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Abstract: Pavement distress data in a single section usually presents a long-tailed distribution,
with potholes, sealed cracks, and other distresses normally located at the tail. This distribution
will seriously affect the performance and robustness of big data-driven deep learning detection
models. Conventional data augmentation algorithms only expand the amount of data by image
transformation and fail to enlarge the data diversity. Due to such a drawback, this paper proposes
a novel two-stage pavement distress image augmentation pattern, in which a mask is generated
randomly according to the geometric features of the distress in the first stage; and in the second stage,
a distress-free pavement image with the fused mask is transformed into a pavement distress image.
Furthermore, two convolutional networks, M-DCGAN and MDTMN, are designed to complete the
generation task in two stages separately. In comparison with other generation algorithms, the quality
and diversity of the generation results of proposed algorithms are better than other algorithms. In
addition, distress detection tests are conducted which indicate that the expanded dataset can raise
the IoU from 48.83% to 83.65% at maximum, and the augmented data by the proposed algorithm
contributes more to the detection performance.

Keywords: pavement image augmentation; long-tailed distribution data; image generation;
pavement distress detection

1. Introduction

Detection networks based on deep convolutional neural networks have become the
most popular algorithms among researchers in the area of pavement distress
detection [1–12]. With the development of deep learning theory and the improvement
of computer hardware performance, the depth and breadth of detection networks have
been increasing to achieve superior accuracy, along with a rapid increase in the number of
parameters. Currently, the most powerful Transformer-based neural network has reached
600 million parameters [13]. In order to avoid overfitting and to obtain a robust model,
the training data must be sufficient in quantity and diversity. There are many strategies to
prevent overfitting during the training of the detection model, such as batch normaliza-
tion [14], drop out, drop connect [15], early stopping, weight decay, etc. There is another
more effective and intuitive strategy that can be implemented before model training, which
is the data augmentation, but the current data augmentation algorithm is very effective for
datasets with balanced data distribution and has limited improvement for datasets with
“long tail” distribution.

There are various pavement distresses on a road section; however, the quantity dif-
ference between pavement distress is often significant. For example, while the number of
the common crack category is high, the number of sealed cracks or potholes is relatively
small, and the data distribution of the distress shows a long-tail distribution, which is a
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kind of unbalanced data performance. As shown in Figure 1, the frequency of different
categories of distress is used as the basis for ranking, from high to low, with the head of
the curve being the most common distress and the tail being the distress that occurs less
frequently, forming a curve similar to a “long tail” shape. As the detection model undergoes
more training epochs, it eventually converges on the training set losses. However, this
improvement does not extend well to the test set, as it exhibits weak generalization and
performs poorly, particularly for tail data.
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To improve the problem of long-tailed datasets, the most intuitive means of tackling
the problem is to augment the tailed data. The conventional methods are to apply affine
transformations to the data, such as rotation, translation, mirroring, etc., or to change
the image hue, add Gaussian noise [16] or image blurring, in addition to other means of
augmentation [17], all of which can expand the number of tail data and bridge the problem
of insufficient samples in the tail. However, conventional methods for data augmentation
require the reuse of all or part of the image content of the original data, and do not
introduce new perspectives or content, with limited improvement in intra-class diversity
for the tail data [18,19]. Therefore, this enhancement algorithm is more suitable for head
data, or datasets with more balanced data distribution. However, for tail data, although
the quantity can be boosted using such methods, the diversity enhancement is rather weak
and cannot effectively avoid model overfitting.

Deep learning-based image generation algorithms can generate random noise into a
specified category of images or edit certain features of an image, and this kind of uncertain
image generation can enhance the diversity of images. At present, the dominant image
generation algorithms are VAE [20], GAN [21], Diffusion Model [22], and others. Some
scholars have carried out research on the pavement image augmentation based on the
above algorithms and have attained some progress, but there are still some drawbacks. For
example, the generated image quality is poor with low resolution, the training is difficult
to converge, the model collapses, or the complexity of the model is too high.

In this work, we propose a novel two-stage approach for pavement distress image
augmentation, as shown in Figure 2. In this approach, in the first stage, we propose
a self-attentive mechanism-based distress mask generation network, M-DCGAN (Mask-
DCGAN), for learning distress features from a small number of labelled distress images and
autonomously generating synthetic distress masks that fit the distress geometries. In the
second stage, the mask images generated in the first stage are fused with the distress-free
pavement images to become prototype images for pavement distress image generation.
In addition, a texture synthesis network with multiple receptive fields, MDTMN (Mask-
to-Distress Texture Mapping Network), is designed to generate a prototype image into a
synthetic image with relatively realistic pavement distress texture.
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To demonstrate the effectiveness of the proposed MDTMN, three different types of
generation algorithms, namely Pix2Pix [23], CPN [24], and CycleGAN [25], are selected for
comparison experiments, which are divided into two parts: qualitative and quantitative
evaluations. The comparison experiment verified that the images generated by the pro-
posed method outperformed those generated by other algorithms in terms of image quality
and diversity.

Furthermore, to prove the effectiveness of the data augmentation model proposed in
this paper, pixel-level detection of pavement distress was conducted for the tail data. The
experiments were carried out with the dataset not augmented, the dataset augmented by
the conventional method, and the dataset augmented by the proposed method, and finally,
the detection model achieved the best detection accuracy on the dataset augmented by the
proposed algorithm.

The contributions of this paper are summarized as follows:

• We propose a two-stage pavement distress augmentation approach and accompany
each stage with a specific task generation algorithm (M-DCGAN and MDTMN). The
M-DCGAN generates a mask that matches the geometric characteristics of the distress
in one stage, and in the second stage the generated mask will be filled by the MDTMN
with a context-sensitive distress texture. This two-stage pavement distress image
generation algorithm allows the generation of high-quality images while enhancing
image diversity;

• Our proposed image augmentation algorithm can simultaneously obtain a distress
mask image with pixel-level labelling (one-stage output) and a corresponding pave-
ment distress image (two-stage output), which can be utilized directly as a dataset for
pavement distress semantic segmentation algorithms. It reduces the cost of manual
labelling and provides more accurate labelled data as well;

• The proposed method focuses on diversifying the original dataset, which effectively
improves the performance of the detection model.

2. Related Work

The size of network structures in novel deep learning networks is constantly being
increased to extract more effective features, resulting in a significant increase in the number
of parameters. In comparison with previous small-sized neural networks, the new struc-
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tures require more data to be involved in the training. Therefore, how to perform effective
data augmentation has also become an active research issue in recent years.

In previous studies, the common means used were random rotation, translation and
mirroring, which were used to enhance the geometric invariance of the CNN-based models
by applying affine transformations to the images [26]. Based on the above approaches,
Auto-Augment [27] uses reinforcement learning algorithms to learn how to combine basic
image augmentation algorithms to form more complex image augmentation strategies. The
most critical drawback of this combination of algorithms for data augmentation strategies
is the high computational cost of the search combination. Inspired by the drop out strategy
in the model training, an augmentation strategy by masking some of the information in the
image can also improve the robustness of the model [28].

The YOLO family [29–31] of detection algorithms has been well known to researchers
for its fast and accurate detection, not only in terms of network structure, but also the
accompanying data augmentation algorithms. YOLOv4 introduces the Mosaic data aug-
mentation method, which combines four different images into one large image and then
splits the large image into four parts as part of the training set. YOLOv5 introduces the
Cut-Mix data augmentation method, which overlays a part of one image onto another to
create a new hybrid image. This method expands the training set and can better handle
inter-target occlusions, improving the robustness of the model. Both YOLOv4 and YOLOv5
use the Mix-Up data augmentation approach to generate a new training image by randomly
selecting two training images and mixing their pixel and label information in a certain ratio.
This approach can extend the training set and improve the detection accuracy of the model
for small targets.

The output of the above image data augmentation methods all contains part or en-
tire representations of the original data, and the diversity of the inter-class data is not
augmented. Considering the above drawbacks, the researcher used a GAN-based image
generation algorithm to generate synthetic images that conform to the prior distribution by
learning the feature distribution of known samples [32–35]. The generation of synthetic
images is random in nature and can be used as supplementary data to enhance the diversity
of the dataset. However, the drawbacks are also significant; the quality of the generated
images is poor, the image size is too small, model collapse tends to occur when training
is inadequate, and the representation of synthetic images does not conform to natural
patterns. Training with such synthetic images does not effectively improve the accuracy
and robustness of the detection model. Despite this, there are already many algorithms that
can generate high quality images, such as Big-GAN [36] and diffusion model. However,
these algorithms generally require high-performance computers, especially in terms of
requiring high numbers of high-performance GPUs to support training and are not cost-
effective if only used for data augmentation tasks. In addition, these algorithms require
large amounts of high-quality training data, which is in conflict with the original purpose
of image data augmentation. Most importantly, the time to generate a single high-quality
image often exceeds 10 s, which is not suitable for high-volume data augmentation. This
paper addresses the shortcomings of these algorithms and redesigns the image generation
model to obtain better quality augmented data that can be used directly for training.

3. Dataset

The pavement distress data in this paper comes from the dataset HRSD in our previous
work [37], with a total of 3200 pavement images in the entire dataset, of which 850 are crack
images, 180 are sealed cracks, only 102 are potholes, and the rest are distress -free images,
with a long-tailed distribution of data. In this paper, we select the potholes images at the
tail end as the object of augmentation and carry out the corresponding algorithm design.

Image Labeling

The semantic in the asphalt pavement images is mostly the pavement context, and the
distress semantic only a minority. In this subsection, the pavement semantic is manually
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annotated to separate the pavement semantic and the distress semantic in the pavement
distress image, and the first stage training data—mask images—and the second stage
training data—fused images—are generated simultaneously. As shown in Figure 3, the
image of the pavement distress will be fed into the image annotation tool and the distressed
area will be manually annotated as a single-color block, with no additional annotation of
the pavement.
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Figure 3. Pothole images labelling procedure.

The 102 pothole images are divided into an initial training set, an initial validation
set, and an initial test set in the ratio of 7:2:1. Nevertheless, the number of pothole im-
ages is insufficient for the model training. Therefore, this paper adopts the conventional
image augmentation algorithm, which transforms the images of potholes, using rotation,
translation, mirroring, scaling, and random erasing to expand the initial training sets only,
as shown in Figure 4. After data augmentation, the number of images in the training set
increased from 70 to 600.
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4. Two-Stage Augmentation Approach and Algorithms

This paper divides the complex pavement distress image enhancement procedure
into two stages, and in each stage the relevant algorithm is designed to complete the
corresponding processing task. As shown in Figure 2, this section describes in detail the
algorithms designed in each stage.

4.1. Pavement Distress Mask Generation Network (M-DCGAN)

In the first stage, a self-attention-based generative adversarial network, M-DCGAN,
is designed for distress mask image generation in this study. Since the training data of
M-DCGAN is a simple pavement distress mask image, it will not be disturbed by other
approximate semantics in the pavement image.

4.1.1. An Improved Generator and Discriminator

M-DCGAN is based on the DCGAN framework and is designed to generate two-
dimensional random noise matrices into distress mask images. DCGAN is an image
generation algorithm that employs unsupervised representational learning with a combina-
tion of deep convolutional neural networks and generative adversarial networks internally,
as shown in Figure 5. It is an improved algorithm to the vanilla GAN and can output better
high-quality images. However, the following drawbacks remain:

• Limited number of transposed convolutional layers and only images sized 64 × 64
can be generated;

• Correlation between channels in the feature map is not fully exploited;
• Gradient disappearance still occurs during training.
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To address the above drawbacks, this paper makes a slight modification to DCGAN
for the task of distress mask generation by redesigning the network structure and loss
function to build Mask-DCGAN (M-DCGAN). The redesigned generator and discriminator
are shown in Figure 6a,b. In the generator network, the green part is the network structure
of the original DCGAN. The random noise is transformed into a feature map of size
1024 × 4 × 4 by transposed convolution. The final image of size 128 × 128 is generated
by transposed convolution with step size 2, transposed convolution kernel size 4 × 4 and
padding operation 1, which completes the step-by-step scale-up operation of two times the
original size. The output size of the transposed convolution is calculated from Equation (1):

Hout = stride× (Hin − 1) + kernel− 2× padding (1)

where stride and kernel denote the step size and convolution kernel size, respectively.
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As illustrated in Figure 6a, a self-attention-based SE module is added to the M-
DCGAN generator to exploit the weight relationships of different channels in the features.
This module, which is placed between the fifth transposed convolutional layer and the
sixth, can autonomously calculate the weight coefficients of each of the 64 channels and
then perform a weighted dot multiplication operation with the feature map to assign the
weights to each channel, enhancing the features with high contributions and weakening the
irrelevant features.

As illustrated in Figure 6b, as the size of the generated image was increased by a factor
of two, the discriminator was adapted accordingly, increasing the size of the input image to
128 × 128 pixels, while the trailing fully connected layer was replaced with a convo-
lutional layer.

4.1.2. Model Training

The deep learning models involved in this paper are trained on a GPU server with the
following configuration: CPU: Intel Xeon, GPU: Rtx2080 × 8, 64 G of RAM, 5 TB of hard
disk, and Ubuntu 14 as the operating system. The model was trained using the WGAN
(Wasserstein GAN) loss function to address training instability and to avoid model collapse.
The rest of the configuration items are as follows: the optimizer is Adam, the learning rate
is set to 0.0002, the cut-off parameter is set to 0.01, the batch size is set to 64, the number of
rounds of discriminator training per batch is set to 5, and the overall number of training
epochs is set to 200.

In order to compare the WGAN loss function and vanilla GAN loss function, the
two loss functions are used for training, as shown in Figure 7. The Figure 7a shows the loss
function of vanilla GAN, and the generator loss and discriminator loss have not changed
since the first few rounds, and the training is basically at a halt, which is due to the dis-
appearance of the gradient during back propagation. In Figure 7b, the loss function of
WGAN is used, and the loss curve oscillates during training but conforms to the training
rule of generative adversarial network, and the loss also tends to converge. What is more
concerning is that the gradient passed in the network is always maintained and the training
does not stagnate. In addition, the images generated by the model with the same number
of iterations can also reflect the training effect of the model. With respect to the images
in the red box in Figure 7a, it can be seen that the background and foreground are not
generated correctly, and still present a random noise appearance, while the green dashed
box in Figure 7b shows that the background has all been generated into a black back-
ground, and the distress masks of different shapes and sizes in the foreground have been
generated properly.
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4.1.3. Evaluation of the Generation Results of M-DCGAN

A batch quantity of random noise can be generated into the same number of distress
mask images using the trained M-DCGAN model. In order to show the complete distri-
bution of the generated images of a batch and to facilitate the evaluation of the generated
results, both the generated images and the training data will be presented and evaluated in
an 8 × 8 patchwork, as shown in Figure 8. It can be observed from Figure 8 that after the
15th epoch, the generated distress masks are already very close to the real masks, but after
100 epochs, the angularity of the masks gradually increases and image artefacts appear,
which is due to model over-fitting.
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Generative adversarial generative network itself is an unsupervised learning algo-
rithm, and its generation results are not unique. In addition, the real pavement pothole
morphology is not constant, and it is difficult to evaluate the generation results with quan-
titative metrics. To verify whether the distribution of M-DCGAN generated images and
training samples are close, this subsection uses 500 generated images and 500 real mask
images to form a validation dataset, and assigns “0” and “1” labels, respectively, and then
uses t-SNE [38] (T-distributed Stochastic Neighbor Embedding). The visualization results
are shown in Figure 9. The two types of data have an overall distribution that is similar
to each other, which proves that the M-DCGAN generator can effectively learn the image
distribution of the distress masks and generate the images with similar distribution and
appearance of the distress masks. Moreover, to verify the effectiveness of the SE module,
Figure 9a,b show the distribution of the generated results with and without the SE module,
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respectively. Evidently, the generated results of the model with the SE module are closer to
the real data.
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4.2. Mask-to-Distress Texture Mapping Network (MDTMN)

The most of pavement images are distress-free pavement images, and such images
are usually eliminated from the dataset before the training of detection models, which
will result in wasted cost of collection and storage. The MDTMN designed in this paper
can effectively use distress-free images or non-target class pavement distress images to
generate images with the specified class of distress.

4.2.1. Input Data of MDTMN

The mask generated by M-DCGAN needs to be fused with the distress-free image
before it can be used as an input for distress texture generation, because the distress mask
image and the original image have the same size. The fusion of the two images is to map
the coordinates of the white pixels in the distress mask region to the original image, and
then replace the pixels in the corresponding coordinate region of the original image with
red pixels with pixel values of (255, 0, 0), as shown in Figure 10. The reason for using pure
red pixels is to distinguish them from the original pixels in the image and highlight the
distress region to be generated.
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4.2.2. MDTMN Architecture

The overall structure of MDTMN is illustrated in Figure 11. At the input of MDTMN,
the mask fusion image is channel fused with the mask image to form a four channels image,
and then sent to the encoder for feature extraction and compression. After compression,
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the features are extracted at multiple scales under different receptive fields by the dilated
convolution group in the middle section, and the extracted features are concatenated and
sent to the decoder again for level-by-level feature and image size recovery. In order to
ensure that the generated image can maintain more image details, skip connections are
also added in the first and third convolutional layers of the network to introduce more
low-level semantic information into the high-level features. The final output is a pavement
image of the masked area generated as pavement distress.
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Figure 11. The Overall Architecture of MDTMN.

The discriminator is divided into two sub-discriminators: the overall discriminator and
the distress discriminator, respectively. They extract the features of the complete generated
image and the distress image with only the distress area simultaneously, and then output
the individual image features for feature concatenation. After this, the concatenated features
pass through the fully connected layer and the sigmoid function activation, and finally, are
converted into the probability of the image being fake or real. In the initialization of the
training discriminator, the real image and the distress features of the real image are labeled
as “real”, and the generated image and the generated distress are labeled as “fake”. The
structural parameters of the overall network are shown in Table 1a–c.

Table 1. a: MDTMN’s Generator Network Details. b: Overall\Partial Distress Discriminator Network
Details. c: Features Concatenation Layer.

a

Operation Kernel Size Dilated Rate Step Output
Channel

Conv 5 × 5 1 1 64
Conv 3 × 3 1 2 128
Conv 3 × 3 1 1 128
Conv 3 × 3 1 2 256
Conv 3 × 3 1 2 256
Conv 3 × 3 1 2 256

Dilated-conv Group 3 × 3 2,6,12 1 256
Conv 3 × 3 1 2 256
Conv 3 × 3 1 2 256
Conv 3 × 3 1 2 256

Trans-conv 4 × 4 1 1/2 × 1/2 128
Conv 3 × 3 1 2 128

Trans-conv 4 × 4 1 1/2 × 1/2 64
Conv 3 × 3 1 2 64
Conv 3 × 3 1 2 3
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Table 1. Cont.

b

Operation Kernel Size DilatedRate Step Output
Channel

Conv 5 × 5 1 2 64
Conv 5 × 5 1 2 128
Conv 3 × 3 1 2 256
Conv 3 × 3 1 2 512

FC 3 × 3 - - 1024

c

Operation Kernel Size DilatedRate Step Output
Channel

Concat - - - 2048
FC - - - 1

From the details of the network structure in Table 1a, it can be seen that the encoder in
the red dashed box in Figure 10 employs a step-by-step convolution to extract the features
from the original image, which directly responds to the exponentially increasing number
of output feature map channels. There is a special parallel step of the dilated convolution
operation group. MDTMN uses a total of three different dilated rates of 2, 6, and 12, and
the receptive field can reach 5 × 5 pixels, 12 × 12 pixels, and 25 × 25 pixels, respectively.
The outstanding advantage of the dilated convolution is to enlarge the receptive field of the
network without introducing additional parameters by filling 0-valued pixels at specified
positions to the convolution kernel.

The two discriminators described in Table 1b gradually compress the image into a
1024-dimensional feature vector by a convolution operation with a step size of 2. The
two vectors are output as the probability of the real image by the feature concatenation and
full connection operation in the table in Table 1c.

4.2.3. Loss Function

The input content of MDTMN in this section is the fused pavement image, which
differs from M-DCGAN, where the input is random noise. The difference between the
two network structures is also large, especially given that the MDTMN uses two discrim-
inators, so although they are the same generative adversarial network, the loss function
is different.

Since two discriminators are being used, two loss functions are introduced simulta-
neously: the Mean Squared Error (MSE) loss function and the vanilla GAN loss function.
MSE is defined as the mean of the 2-Norm squared of n samples x in a batch and the
corresponding n outputs y. It can be used to compare the difference between two types of
images in a batch, as in Equation (2).

MSE(x, y) =
1
n
(‖x− y‖2)

2 (2)

The common MSE loss is modified by converting it into a loss function for the MDTMN
generator so that it focuses on the quality of distress generation in the masked region, as
shown in Equation (3).

L(x, Mk) = ‖Mk � (G(x, Mk)− x)‖2
2 (3)

where Mk is the distress mask image, G(x, Mk) denotes the generated image, and x denotes
the original image. By matrix dot product of the mask with the generated image and the
filled image, respectively, the region filled by the generator and the original distress region
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can be obtained, and by comparing the gap between these two regions, the loss of the
generator can be obtained.

The loss of the discriminator is calculated by the vanilla GAN Loss formula, as in
Equation (4):

min
G

max
D

V(D, G) = E[log D(x, Mk) + log(1− D(G(x, Mk)))] (4)

where D denotes the discriminator network of two branches that discriminate the overall
image and partial distress generation, respectively.

When training is performed using a two-stage training model, the first stage training
generator that uses a loss function of Equation (3), the second stage using the overall
synchronization of training requires the combination of two loss functions as Equation (5).

Ltotal(x, Mk) = min
G

max
D

E(αV(D, G) + L(x, Mk)) (5)

where α is the hyperparameter set to 0.1.

4.2.4. Training Parameters Configuration

The training data are fused images, and the image size is resized to 256 × 256 in order
to improve the training speed, the optimizer is selected as Adam, where the learning rate
is set to 0.001, the number of generator training epochs is set to 100, the total epochs is
set to 200, and the number of batches is set to 64. A total of 1600 images are used for the
training, and the remaining 200 images in the dataset are used as the test set. The results of
the periodic generation of the model in training are shown in Figure 12. The outline of the
potholes already appeared from the 5th epoch, and the internal structure of the potholes
gradually became clear as the training epochs increased, and the generated images are very
close to the real potholes after 50 epochs.
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4.2.5. Qualitative Evaluation

For the comparison of network performance, in addition to the MDTMN model in
this paper, three more deep learning algorithms, CPN, Cycle-GAN, and PIX2PIX, are
selected for comparison. Two types of test data are adopted: one is the test set image
with real potholes, as shown in Figure 13, and the other is the image without potholes
in the pavement image, which needs to be generated by the model autonomously, as
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shown in Figure 13. Figure 14 shows that among the four generation models, only CPN
does not generate pavement distress. This is primarily because its training and network
design do not generate semantically for the mask of the specified region. Instead, it uses
the global random mask generation method. It can be seen that since there are many
pavements context in the figure, the CPN focuses more attention on the generation of
pavement context, and its generated images also generate the mask into pavement context.
Cycle-GAN is an unsupervised generative adversarial network because it does not strictly
restrict the generation semantic and the hidden variables are not sufficiently separated.
Although the cyclic bidirectional generation is used for training, its generation semantic
is still disturbed by other hidden variables, and even though the contours of the potholes
in the generated images can be seen, the overall image quality is poor and blurred, and
there is more additional noise. Only MDTMN and PIX2PIX can generate the pits correctly,
among which MDTMN has the best quality of pits generation, closest to the original pothole
image, the clearest contours, and the most details inside the pothole. The last row shows
an image with two potholes masks. Although both MDTMN and PIX2PIX generate the
double potholes correctly, the former is slightly more realistic than the latter. For the small
pothole at the bottom right, the interior generated by PIX2PIX is close to off-white, but the
actual interior color is gray-black, and only MDTMN is closer.
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Figure 14 shows the results of generating the original pavement image without pothole
lesions by each model. The MDTMN still generates good results, and although there is
no GT image for comparison, the details inside the generated potholes are still rich, and
especially, there is no “model collapse” phenomenon. The MDTMN model can generate
different details of potholes distress according to different masks. The best performance in
the test of freely generated distress images is MDTMN, whereas CPN still fails to generate
potholes, and Cycle-GAN’s still suffers from implicit semantic interference generating
images that still contain a lot of noise.

4.2.6. Quantitative Evaluation

The generated results of MDTMN are already very close to the real pavement distress
images in terms of visual perception, but still need to be evaluated quantitatively. In this
section, four evaluation indexes, PSNR, SSIM, FID, and LPIPS, are used to evaluate them in
terms of SNR, structural similarity, and visual perception, respectively.

The LPIPS (Learned Perceptual Image Patch Similarity) of the four metrics uses depth
features for the perceptual metric of two images. The calculation procedure is as follows,
the reference image and the generated image x and x0 are fed into the underlying network
F for feature extraction of a total of L layers, and then feature normalization is performed,
where the features of the lth layer can be expressed as ŷl , ŷl

0 ∈ RHl×Wl×Cl , the scaling
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channel is activated using vector wl ∈ RCl and then the L2 distance is calculated, mean in
space, and summed over the lth layer, as in Equation (6).

d(x, x0) = ∑
l

1
HlWl

∑h,w ‖ωl � (ŷl
hw − ŷl

0hw)‖
2

2
(6)

The evaluation of the generated results of these four models is shown in Table 2.

Table 2. Evaluation of the generation results of each algorithm under the reference of Ground
Truth images.

Models PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓
MDTMN 28.35 0.633 0.038 35.713
PIX2PIX 28.17 0.619 0.053 38.230

CPN 28.40 0.603 0.050 38.332
Cycle-GAN 22.61 0.282 0.1813 202.703

The higher the metric, the better the performance, as indicated by ↑, and the lower the metric, the better the
performance, as indicated by ↓.

The performance metrics of each model with reference images are shown in Table 2, in
which MDTMN leads all models. However, in PSNR, it is only slightly ahead of PIX2PIX.
Likewise, slightly behind are CPN and Cycle-GAN, which have the worst visual effect,
and have the lowest scores for all evaluation metrics. It is worth noting the score of PSNR.
Although MDTMN achieves a better generation effect, the highest score in this item is
indeed the result of CPN algorithm, because it only focuses on the difference of pixel values
and is not sensitive to the image structure and semantic distribution, so this score cannot
be used to evaluate the quality of generated images alone.

To evaluate the gap between autonomously generated distress and real pavement
distress, since there are no paired GT images, this paper follows the batch images from the
perspective of visual perception, and the comparison results in Table 3 show that MDTMN
is optimal in both visual perception proximity scores, proving that its generated images are
closest to the real distress.

Table 3. The comparison results between the autonomous generation of pavement distress images by
each algorithm and the real images.

Models LPIPS FID

MDTMN 0.176 225.118
PIX2PIX 0.179 230.928

CPN 0.175 245.520
Cycle-GAN 0.237 283.782

4.3. Pixel-Wise Pavement Distress Detection Test

To demonstrate the effectiveness of data augmentation, this paper uses the semantic
segmentation network BiseNet to perform pixel-level distress detection on the original
102 pothole images (90 images for training) and 850 crack images (770 images for training)
at the beginning. Then, the pothole images augmented by the conventional algorithm, the
synthetic pothole images augmented by the proposed algorithm, and different combinations
between them will can be inserted into the training set at different training stages. More
specifically, to quantify the improvement of detection performance by the number of
augmented images, the original images were augmented to 300 images by the conventional
and proposed algorithms, respectively. Following each round of model training, the
training set was progressively expanded by incorporating 100 pothole images generated
by various augmentation techniques. This procedure was iteratively performed until all
augmented images in the training set were used. The results are reported in Table 4.
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Table 4. Pothole detection results under different training data, original data (O), data augmented by
conventional (C), and proposed algorithms (P).

Data Amount
(Crack/Pothole) Pixel-Acc Recall Kappa IoU

O 952 (850/102) 0.8889 0.521 0.6515 0.4883
O + C(100) 1052 (850/202) 0.8816 0.7302 0.7954 0.665
O + P(100) 1052 (850/202) 0.8933 0.7433 0.8003 0.686

O + C(100) + P(100) 1152 (850/302) 0.925 0.7466 0.8234 0.704
O + C(200) 1152 (850/302) 0.897 0.7646 0.8226 0.7029
O + P(200) 1152 (850/302) 0.9412 0.8212 0.8750 0.7812
O + C(300) 1252 (850/402) 0.9031 0.8106 0.8663 0.7622
O + P(300) 1252 (850/402) 0.9501 0.8517 0.8964 0.8152

O + C(200) + P(100) 1252 (850/402) 0.9260 0.8551 0.8867 0.7997
O + C(100) + P(200) 1252 (850/402) 0.9104 0.8651 0.8902 0.8033
O + C(300) + P(300) 1552 (850/702) 0.9208 0.9013 0.9093 0.8365

From the detection performance evaluation in Table 4, we obtain the highest IoU from
the model using all 600 augmented images, reaching 0.8365, which is 1.7 times higher than
the performance of the model only using the original images. The IoU boost is fastest
when the number of images is boosted to twice the original images, and then the IoU boost
becomes slower as the amount of data gradually increases.

In addition, when the training data is the result of a single augmentation algorithm, the
detection model performs better on the proposed datasets of different magnitudes. When
the training data is a mixed dataset, the detection model with a larger proportion of images
augmented by the proposed algorithm in the training set has a better IoU performance
of the model. Accordingly, it can be concluded that the model performance is not simply
positively correlated with the number of images in the dataset, and enhancing the diversity
of augmented images is a more effective means to improve the performance and robustness
of detection models.

5. Conclusions

In this paper, a new two-stage image augmentation approach is proposed, in which
the augmentation of pavement distress mask images is conducted in the first stage, and
in the second stage, the distress-free images are first fused with the mask images, and
then the distress masks in their fused images are generated to generate pavement distress
to complete the image augmentation of semantic content. Moreover, M-DCGAN and
MDTMN are designed for different tasks in the two phases. These two generation networks
can work together in combination or separately, resulting in better performance than using
the same type of algorithms. In addition, since the generation approach of the pavement
distress images is based on the distress mask generation, it can be naturally used as the
well-labeled training data for the semantic segmentation model, which saves a lot of labor.
This approach can leverage the full range of data in the dataset, including images without
pavement distress. When comparing the datasets augmented by traditional algorithms for
detection experiments, the augmented datasets using the proposed algorithm can lead to
better performance of the detection model. This image augmentation model with associated
generative model is generic and can be used to augment other similar datasets as well.

Furthermore, data augmentation is a performance-demanding task for algorithms.
Augmentation algorithms need to find a balance between computational complexity and
efficiency. The proposed algorithms are based on the SE module, DCGAN, and U-net. All
three network structures are well known for their low computational complexity and high
efficiency. Therefore, the proposed algorithms possess these advantages as well.
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