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Abstract: In cold areas, wind turbines face ice risk. The ice accretion on the blade surface will reduce
the output power of wind turbines. To explore the effect of blade material on icing distribution, the
blades of aluminum and carbon fiber-reinforced polymer (CFRP) were made, and the icing wind
tunnel tests were carried out. The icing test is conducted under three icing times (2 min, 4 min, and
6 min) and three ambient temperatures (−5 ◦C, −10 ◦C, and −15 ◦C). The experimental results show
that the icing time and ambient temperature are key factors in icing distribution. When the icing time
increases, the average thickness of ice on the blade surface increases, and the airfoil profile of the
blade changes significantly. When the ambient temperature decreases, the average thickness of ice on
the blade surface increases, and the ice type changes from glaze ice to rime ice. The effect of blade
material on the icing distribution is significantly affected by ambient temperature.

Keywords: wind turbine; blade material; icing distribution; wind tunnel test

1. Introduction

The wind industry is one of the renewable energy industries with excellent commercial
operation. In 2020, the cumulative global wind power capacity had increased to 743 GW [1].
However, in recent years, severe weather such as cold waves, snowstorms and frost
frequently occur with climate change. The ice accumulates on wind turbines, reducing
the output power and even causing safety accidents, which causes serious harm to the
wind industry [2,3]. Therefore, the ice problem of wind turbines has attracted increasing
attention.

Scholars have long explored the ice problem of wind turbines [4]. According to
previous research, the research methods of ice mainly include experimental and simulation
methods [5,6]. The experimental method includes the field observation method and wind
tunnel test method. Field observation is carried out after the ice accumulates on the wind
turbine, which is affected by the weather and is a certain contingency. The field observation
method quantifies ice thickness distributions and power loss by taking images [7,8]. The
simulation method identifies the ice type, ice distribution, and aerodynamic performance
of blades by software under different climatic conditions [9]. Due to the imperfect analysis
model and complex simulation conditions, the simulation results are somewhat different
from the actual conditions. Compared with the simulation method, the wind tunnel test
is easier to reach results similar to natural conditions. Guo Wenfeng et al. studied the
effect of the tip speed ratio on the icing characteristics of the straight-bladed vertical axis
wind turbine by the wind tunnel test [10]. The results showed that the tip speed ratio
significantly affected icing characteristics. Gao Linyue et al. carried out the wind tunnel
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test to study the aerodynamic performance of the icing blade [11]. It was found that the
aerodynamic performance of the icing blade changes significantly. Jia Yi Jin et al. studied
the ice accretion and aerodynamic performance of S826 and S832 airfoils under dry and
wet ice conditions [12]. The results showed that the geometric characteristics of airfoils
affect the ice accretion and ice causes the aerodynamic performance to decrease. However,
the effect of the blade materials on ice distribution has not been studied.

In this paper, an icing wind tunnel experimental system for icing distribution tests
was designed and built. An evaluation method of surface icing distribution for the blade
airfoil was proposed. Icing wind tunnel tests of aluminum alloy and carbon fiber-reinforced
polymer (CFRP) blades under different icing times and ambient temperatures were carried
out. The ice shapes were acquired and analyzed quantitatively under different condi-
tions. This study can be a reference for research on the surface ice characteristics of wind
turbine blades.

2. Experiment
2.1. Experimental Blade

The blade segment sample with the airfoil of NACA0018 was used in the experiment,
shown in Figure 1. As shown in Figure 1, the chord length of the blade segment is 150 mm;
the thickness of the wall is 2 mm; and the length of the wing span is 20 mm. In the present
study, the NACA0018 airfoil was selected because it has the characteristics of symmetry
and a high power coefficient. Aluminum is widely used in icing research because of its
isotropy and stable heat transfer characteristics. CFRP is commonly used in the skin of
wind turbine blades because of its lower weight and higher strength [13]. In this research,
the blade segment sample was made of 6061 aluminum alloy and T300 CFRP. The material
properties of experimental blades are shown in Table 1.
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Figure 1. Experimental blade. (a) The blade of 6061 aluminum alloy; (b) The blade of CFRP.

Table 1. The material properties of experimental blades.

Material Chemical Composition
(%)

Coefficient of Thermal
Expansion
(10−6/K)

Thermal
Conductivity

W/(mK)

Tensile Modulus
(GPa)

Al 6061

Cu: 0.15~0.4
Mn: 0.15

Mg: 0.8~1.2
Zn: 0.25

Cr: 0.04~0.35

Ti: 0.15
Si: 0.4~0.8
Fe: ≤0.7

Al: remains

23.6 167 10

CFRP C > 93 −0.41 10.5 140

2.2. Experimental System and Procedure

This paper built a reflux icing wind tunnel, as shown in Figure 2. The icing wind
tunnel was composed of the refrigeration system, the spray system, and the air duct. The
cross-section size of the test chamber was 250 mm × 250 mm. The experimental conditions
in the icing wind tunnel are listed in Table 2. The nozzle was located in the center of
the cross-section of the stable chamber. Water droplets were sprayed out of the nozzle
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and mixed with the cold airflow in the icing wind tunnel. They were then cooled into
supercooled water droplets in the process of movement. In the test chamber, water droplets
impact the blade surface and freeze; thus, the blade segment sample was fixed in the center
of the cross-section of the test chamber, and the blocking area ratio was about 1.8%.
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Figure 2. Icing wind tunnel experimental system. (a) Picture; (b) Schematic diagram.

Table 2. Experimental conditions [14].

Wind Speed
U (m/s)

Temperature
T (◦C)

Liquid Water Content
LWC (g/m3)

Medium Volume Diameter
MVD (µm)

0~20 −20~0 0.1~5 20~100

Before each icing test, the blade segment surface was cleaned with alcohol and dried
by an air blower. The cleaned blade segment was fixed on the support of the icing wind
tunnel test chamber, and the angle of attack of the experimental blade was 0◦. The icing
wind tunnel’s test temperature and wind speed were set through the control panel, and
the precooling began. The electronic screen of the control panel displayed the temperature
and wind speed in the test chamber in real time. When the temperature and wind speed
reached the set value, the spray system installed in the stable chamber began to work.
Then, the water droplets were mixed with cold air in the stable chamber to cool into
supercooled water droplets, which collided with the blade segment after flowing into the
test chamber. The ice shape on the blade surface was captured by a high-speed camera,
model Phantomv5.1, and the acquisition interval was 2 min. Then the picture was imported
into CAD software, and the contour of the ice was identified. When the time length of the
icing test reached the set value, the spray system stopped working.

2.3. Experimental Scheme

The temperature is one crucial factor that affects the ice type. The previous research
results show three types of atmospheric ice under different temperature conditions: glaze,
mixed, and rime ice. To explore the effects of temperature on the icing distribution, three
kinds of ambient temperatures, −5 ◦C, −10 ◦C, and −15 ◦C, were selected. The time
lengths of icing tests were 2 min, 4 min, and 6 min, respectively, in the present study.
To be consistent with the experimental conditions of each test, such as the blade surface
temperature, the blade segment was cooled down 5 min before the icing test. To acquire the
variation of the surface temperature of the blade, a multichannel thermometer with T-type
thermocouple, model KSA06A2R, was used to collect the surface temperature of the blade.
The measuring points are shown in Figure 3. The thermometer displayed the blade surface
temperature in real time. Under an ambient temperature of −5 ◦C and a wind speed of
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10 m/s, the variation between the ambient temperature and blade surface is shown in
Figure 4. As shown in Figure 2, when the cooling time was 50 s, the surface temperature of
the 6061 aluminum alloy blade trended toward the ambient temperature. In contrast, when
the cooling time was 100 s, the surface temperature of the CFRP blade trended toward the
ambient temperature. Therefore, within a cooling time of 5 min, the surface temperature of
6061 aluminum alloy and the CFRP blade are the same. The experimental scheme is listed
in Table 3.
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Table 3. Experimental scheme for icing distribution of blades.

Blade Material Wind Speed
U (m/s)

Temperature
T (◦C)

Acquisition
Interval t1 (min)

Icing Duration
t2 (min)

Al
CFRP

10
10
10

−5
−10
−15

2
2
2

2
4
6

3. Evaluation Method

In order to quantitatively analyze the distribution of ice on the blade surface, the
average thickness of ice parameter H is defined in this paper. Hi is the average thickness
of ice in the normal direction of the airfoil profile within the corresponding region of the
chord xi − 1~xi (i = 1,2,3 . . . ), which is expressed as Equation (1).

Hi =
Si
Li

(1)

where Si is the ice area in the normal direction of the airfoil surface within the corresponding
region of the chord xi − 1~xi (i = 1,2,3 . . . ), and Li is the curve length of the airfoil surface
within the corresponding region of the chord xi − 1~xi (i = 1,2,3 . . . ).
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The schematic diagram of the parameters is expressed in Equation (1), as shown in
Figure 5. The x-axis is the chord of the airfoil in the figure, and the y-axis is the parallel line
of the airfoil thickness.
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In this paper, the chord is dimensionless, and the relative position of the chord is
marked to facilitate the analysis. The relative position of the chord is shown in Figure 6.
As shown in Figure 6, the positive direction of the x-axis is the upper airfoil, the negative
direction of the x-axis is the lower airfoil, c is the chord length of the airfoil, and the x/c is
the relative position of the chord.
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4. Results and Discussion
4.1. Distribution of Icing on the Blade Surface

The icing distribution of the blade surface under different conditions is shown in
Figure 7.
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Figure 7. Distribution of ice covering the blade surface. (a) Aluminum blade; (b) CFRP blade.

As shown in Figure 7, the temperature and icing time significantly affect the shape
and type of ice on the blade surface. When the temperatures are −5 ◦C, −10 ◦C, and
−15 ◦C, the type of ice are glaze ice, mixed ice, and rime ice, respectively. With the decrease
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in temperature, the type of ice changes from glaze ice to rime ice, which is the same as the
previous research results [15]. When the temperature is −5 ◦C, icicles form on the lower
airfoil surface of the CFRP blade, while there are none on the aluminum blade. The ice
mainly concentrates on the blade’s leading edge from the figures. In the initial stage of
icing, the thickness of the ice is thin, and the ice evenly distributes on the leading edge,
which leads to a bit of damage to the aerodynamic profile of the blade. With the increase in
the icing duration, the ice builds up layer by layer, the airfoil profile of the blade changes
significantly, and the aerodynamic performance is destroyed.

4.2. Effect of Icing Duration on Icing Distribution

When the temperature is −10 ◦C, the wind speed is 10 m/s, and the icing time is
2 min, 4 min, and 6 min, respectively. The average thickness of ice on the blade surface is
shown in Figure 8. The average thickness of the ice accretion on the blade surface was tested
five times under each experimental condition to confirm the accuracy of the test results.
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As shown in Figure 8, with the increase in icing time, the average ice thickness on
the aluminum and CFRP blade surfaces increases. The ice thickness of the accretion on
the aluminum blade is roughly the same as that of the CFRP blade. The ice thickness on
the airfoil surface within the corresponding region of −1% ~ 1% of chord is significantly
thicker than that of other areas. The upper and lower airfoil ice thickness decreases from
the leading edge to the blade’s trailing edge. When the icing time length is 6 min, the
thickness of the ice on the blade surface is the maximum. The maximum thickness of the
ice on the aluminum blade is 8.8 mm, and that of the CFRP is 8.9 mm.
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4.3. Effect of Temperature on Icing Distribution

When the icing time is 6 min, the wind speed is 10 m/s, and the temperatures are
−5 ◦C, −10 ◦C, and −15 ◦C, respectively. The average thickness of the ice on the blade
surface is shown in Figure 9.
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As shown in Figure 9, with the decrease in temperature, the average thickness of the ice
on the surface of the aluminum and CFRP blades increases. The reason is that the freezing
rate increases as the temperature decreases after supercooled droplets impact the blade
surface. The energy transfer between the droplet, the blade, and the air is carried through
heat conduction, thermal radiation, and convective heat transfer. At the temperature of
−5 ◦C, the rate of energy transfer is slower, leading to droplet freezing on the blade surface
for a long time. When the airflow force on the droplets is greater than the adhesive force
between droplets and ice, the droplets will separate with the blade under the airflow
action, which results in a thinner ice accretion on the blade surface. With the decrease
in temperature, the rate of energy transfer between the droplets, the blade and the air
increases, and the freezing time of the droplets shortens. The increase in the freezing rate
of the droplets leads to the transition of the ice type from glaze ice to rime ice, and the ice
thickness increases.

When the temperature is −5 ◦C, the ice accretion on the leading edge of the CFRP
blade is thinner than the aluminum blade, and the icicle generates on the lower airfoil.
While, at temperatures below −10 ◦C, the material of the blade has little effect on the icing
distribution, and the distribution of ice accretion on the aluminum blade is roughly the
same as that of the CFRP blade. This phenomenon is related to the thermal conductivity of
materials. The thermal conductivity of CFRP is 10.5 W/(mK), while that of 6061 aluminum
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alloy is 167 W/(mK). Under the same conditions, the heat conduction rate of the CFRP
blade is slower than the 6061 aluminum alloy blade, which leads to a longer time for
droplets to freeze. The droplets flow and gather on the blade surface under airflow and
gravity, resulting in a thinner ice accretion on the leading edge of the CFRP blade, the icicle
generates on the lower airfoil of the CFRP blade. With the decrease in temperature, the
energy transferred increases by droplets to the air through thermal radiation and convective
heat transfer, and the freezing rate of the droplets increases. In this case, the effect of the
thermal conductivity of the blade material on the freezing rate of the droplets decreases,
the icing distribution of CFRP blades is roughly the same as that of aluminum blades, and
there are no icicles generated on the lower airfoil of the CFRP blade. In addition, when the
temperature is −15 ◦C, the thickness of the ice on the blade surface is the maximum. The
maximum thickness of the ice on the aluminum blade is 10.8 mm, and that on the CFRP is
10.4 mm.

5. Conclusions

In this paper, experimental research on the effect of blade material on icing distribution
was conducted. The conclusions are summarized as follows:

The icing time and ambient temperature are key factors that affect the icing distribution.
When the icing time increases, the average thickness of ice on the blade surface increases,
and the airfoil profile changes significantly. When the ambient temperature decreases, the
average thickness of ice on the blade surface increases, and the ice type changes from glaze
ice to rime ice.

The effect of blade material on the icing distribution is significantly affected by the
ambient temperature. When the ambient temperature is −5 ◦C, the ice accretion on the
leading edge of the CFRP blade is thinner than the aluminum blade, and icicles form on
the lower airfoil. When the ambient temperature is below −10 ◦C, the material of the blade
has little effect on the icing distribution, and the icing distribution of the aluminum blade
is roughly the same as that of the CFRP blade.
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