tests. Figure 2 presents icing wind-tunnel system and test of live photos of
blade models. The temperature range of the small icing wind-tunnel system was set to
−20 ◦C–0 ◦C. The supercooled air sucked in by the wind tunnel was mixed with water
mist, and the low-temperature water mist was sprayed onto the surface of the blade model
by a water sprayer. The cross-section of the wind-tunnel-test section was a rectangle with
dimensions of 250 mm × 200 mm. The outlet wind speed was 5 m/s, with an attack angle
of 0 degrees on the blade airfoil.

Coatings 2023, 13, x FOR PEER REVIEW 4 of 16 
 

 

blades using the scraping method. Lastly, the wind-turbine blades coated with nano-
carbon were dried at 100 °C for 12 h, and then a porous superhydrophobic biomass carbon 
nano-coating was obtained on the wind-turbine blades. Figure 1 compares two blades 
before and after coating, and the coating thickness was 1.6 mm. 

 
Figure 1. (a) Uncoated AAB, (b,c) coated AAB, (d) uncoated bakelite alloy blade, (e,f) coated bakelite 
alloy blade. 

2.3. Characterizations 
In this study, the chemical compositions of biomass nano-carbon were investigated 

using FTIR (ALPHA-T, Brooke Germany Ltd., Ettlingen, Germany) for recording the 
spectra of the biomass nano-carbon. A D8 Advance Diffractometer was used to record 
XRD patterns (X‘Pert Pro MPD, PANaiytical,Almelo, Netherland). The video-based 
optical-contact-angle measuring instrument (OCA20, Data Physics, Santa Clara, USA) was 
adopted to examine the hydrophobic properties of the coatings. The FESEM (S-4800, 
Hitachi, Tokyo, Japan) was adopted to characterize the morphology of the coatings. The 
BET (ASAP2460, Mike, Arlington, VT, USA) was used for the analysis of pore structure. 

2.4. Anti-Icing Test 
Anti-icing tests were conducted using an icing wind-tunnel system to perform 

dynamic icing tests. Figure 2 presents icing wind-tunnel system and test of live photos of 
blade models. The temperature range of the small icing wind-tunnel system was set to −20 
°C–0 °C. The supercooled air sucked in by the wind tunnel was mixed with water mist, 
and the low-temperature water mist was sprayed onto the surface of the blade model by 
a water sprayer. The cross-section of the wind-tunnel-test section was a rectangle with 
dimensions of 250 mm × 200 mm. The outlet wind speed was 5 m/s, with an attack angle 
of 0 degrees on the blade airfoil. 

 
Figure 2. (a) Icing wind-tunnel system and (b) Image of blade icing. Figure 2. (a) Icing wind-tunnel system and (b) Image of blade icing.

In this study, three values of experimental temperature were selected: 0 ◦C,−5 ◦C, and
−10 ◦C. The experimental scheme and key experimental conditions are listed in Table 3.
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Table 3. Experimental scheme and conditions.

Blade Type
Experimental
Temperature

(◦C)
LWC (g/m3) MVD (µm) Atmospheric

Pressure (kPa)
Wind Speed

(m/s)

Time Interval
of Icing Shape
Collection (s)

Total Icing
Time (min)

AAB
0

0.48 50 99.20 5 10 1

−5
−10

BB
0
−5
−10

To investigate the effect of the change in the coating on the ice adhesion on the
blade’s surface, the blade-surface ice adhesion was investigated. Figure 3 illustrates the
experimental model of the adhesion test. The test model and blade corresponding to the
blade shape were installed on the test bench. After the wind-tunnel-test device was started,
refrigeration was performed at a wind speed of 5 m/s. At −20 ◦C, the spray system was
opened, and the supercooled air was mixed with the water mist in the wind tunnel, thus
affecting the surface of the supercooled blade model to form clear ice. The frozen model
was separated from the blade by an electronic universal testing machine controlled using a
microcomputer, the tensile curves of tangential force and normal force were generated, and
the adhesion of ice on the blade was evaluated.
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3. Results and Discussion
3.1. SEM Morphology

The morphology and microstructure of the corn straw and nano-carbon were analyzed
under field-emission scanning-electron microscopy. Figure 4a,b illustrate the microstructure
of the corn straw before and after the fermentation. According to Figure 4a, the cell
wall of untreated corn straw was found to be smooth and flat, thus showing a clear
texture. According to Figure 4b, compared with the fermented corn straw, the complex
fiber structure was seriously damaged, with small and irregular holes on the surface of
the corn straw, and secondary wall displacement of the fiber-cell wall occurred, forming a
filament-broom shape, thus significantly decreasing the wrapping degree of the lignin to the
cellulose and hemicellulose and making its structure looser, which could have contributed
to the carbonization reaction.
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of wind-turbine-blade surface with nano-carbon coating under different magnification levels.

Figure 4c–f illustrate the microstructure of the nano-carbon with different magnifi-
cations. As shown in Figure 4c,d, the nano-carbon material had a rich pore structure,
and the aforementioned uneven dents and bumps formed a micro/nano-scale-roughness
structure on the carbon surface, which increased the hydrophobicity. As indicated by the
enlarged photograph in Figure 4e,f, this microstructure was an agglomeration of irregular
carbon nanoparticles. The surface morphology of superhydrophobic nano-carbon coating’s
hierarchical micro-nano structures approximated that of a lotus leaf [34,35].

3.2. FTIR Analysis

The chemical compositions of the nano-carbon were explored by using FTIR. Figure 5
illustrates the FTIR spectrum of the nano-carbon before and after annealing, as well as
the characteristic absorption peaks. The absorption peak at 3443.9 cm−1 belonged to the
stretching vibration of the O−H bonds in the cellulose and hemicellulose. During the
annealing, small molecular functional groups (−OH, −COOH) were prone to dehydrox-
ylation and decarboxylation reactions, producing small-molecule gas products, such as
CO2, H2O, and CH4 (Equations (1) and (2)). Therefore, the −OH in the raw materials was
mainly transferred to gaseous products in the form of small-molecule gas components. The
surface micro-nano structure and the dehydroxylation and decarboxylation reactions of the
nano-carbon increased and determined the surface hydrophobic properties of the materials.
The C≡N−stretching vibration peaks of the nano-carbon were nearly 2350.3 cm−1, and
the C−O−expansion vibration peak on the biomass carbon was 1095.5 cm−1, revealing
that the surfaces of biochar made from cow dung and corn straw may have abundant
functional groups.

R−CH2 −COOH ∆→ RCH3 + CO2 (1)

R−CH2 −OH ∆→ CH4 + H2O (2)
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3.3. XRD Analysis

The XRD patterns of the nano-carbon were obtained, as presented in Figure 6, to
determine its crystal structure. The XRD pattern in Figure 6 contained a number of peaks
in the region of 10◦–70◦, which were indexed as the diamond (111), graphite (002), (200),
and (311) planes of C and C-N. The (002) planes represented the heat treatment at a high
temperature, causing the partial graphitization of the material. As indicated by the higher
back bottom, the sample contained a small amount of amorphous carbon [36]. These
results revealed that the nano-carbon consisted of multiple components (e.g., diamonds
and amorphous carbon).
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3.4. BET Analysis

The pore-size distribution was discovered to be the most important factor in the character-
izing of the porous carbon. The N2 adsorption/desorption isotherms were used to determine
the porous carbon’s structure. As shown in Figure 7a, the N2 adsorption–desorption isotherm
was type III, indicating the existence of a multi-level pore structure on the hydrophobic sur-
face of the nano-carbon. There were porous structures, as evidenced by the rapid increase
in adsorption–desorption isotherms in the high-pressure region. The desorption isotherm
deviated significantly from the adsorption isotherm, thus indicating that there were various
pore structures, which was confirmed by the staggered porous structure presented by the
SEM. The specific surface area of nano-carbon was 617.79 m2/g. According to Figure 7b,
the pore size of the nano-carbon was primarily distributed between 10 nm and 100 nm. The
porous carbon with larger pore sizes and pore volume was found to be similar to the uneven
structure of a lotus leaf, in accordance with classical lotus leaf theory.
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3.5. The Static Contact Angle Analysis

The hydrophobicity of the coating of the nano-carbon was evaluated by measuring
the contact angle using a video-based optical-contact-angle meter. Figure 8a shows that the
surface of the AAB was hydrophilic, with a water-contact angle of 32.3◦ before the coating.
According to Figure 8b, the contact angle reached 151.05◦ after the nano-carbon coating.
Figure 8c shows that the surface of the BB was hydrophilic, with a water-contact angle
of 36.85◦ before the coating. According to Figure 8d, the contact angle reached 157.15◦

after the nano-carbon coating, and the hydrophobicity increased significantly. The droplets
spread on the surface in the case in which no coating was applied. Theoretically, the air was
stuck in those pores; thus, the rough nano-carbon coating could be viewed as a composite
material composed of air and nano-carbon trapped in the pores, which can be modeled by
Cassie-Baxter to describe [37]:

cos θr = f 1·cos θ − f 2 (3)

where the contact fractions of the water and the hydrophobic nano-carbon coating surface
and water and air are designated as f 1 and f 2, and the equilibrium contact angle on the
blank blade surface is expressed as θ.

cos 151.05◦ = f 1·cos 32.3◦ − (1 − f 1) (4)

cos 157.15◦ = f 1·cos 36.85◦ − (1 − f 1)) (5)
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As shown in Table 4, the f 1 of the AAB coating obtained was nearly 6.78%, and the f 1
of the BB coating was determined at about 4.33%. This showed that when the nano-carbon
coating on the rough surfaces of the AAB and BB was in contact with the water droplets,
the intercepted areas in the air were 93.22% and 95.67%, respectively. As revealed by the
results, the water droplets were nearly spherical. When the supercooling water dropped
on the superhydrophobic coating, it did not easily remain on the surface of the coating and
rolled off the surface quickly before releasing its latent heat.

Table 4. Contact angle and contact fraction of uncoated blade and coated blade.

Blade Name Contact Angle (◦) f 1 f 2

uncoated AAB 32.30 ± 0.16
6.78 93.22coated AAB 151.05 ± 0.03

uncoated BB 36.85 ± 0.08
4.33 95.67coated BB 157.15 ± 0.08

3.6. Wind-Tunnel Dynamic Icing Test

To explore the anti-icing effect of the nano-carbon coating under the dynamic freezing
conditions of the supercooled water droplets, the dynamic icing test was performed on
the blade in the icing wind tunnel. Supercooled water droplets were sprayed on the blade.
The analytical balance was adopted to weigh the two coating models every 10 s after the
experiment began. At the same time, the ice patterns were recorded with a high-definition
camera, after which the ice-weight differences, maximum thickness, and ice-area ratio were
used to determine the icing differences between the two coating models.

3.6.1. Comparison of Ice-Weight Differences

The icing wind-tunnel test was repeated three times, and Table 5 shows the comparison
of the one-minute icing quality of the AAB and BB under different wind speeds and
experimental temperatures. It can be seen that the ice weight of the coated blades was
much lower than that of the uncoated blades, which proved that the nano-carbon coating
had a good anti-icing effect.
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Table 5. Blade’s icing weights under different experimental conditions.

Blade Type Wind Speed (m/s) Experimental
Temperature (◦C)

Total Icing Weight (g)
Uncoated Uncoated

AAB

5

0 2.10 0.10
−5 3.50 0.14
−10 5.20 0.18

BB
0 1.40 0.09
−5 3.20 0.11
−10 4.80 0.15

Figure 9a,b present the change curve of the ice-coating weight on the coated and
uncoated surfaces of AAB and BB in the static anti-icing experiment when the wind speed
was 5 m/s and the test temperature was 0 ◦C. As clearly illustrated in Figure 9, the
weight of the uncoated wind-turbine-blade model increased linearly, while the weight of
the hydrophobic nano-carbon-coating-blade model also increased linearly; however, the
increase was less than with the uncoated blade, and the growth trend of the BB was also
less than that of the AAB. The maximum icing weights of the strong hydrophobic-nano-
carbon-coating-based AAB and BB surfaces were almost 0.10 g and 0.09 g, respectively. The
maximum icing weights of the uncoated blade were almost 2.10 g and 1.40 g, respectively.
By comparing the ice types, the thickness of the ice on the surface of the blade coated with
nano-carbon was lower.
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3.6.2. Comparison of Maximum Icing Thicknesses

Through the ice-pattern images of the AAB and BB coating models after the icing and
the highest results on the ice-proof wind-tunnel test, the ice thickness was measured at the
point at which the front end of each of the four blade types was covered with the largest
amount of ice. The overall icing images and the enlarged contrast images of local icing were
obtained for the four types of blade. The main icing area of each blade was observed at the
leading edge of the blade. According to Figure 10b,d, the uncoated AAB was 1.90 mm, and
the nano-carbon-coated AAB was 0.70 mm. As indicated by Figure 10f,h, the uncoated BB
was 1.60 mm, and the nano-carbon-coated BB was 0.50 mm. It was therefore revealed that
the maximum icing thickness of the nano-carbon-coated BB was the lowest, which had a
better anti-icing effect.
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3.6.3. Comparison of Ice-Area Ratio

Through the ice-pattern images of the AAB and BB coating models, using the Monte
Carlo algorithm, the icy areas of the blades were calculated based on a binary morphology.
The method used to choose the image for solving these areas was to compare the image of
the icy blade on a small square background with a known area as a reference object and
convert the post-icing blade information into computer-recognizable image information.
Because the digital images were made up of pixels, the area of the blade after icing was
calculated based on the pixel scale and the area of the reference object. The area-calculation
result is shown in Figure 11. Figure 11a,c show the AAB’s surface ice area. Figure 11b,d
show the BB’s surface ice area.
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We defined the ice-area ratio to compare the change in the ice area on the surface of
the blade before and after coating. The ice-area ratio was defined as:

δ =
ST
SK

(6)

where δa is the AAB’s surface-ice-area ratio. Next, we performed a calculation according to
the definition in Formula (6):

δa =
3.28
40.25

= 8.15% (7)

where δb is the BB’s surface-ice-area ratio. Next, we performed a calculation according to
the definition in Formula (6):

δb =
3.20

33.17
= 9.65% (8)

From the comparative data, it was concluded that the ice area of the coated blade
surface was significantly less than that of the uncoated blade surface, and that the ice-
area ratio of the BB surface was slightly higher than that of the AA-coated blade surface.
Therefore, when the surface of the AA was coated with the nano-carbon coating, the
anti-icing effect was more obvious.

3.7. Test for Comparison of Blades’ Icing Adhesion

A microcomputer-controlled electronic universal testing machine was adopted to
separate the frozen model from the blade, and the tensile curves of the tangential force
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and normal force were generated, as presented in Figure 12. The tangential force and the
normal force tended to increase before and after coating, and the ice adhesion of the coated
blades was less than that of the uncoated blades. As indicated by the figure, the coating
was discovered to exert a significant impact by preventing the ice from adhering to the
blade surfaces. As revealed by comparing the tangential force and the normal force of the
two blade surfaces, the normal force on the blade was excessively small, probably due
to the force direction and the ice-bonding area. Moreover, the tangential force and the
normal force of the AAB were higher than those of the BB, thus indicating that the AA base
equipment was easier to freeze, and that its anti-icing was more significant.
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Figure 12. (a) Tangential-force tensile curve of AAB before and after coating. (b) Normal-force tensile
curve of blade before and after AAB coating. (c) Tangential-force tensile curve of BB before and after
coating. (d) Normal-force tensile curve of BB before and after coating.

3.8. Anti-Icing Mechanism of Blade with Nano-Carbon Coating

As shown in Figure 13, the blade was placed horizontally, and the liquid water flowed
through the blade surface, from left to right. Figure 13a illustrates the uncoated blade.
Figure 13b illustrates the supercooled water dripping on the blade, after which considerable
water droplets adhered to the blade surface and formed a large area of continuous wetting-
water film on this surface, as presented in Figure 13c. Under low-temperature icing, the
water film on the blade surface quickly formed an ice layer and bonded to the blade surface;
thus, a strong icing state formed on the blade surface, as in Figure 13d. According to
Figure 13e, after the blade (Figure 1a) was replaced with a blade with a nano-carbon coating
(Figure 13e), it was difficult for the water droplets to wet the surface of the nano-carbon
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coating due to the super hydrophobicity of the nano-carbon, plentiful water droplets slid
along the blade’s leading edge, and a few water droplets moistened the nano-carbon
coating’s surface, as presented in Figure 13f, so it was found to be difficult to form ice.
However, Figure 13g shows that over time, the water droplets increasingly gathered on the
surface of nano-carbon coating and tended to form small-scale water films. These water
films tended to form ice layers under the conditions of low-temperature icing, which were
bonded to the blades’ surfaces, as presented in Figure 13h. The thickness and range of
the ice layer on the blades’ surfaces significantly decreased. Accordingly, the nano-carbon
coating delayed the icing time and reduced the icing of the blades’ surfaces.
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Figure 13. (a) uncoated blade, (b) uncoated blade icing, (c) schematic diagram of water droplet
aggregation on the uncoated blade, (d) schematic diagram of ice formation on the uncoated blade
surface, (e) nano carbon coating blade, (f) nano carbon coating blade icing, (g) schematic diagram of
water droplet aggregation on the nano carbon coating blade, (h) schematic diagram of ice formation
on the nano carbon coating blade surface.

4. Conclusions

In this study, nano-carbon coatings were prepared from corn-straw-biogas residue,
and the anti-icing performances of wind-turbine-coated blades were investigated.

(a) The water-contact angles of the strong hydrophobic nano-carbon-coated AAB and
BB were measured as 151.05◦ and 157.15◦, respectively.

(b) The maximum icing weights of the strong hydrophobic nano-carbon-coated AAB
and BB in an artificial wind tunnel were found to be nearly 0.10 g and 0.09 g, respectively.
The ratio of ice areas before and after the hydrophobic nano-carbon coating of the AAB
and BB were 8.15% and 9.65%, respectively.

(c) The adhesion of ice to the coated blades ice was less than of the adhesion to the
uncoated blades, which were easier to de-ice. The surface of the BB was also easier to de-ice
than that of the AAB.
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have read and agreed to the published version of the manuscript.
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