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Abstract: Highly stable metal oxide thin film transistors (TFTs) are required in high-resolution
displays and sensors. Here, we adopt a tantalum cation (Ta5+) doping method to improve the
stability of zinc–tin–oxide (ZnSnO) TFTs. The results show that Ta5+-doped TaZnSnO TFT with
1 mol% concentration exhibits excellent stability. Compared with the undoped device, the oxygen
vacancy defects of TaZnSnO thin films reduce from 38.05% to 18.70%, and the threshold voltage
shift (∆Vth) reduces from 2.36 to 0.71 V under positive bias stress. We attribute the improved
stability to the effective suppression of the oxygen vacancy defects, which is confirmed by the
XPS results. In addition, we also prepared TaInZnSnO TFT devices with 1 mol% Ta5+ doping
concentration. Compared with the 1 mol% Ta5+-doped TaZnSnO TFTs, the µ increases two-fold from
0.12 to 0.24 cm2/Vs, and the Vth decreases from 2.29 to 0.76 V in 1 mol% Ta5+-doped TaInZnSnO TFT
with an In:Zn:Sn ratio of 4:4:3, while the device remains highly stable with a ∆Vth of only 0.90 V. The
injection of Ta5+ provides a novel strategy for the enhancement of the stability in ZnSnO-based TFTs.

Keywords: thin film transistors; stability; doping; mobility; threshold voltage

1. Introduction

Amorphous oxide semiconductor (AOS) thin film transistors (TFTs) are widely applied
due to their higher mobility and better large-area uniformity than amorphous silicon TFTs.
For example, they are used in displays, CMOS image sensors, and touch sensors [1,2].
Today, AOS TFTs can be fabricated by vacuum deposition processes such as magnetron
sputtering, atomic layer deposition (ALD), and chemical vapor deposition. However, the
high fabrication cost of these vacuum deposition processes limits their large-scale applica-
tion. As a newly developed AOS fabrication method, solution processing techniques offer
the possibility of depositing thin films in a simple printing or coating manner, enabling
the fabrication of low-cost and high-performance electrical devices [3–5], and the chem-
ical composition of AOS films is easy to control compared to other physical deposition
methods [6–8].

Solution-processed zinc–tin–oxide (ZnSnO) TFTs were widely investigated due to
their excellent properties, such as a low-temperature synthesis process, simple fabrication,
low cost, and resource sustainable ability [9–11]. However, oxygen vacancies have some
negative effects on oxide films. The situation of oxygen vacancy is complicated because the
vacancies are in several charge states. For both binary and complex oxides, in contrast to
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alkali halides, oxygen vacancy in ionic oxides can have two charge states: the one-electron
F+ center and the two-electron F center. The absorption bands of the F+ and F centers
in most oxides occur at different energies. In addition, the diffusion characteristics of
vacancies depend on their charge state [12]. Owing to the oxygen vacancy defects, it is
difficult to control the mobility, threshold voltage, stability, etc., in ZnSnO TFTs [13]. It is
known that these problems can be solved by doping appropriate cations as suppressors
of oxygen vacancy. The principle is to control the oxygen vacancy-related trap states by
introducing an element that has higher binding energy with oxygen [14]. In recent years,
several doping elements, including Zr [6], Ba [2], P [15], and Sb [16], have been reported
to improve the stability of devices by suppressing oxygen vacancy. Unfortunately, they
both have large threshold voltages (Vth) (~5−10 V) [6,16–18]. Therefore, one of the keys is
to reduce the Vth while improving stability. Tantalum (Ta5+) has a larger oxygen bonding
dissociation energy (Ta-O dissociation energy of 799.1 kJ/mol) than those of Zn (Zn-O
dissociation energy of 159.4 kJ/mol) and Sn (Sn-O dissociation energy of 531.8 kJ/mol) [19],
which is expected to be an effective oxygen vacancy inhibitor. However, Ta5+ doping may
cause a decrease in field-effect mobility (µ) and an increase in Vth. Indium ions (In3+),
possessing a special electron configuration of (n − 1) d10ns0 (n is the principal quantum
number) [20], play a significant role in improving the µ of the TFTs. However, the effect of
In3+ on the performance of TaZnSnO TFTs still needs to be further investigated.

Dielectric layers are also critical to TFT device performance, and high-quality dielectric
layers can be prepared via ALD, which uses a binary reaction split into two self-limiting
chemical reactions in a repeated alternate deposition sequence. The ALD technique has a
lot of advantages, including high controllability for composition and thickness, excellent
reproducibility, and low deposition temperatures [21,22]. Al2O3, with good insulating
properties grown by ALD (ALD-Al2O3), is one of the most widely studied materials [23].
Until now, the solution-processed method has not been investigated to prepare films on
ALD-Al2O3, due to the low hydrophilicity of the ALD-Al2O3 surface [24]. To overcome
this problem, we adopted UV–ozone treatment to improve the hydrophilicity of the ALD-
Al2O3 surface.

Herein, we first report the TaZnSnO and TaInZnSnO TFTs fabricated by the solution
method on ALD-Al2O3. The effect of Ta5+ doping on the properties of TaZnSnO thin films
and their associated application to TFTs are investigated. Ta5+ doping can improve the
stability of the ZnSnO thin films and decrease carrier concentration due to the suppression
of oxygen vacancies. Moreover, Ta5+ injection was also developed to explore the electrical
properties and stability of their associated TaInZnSnO TFTs.

2. Experiments

The 0.3 M ZnSnO precursor was synthesized by dissolving Zn(CH3COO)2·2H2O)
and SnCl2·2H2O in 2-methoxyethanol with the molar ratio of Zn:Sn = 4:3 in an airtight
glove box to cut off O2 and H2O, and the water and oxygen content of the glove box in
the laboratory are lower than 0.1 ppm and lower than 10.7 ppm, respectively. After the
precursor solution was stirred for 15 min to fully dissolve the solute, ethanolamine was
added as a stabilizer to avoid turbidity and precipitation of the precursor solution. TaCl5
was then dissolved into the ZnSnO solution to form the TaZnSnO precursor solutions with
Ta5+ molar ratios of 0.5, 1, and 2 mol%. We also prepared 0.3 M TaInZnSnO precursor by
dissolving In(NO3)3·xH2O into the 1 mol% Ta5+ doping concentration TaZnSnO precursor
solution with the molar ratio of In:Zn:Sn = 4:4:3. Then, the prepared precursor solution
was stirred in a water bath heating pot with a magnetic stirrer at 60 ◦C for 2 h, followed by
stirring for 12 h to process homogeneous hydrolysis.

Before coating, the Al2O3 gate dielectrics of approximately 50 nm thick were formed
on the heavily doped p-type single crystal semiconductor Si (100) substrates (1–10 Ω·cm)
using ALD (TFS-200, Beneq, Finland) at 250 ◦C with trimethylaluminum and H2O, and the
purge time was 10 s. Then, the hydrophilicity of the Al2O3 gate dielectrics was improved
by UV–ozone treatment for 10 min to enhance the uniformity of the coating. After that, the
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precursor solutions were spin-coated on the Al2O3 films at 500 r/min for 5 s, followed by
2000 r/min for 30 s. Then, they were heated on a hot plate at 150 ◦C for 15 min. Finally,
the devices were annealed at 500 ◦C for 1 h. Al 200-nm-thick was deposited by thermal
evaporation to form the source and drain electrodes through a shadow mask; the channel
width (W) and channel length (L) were 1000 and 50 µm, respectively. The schematic
structure of the TFTs with various doping ratios is illustrated in Figure 1a. The prepared
devices were annealed at 300 ◦C in the air for 15 min on the hot annealing furnace. This step
is for the formation of good ohmic contact between the semiconductor and metal electrodes
to reduce the resistivity. To evaluate the optical performance of thin films, ZnSnO and
TaZnSnO films were grown on quartz glass substrates through the same process.
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Figure 1. (a) The schematic structure of the TaZnSnO/TaInZnSnO TFTs. The water contact angles
of Al2O3 films before (b) and after (c) UV–ozone treatment, and the contact angles of Al2O3 before
(d) and after (e) UV–ozone treatment using 2-methoxyethanol. (f) Leakage characteristic curve of
Al2O3 film. AFM images of (g) 50 nm Al2O3 dielectric layer (2 × 2 µm2) and TaZnSnO thin films
with different Ta5+ doping contents (h) 0, (i) 0.5, (j) 1, and (k) 2 mol%.

The thermal decomposition characteristics of the precursor solution were obtained
by thermogravimetric analysis (TGA). The test conditions were varied from room temper-
ature to 800 ◦C with a 10 ◦C/min heating rate in an air environment. The water contact
angle test was performed by using contact angle meter (Contact Angle Meter Model
SL200KS, Solon, China). The surface morphologies of the films were characterized by
atomic force microscope (AFM, nanonaviSPA-400 SPM, SII Nano Technology Inc., Chiba
City, Japan). Measurement of optical transmittance was performed using spectrometer
(HITACHI U-3900H, Tokyo, Japan) at room temperature. The crystal structure of the thin
films was characterized by X-ray diffraction (XRD, Rigaku D/max-rB, Tokyo, Japan), and
the composition was analyzed by X-ray photoelectron spectroscopy (XPS, Thermo Scientific
K-Alpha+, Waltham, MA, USA). Electrical characteristics were tested with a semiconductor
characterization system (Keithley, 4200-SCS, Cleveland, OH, USA).

3. Results and Discussion

In order to improve the hydrophilicity of the Al2O3 film and facilitate the subsequent
spin coating, we performed UV–ozone treatment on it, and used the contact angle (θ) and
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surface free energy (γ) to characterize the difference in the hydrophilicity of the film. The
surface free energy of thin film can be calculated with the following formula [25]:

γS = γd
S + γ

p
S (1)

γL(1 + cos θ) = 2
√

γd
Sγd

L + 2
√

γ
p
Sγ

p
L (2)

where γS and γL are the surface free energy of solid and liquid, and the p component and d
component correspond to their polar component and dispersion component, respectively.
The water contact angles of Al2O3 films before and after UV–ozone treatment are 50.737◦

and 10.937◦, as shown in Figure 1b,c. In addition, we measured the contact angles of Al2O3
before and after UV–ozone treatment using 2-methoxyethanol, as shown in Figure 1d,e,
and calculated the corresponding γS. The contact angle (17.383◦) of the Al2O3 surface of
2-methoxyethanol after UV–ozone treatment is also smaller than the contact angle 50.857◦

of the surface before UV–ozone treatment. According to the contact angle test results of
the film, the γS of the Al2O3 film after UV–ozone treatment is 89.794 mN/m, and the γS
before UV–ozone treatment is 59.285 mN/m. The lower water contact angle and higher γS
indicate that the film is more hydrophilic. The results show that UV–ozone treatment can
significantly improve the hydrophilicity of Al2O3 films, which makes a better condition for
the subsequent spin coating of the ZnSnO-based films. The leakage current characteristics
of 50 nm ALD-Al2O3 dielectric are charted in Figure 1f. The Al2O3 produces a leakage
current density of 10−8 A/cm2 at 2 MV/cm, which is suitable for TFT application. The
surface morphologies of the Al2O3 were analyzed by AFM, as shown in Figure 1g. The
Al2O3 thin film exhibits a smooth surface with a root mean squared (RMS) value of 0.33 nm.
The smooth surface of the gate dielectric can suppress the surface roughness-induced
leakage current and achieve expeditious carrier transport in the channel. Figure 1h–k
present the surface morphologies of the TaZnSnO thin films with different Ta5+ doping
concentrations. The RMS values are 2.43, 1.11, 1.30, and 0.66 nm for TaZnSnO thin films
with Ta5+ doping concentrations of 0, 0.5, 1, and 2 mol%, respectively. The RMS roughness
of the films decreases slightly with the increase in doping concentration. Rough surface
morphology of the undoped ZnSnO thin films is associated with the growth of the columnar
structure; the growth of the columnar structure in TaZnSnO films is suppressed by doped
Ta element, which may result from the formation of stresses by the different ion sizes of Zn
and Sn, and the segregation of Ta cations [26]. The smooth surface roughness of the active
layer facilitates the adhesion ability to the source and drain electrodes.

Figure 2a shows the GIXRD pattern of TaZnSnO films with different Ta5+ doping ratios.
No XRD peak corresponding to TaZnSnO films is found, which indicates that the TaZnSnO
films have an amorphous structure. Grain boundaries usually act as preferential paths
for impurity diffusion and leakage current, resulting in an inferior dielectric performance.
In comparison, an amorphous structure provides a fast transport path for carriers [27,28],
which may be beneficial for the preparation of large-size oxide TFTs. As shown in Figure 2b,
two apparent weight loss stages could be observed for all the solutions by TGA analyses.
The initial weight loss stage happened in the range of 70–150 ◦C. This phenomenon was
caused by the evaporation of volatile nitrates and the hydrolysis of Zn(CH3COO)2·2H2O,
SnCl2·2H2O, and TaCl5. In the temperature range of 150–500 ◦C, only a slight loss of weight
due to the conversion of the relevant hydroxides to the corresponding oxides through
dehydroxylation and condensation reactions. No apparent weight loss was observed at
temperatures above 500 ◦C, implying that the precursor solution completely formed a
dense metal oxide film. Therefore, we chose 500 ◦C as the annealing temperature of the
thin film according to the analysis results.
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Figure 2. (a) GIXRD pattern, (b) TGA curve, (c) optical transmittance spectra, and (d) optical bandgap
of TaZnSnO thin films with different Ta5+ doping concentrations.

The optical transmittance spectra of the TaZnSnO films were analyzed to depict the
effect of Ta5+ doping on the optical transmittance, as shown in Figure 2c. The optical
transmittance of all samples shows about 90% transmission in the visible region. With the
increase in Ta5+ content, the average transmittance of TaZnSnO films increases slightly,
indicating that TaZnSnO film has great potential to be applied on transparent electronic
devices. The transmittance became slightly higher by increasing Ta5+ addition, due to its
wider bandgap. The optical bandgap (Eg) is related to the absorption coefficient (α) by the
following equation [29]:

αhv =
(
hv− Eg

) 1
2 (3)

where α, h, and ν are the optical absorption coefficient, Planck’s constant, and the incident
photon frequency, respectively. The absorption coefficient (α) can be extracted by the
following equation:

α = (
1
d
) ln(

1
T
) (4)

where T is the transmittance and d is the film thickness. Figure 2d shows a plot of (αhv)2

versus photon energy. The Eg of 0, 0.5, 1, and 2 mol% Ta5+-doped ZnSnO films are 3.21,
3.25, 3.32, and 3.39 eV, respectively, which are determined from the absorption spectra by
extrapolation. However, there are some defects that may have some of their energy levels
in the band gap. We use the Urbach rule to fit the band gap as an “estimation” only, but not
the true “calculation” [30]. A larger Eg requires the carriers to have higher energy to shift
from the valence band toward the conduction band. The generation of carriers by AOS
depends on the generation of oxygen vacancies according to the following equation [6]:

OX
O ↔ V..

O + 2e− +
1
2

O2 (5)
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Hence, Ta5+ doping reduces the carrier concentration and reduces the defect states
generated by oxygen vacancies.

To further investigate the effect of Ta5+ doping on the chemical bonding states of
TaZnSnO thin films, XPS was used to test the O1s spectra of the TaZnSnO thin films
with different Ta5+ doping concentrations; Figure 3 shows the XPS survey spectra of the
TaZnSnO thin films, and the XPS peaks of the major lattice components of Zn (2s, 2p1, and
2p3), Sn (3s, 3p1, 3p3, 3d3, 3d5, 4s, 4p, and 4d), Ta (4f), O (1s), C (1s), and Cl (2p) are visible.
In addition, the photoelectron peaks of the main elements, Zn, O, Auger Zn LMM, and O
KLL, can be seen, and it is almost consistent with previously reported data [31].
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As shown in Figure 4a–d, all peaks were calibrated by taking the carbon C1s (284.5 eV).
The XPS O1s spectra of the TaZnSnO films were fitted by three component peaks with
the Gaussian distribution and approximate center frequency of 529.8 eV (O1), 530.5 eV
(O2), and 531.6 eV (O3), respectively. The O1 is attributed to the bonding of the oxygen
ion (O2−) to metal ions (M–O) such as Ta5+, Zn2+, and Sn2+ (Sn4+). The O2 is related to
the oxygen-related defect states in TaZnSnO films [32]. The O3 is associated with loosely
bound oxygen on the surface of films such as C, O2, O2, and H2O [33]. O2/(O1 + O2 +
O3) is defined as the relative quantity of oxygen vacancy in the TaZnSnO thin films. The
ratio of O2/(O1 + O2 + O3) was calculated to be 38.05%, 26.26%, 18.70%, and 24.81% for
TaZnSnO films with Ta5+ doping concentrations of 0, 0.5, 1, and 2 mol%, respectively. The
oxygen vacancy concentration decreased to a minimum with Ta5+ content in 1 mol% for
the TaZnSnO film, due to the greater difference in electronegativity between tantalum
(1.50) [34] and O (3.44) than that between Zn (1.65), Sn (1.96), and O [35]. Therefore, Ta5+

has a stronger attraction ability to oxygen ions. Moreover, the ratio of oxygen vacancy
defects increased from 18.70% to 24.81%, with the doping concentration of Ta5+ increasing
from 1 mol% to 2 mol%, which may be caused by over doping leading to more trap states
and the result concurring with the SS (Table 1). So, we can conclude that the appropriate
amount of Ta5+ doping can effectively suppress the oxygen defect concentration in the
ZnSnO film.
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Figure 4. XPS of O1s spectra of the TaZnSnO thin films with different Ta5+ doping levels of (a) 0,
(b) 0.5, (c) 1, and (d) 2 mol%.

Table 1. Electrical performance of the TaZnSnO TFTs with different Ta5+ doping concentrations.

Device V th (V) µ (cm2/Vs) Ion/Ioff SS (V/Decade)

ZnSnO 0.29 ± 0.03 0.38 ± 0.080 ~106 0.103
TaZnSnO (0.5 mol%) 1.26 ± 0.06 0.14 ± 0.005 ~105 0.093
TaZnSnO (1 mol%) 2.29 ± 0.05 0.12 ± 0.050 ~105 0.067
TaZnSnO (2 mol%) 3.43 ± 0.20 0.06 ± 0.004 ~104 0.149

A positive bias stress (PBS) test was carried out to further study the effects of Ta5+

doping on the stability of TaZnSnO TFTs, as shown in Figure 5a–d. The test conditions
were under darkness with a stress voltage of 5 V at room temperature. The transfer curves
of TaZnSnO TFTs both shifted toward the positive direction with the increase in stress
time due to the electron trapping that occurred at the channel/dielectric interface. The
method of extracting the electrical parameters in TFT can be found in Reference [36] and is
summarized in Table 1. The value of Vth increased from 0.29 to 3.43 V, and the µ decreased
from 0.38 to 0.06 cm2/Vs with the Ta5+ doping concentration increasing from 0 to 2 mol%.
For oxide TFT, the µ is confirmed to be affected by both shallow traps near the conduction
band and the generation of carriers from oxygen vacancies in the interface [29]. According
to our results, the phenomenon of µ decreased with the increase in Ta5+ concentration,
indicating that Ta5+ doping has a stronger effect on suppressing the number of electrons
than making the electrons freer, which reduces the carrier concentration of ZnSnO films. In
addition, with the Ta5+ doping concentration increased from 0 to 1 mol%, the value of SS
decreased from 0.103 to 0.067 V/decade. The SS is closely related to the total trap density
(Ntrap) [37], which can be extracted using the following equation:

Ntrap =

[
SS log(e)

kT/q
− 1
]

Ci

q
(6)
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where Ci, T, and k are the capacitance per unit area of the insulator, the absolute temper-
ature, and Boltzmann’s constant, respectively. It should be noted that the SS increased
from 0.067 to 0.149 V/decade, with the Ta5+ doping rate continuing to increase to 2 mol%,
which can be attributed to the generation of more trap states due to the higher doping
concentration of Ta5+.
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Figure 6a demonstrates the threshold voltage shifts (∆Vth) of the transfer curves for
the various TaZnSnO TFTs under the different PBS times. The undoped ZnSnO TFT shows
a relatively large ∆Vth of 2.36 V. Compared with the ZnSnO TFT, the TaZnSnO TFTs show
relatively small ∆Vth of 1.74, 0.71, and 1.57 V, and Ta5+ doping concentrations of 0.5, 1, and
2 mol%, respectively. The results demonstrate that the PBS stability of TFTs was improved
significantly with proper Ta5+ content, as oxygen vacancies are suppressed by Ta5+ doping.
The time dependence of ∆Vth can be described by the stretching exponential equation [29]:

∆Vth = (VG −Vth)

{
1− exp

[
−
(

t
τ

)β
]}

(7)

where τ is the characteristics of carrier trapping time, and β is the stretched-exponential
exponent. The actual stress voltage applied to the device would be lower for higher Ta5+-
doped TFTs due to the increase in Vth. However, the characteristics of carrier trapping time
τ and the stretched-exponential exponent β hardly depend on the bias stress amplitude.
According to the above formulas, the values of τ and β extracted from the equation are
1.36 × 105, 1.62 × 105, 2.22 × 106, and 9.16 × 104 s, and 0.184, 0.397, 0.282, and 0.155 for
the TaZnSnO TFTs with Ta5+ doping of 0, 0.5, 1, and 2 mol%, respectively. The fitted curve
described by Equation (7) is shown in Figure 6b. The τ is related to the potential barrier
for the trapping layer, and an oxide TFT device with a high τ value demonstrates better
stability because τ is related to the potential barrier for trapping as τ = τ0 exp (Eτ/kT)
(where Eτ and τ0 are the average effective energy barrier and thermal prefactor for emission
over the barrier, respectively). Accordingly, it is concluded that the 1 mol% Ta5+-doped
TaZnSnO TFT shows better stability due to lower trap density.
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Figure 6. (a) The dependence of ∆Vth on stress time and (b) the fitted curves described by Equation (7)
for the TaZnSnO TFTs with Ta5+ doping of 0, 0.5, 1, and 2 mol%, respectively.

Although the TaZnSnO TFTs with 1 mol% Ta5+ doping exhibited excellent stability,
the electrical properties of TaZnSnO TFTs need to be further improved. Thus, the Ta5+

doping method with the In:Zn:Sn ratio of 4:4:3 was carried out in Figure 7a. Compared
with the TaZnSnO TFTs, the µ of TaInZnSnO TFT increases from 0.12 to 0.24 cm2/Vs.
The TaInZnSnO TFT shows a ∆Vth of 0.90 V, as shown in Figure 7b. In addition, the
Vth decreased from 2.29 to 0.76 V, the Ion/Ioff ratio increased from 105 to 106, and the
SS increased from 0.067 to 0.167 V/decade, indicating the larger trapping at the channel-
insulator interface, which leads to deterioration of the stability. The obtained τ and β are
6.50 × 106 s and 0.23 for the TaInZnSnO TFT, respectively. Therefore, we conclude that a
TaInZnSnO TFT with better stability and electrical performance can be obtained by doping
Ta5+ in an appropriate proportion.
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described by Equation (7) for the TaInZnSnO TFT.

4. Conclusions

In summary, we first reported TaZnSnO TFTs fabricated by the solution method on
ALD-Al2O3 films. The effects of different Ta5+ doping concentrations on the microstructure
were investigated, as well as the surface morphology and oxygen vacancy defect character-
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istics of the films. The results indicate that UV–ozone treatment can significantly improve
the hydrophilicity of Al2O3 films, which makes a better condition for the subsequent spin
coating of the ZnSnO-based films. All of the films are amorphous, the RMS roughness of
the films decreases slightly, and the optical transmittance of all samples shows about 90%
transmission in the visible region. TaZnSnO TFTs with 1 mol% Ta5+ doping have excellent
stability relative to ZnSnO TFT, and its ∆Vth reduced from 2.36 to 0.71 V since the oxygen
vacancy defects decreased from 38.05% to 18.70%. Additionally, Ta5+-doped TaInZnSnO
TFT with an In:Zn:Sn ratio of 4:3:3 was also developed to explore the electrical properties
and stability of their associated TaInZnSnO TFTs. The results show that the Vth of the
TaInZnSnO TFT is relatively lower by a factor of three, and µ is twice as high as that of the
TaZnSnO TFT while maintaining stability, with a ∆Vth of only 0.90 V. Consequently, such
TaInZnSnO TFTs with highly stable and low Vth characteristics can be applied in the field
of high-resolution displays and sensors.
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